# ASSESSMENT OF INTERSTATE STREAMS IN THE SUSQUEHANNA RIVER BASIN

Monitoring Report No. 14 July 1, 1999, Through June 30, 2000

Publication No. 215

June 30, 2001

Jennifer L. R. Hoffman Aquatic Ecologist

Darryl L. Sitlinger Water Quality Technician

Water Quality and Monitoring Program Susquehanna River Basin Commission



Printed on recycled paper.

This report is based on work funded by the United States Environmental Protection Agency under a Water Pollution Control-Statewide Interstate Program Grant Number I-003992-00

# SUSQUEHANNA RIVER BASIN COMMISSION



Paul O. Swartz, Executive Director

John T. Hicks, N.Y. Commissioner Scott J. Foti., N.Y. Alternate

David E. Hess, Pa. Commissioner Irene B. Brooks, Pa. Alternate

Jane T. Nishida, Md. Commissioner Vacant, Md. Alternate

Major General Jerry L. Sinn, U.S. Commissioner Colonel Charles J. Fiala, Jr., U.S. Alternate

The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact<sup>\*</sup> among the states of Maryland, New York, Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development and control of basin water resources among the public and private sectors.

\*Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976).

For additional copies of this publication, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, Pa. 17102-2391, (717) 238-0423, FAX (717) 238-2436, E-mail <u>srbc@srbc.net</u>. For more information concerning the Commission, visit our web site: <u>www.srbc.net</u>.

| ABSTRACT1                                       |
|-------------------------------------------------|
| INTRODUCTION1                                   |
| BASIN GEOGRAPHY                                 |
| METHODS2                                        |
| Field and Laboratory Methods                    |
| Sampling frequency                              |
| Stream discharge4                               |
| Water samples4                                  |
| Field chemistry4                                |
| Macroinvertebrate and physical habitat sampling |
| Data Synthesis Methods                          |
| Chemical water quality                          |
| Reference category designations                 |
| Biological and physical habitat conditions      |
| Trend analysis                                  |
| RESULTS                                         |
| Water Quality                                   |
| Biological Communities and Physical Habitat     |
| New York-Pennsylvania streams                   |
| Pennsylvania-Maryland streams                   |
| River sites                                     |
| Group 3 Sites                                   |
| Trends Analysis                                 |
| Total suspended solids                          |
| Total ammonia                                   |
| Total nitrogen                                  |
| Total phosphorus                                |
| Total chloride                                  |
| Total sulfate                                   |
| Total iron48                                    |
| Total aluminum                                  |
| Total manganese                                 |
| Water quality index                             |

| BIOASSESSMENT OF INTERSTATE STREAMS                      | 49        |
|----------------------------------------------------------|-----------|
| New York-Pennsylvania Border Streams                     | 49        |
| Apalachin Creek (APAL 6.9)                               |           |
| Bentley Creek (BNTY 0.9).                                |           |
| Cascade Creek (CASC 1.6)                                 |           |
| Cayuta Creek (CAYT 1.7)                                  |           |
| Choconut Creek (CHOC 9.1)                                |           |
| Little Snake Creek (LSNK 7.6).                           |           |
| Seeley Creek (SEEL 10.3).                                |           |
| Snake Creek (SNAK 2.3)                                   |           |
| South Creek (SOUT 7.8)                                   |           |
| Troups Creek (TRUP 4.5)                                  |           |
| Trowbridge Creek (TROW 1.8)                              |           |
| Wappasening Creek (WAPP 2.6)                             |           |
| Wuppusching Creek (WHT 2.0)                              |           |
| Pennsylvania-Maryland Streams                            |           |
| Big Branch Deer Creek (BBDC 4.1)                         |           |
| Conowingo Creek (CNWG 4.4).                              |           |
| Deer Creek (DEER 44.2).                                  |           |
| Ebaughs Creek (EBAU 1.5)                                 |           |
| Falling Branch Deer Creek (FBDC 4.1)                     |           |
| Long Arm Creek (LNGA 2.5)                                |           |
| Octor aro Creek (OCTO 6.6)                               |           |
| Scott Creek (SCTT 3.0)                                   |           |
| South Branch Conewago Creek (SBCC 20.4)                  |           |
| River Sites                                              | 77        |
| Chomung Divor (CHEM 12.0)                                | <i>רר</i> |
| Chemung River (CHEM 12.0)<br>Cowanesque River (COWN 2.2) |           |
| Cowanesque River (COWN 2.2)                              |           |
| Susquehanna River at Windsor, N.Y. (SUSQ 365.0)          |           |
| Susquehanna River at Kirkwood, N.Y. (SUSQ 340.0)         |           |
| Susquehanna River at Sayre, Pa. (SUSQ 289.1)             |           |
| Susquehanna River at Marietta, Pa. (SUSQ 44.5)           |           |
| Susquehanna River at Conowingo, Md. (SUSQ 10.0)          |           |
| Tioga River (TIOG 10.8)                                  |           |
| Group 3 Sites                                            |           |
| Dala a al-Davis (DADC)                                   | 07        |
| Babcock Run (BABC)                                       |           |
| Bill Hess Creek (BILL).                                  |           |
| Bird Creek (BIRD)                                        |           |
| Biscuit Hollow (BISC)                                    |           |
| Briggs Hollow Run (BRIG)                                 |           |
| Bulkley Brook (BULK)                                     |           |
| Camp Brook (CAMP)                                        |           |

| Cook Hollow (COOK)                   |    |
|--------------------------------------|----|
| Deep Hollow Brook (DEEP)             |    |
| Denton Creek (DENT)                  |    |
| Dry Brook (DRYB)                     |    |
| Little Wappasening Creek (LWAP)      |    |
| Parks Creek (PARK)                   |    |
| Prince Hollow Run (PRIN)             |    |
| Red House/Beagle Hollow Run (REDH)   |    |
| Russell Run (RUSS)                   |    |
| Sackett Creek (SACK)                 |    |
| Smith Creek (SMIT)                   |    |
| Strait Creek (STRA)                  |    |
| White Branch Cowanesque River (WBCO) |    |
| White Hollow (WHIT).                 |    |
|                                      |    |
| MANAGEMENT IMPLICATIONS              | 91 |
|                                      |    |
| New York – Pennsylvania Sites        |    |
| Pennsylvania – Maryland Sites        |    |
| River Sites                          |    |
| Group 3 Streams                      |    |
| 1                                    |    |
| CONCLUSIONS                          |    |
| REFERENCES                           |    |
|                                      |    |

# TABLES

| Table 1.  | Interstate Streams in the Susquehanna River Basin                                                                              | 3  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.  | Stream Stations Sample d Along the New York–Pennsylvania Border and Sampling Rationale                                         |    |
| Table 3.  | Stream Stations Sampled Along the Pennsylvania–Maryland Border and Sampling Rationale                                          | 7  |
| Table 4.  | Monitored Parameters                                                                                                           | 14 |
| Table 5.  | Criteria Used to Evaluate Physical Habitat                                                                                     | 16 |
| Table 6.  | Summary of Metrics Used to Evaluate the Overall Biological Integrity of Stream and River Benthic Macroinvertebrate Communities | 19 |
| Table 7.  | Summary of Criteria Used to Classify the Biologic al Conditions of Sample Sites                                                | 20 |
| Table 8.  | Summary of Criteria Used to Classify the Habitat Conditions of Sample Sites                                                    | 21 |
| Table 9.  | Stream Classifications                                                                                                         | 23 |
| Table 10. | Water Quality Standard Summary                                                                                                 | 24 |
| Table 11. | Summary of New York-Pennsylvania Border RBP III Biological Data                                                                | 25 |
| Table 12. | Summary of Pennsylvania - Maryland Border RBP III Biological Data                                                              | 27 |
| Table 13. | Summary of River RBP III Biological Data                                                                                       | 29 |
| Table 14. | Summary of Group 3 Sites RBP III Biological Data                                                                               | 31 |
| Table 15. | Summary of New York-Pennsylvania Sites Physical Habitat Data                                                                   | 35 |
|           |                                                                                                                                |    |

| Summary of Pennsylvania - Maryland Sites Physical Habitat Data                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of River Sites Physical Habitat Data                                    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary of Group 3 Sites Physical Habitat Data                                  | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trend Summary of Selected Parameters for Group 1 Streams, 1986-98               | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trend Category Counts and Weighted Values of Concentrations for Group 1 Streams | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Trend Category Counts and Weighted Values of Flow-Adjusted Concentrations for   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Abbreviations Used in Tables 21 Through 51                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Apalachin Creek at Little Meadows, Pa                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Bentley Creek at Wellsburg, N.Y                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Cascade Creek at Lanesboro, Pa.                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Cayuta Creek at Waverly, N.Y                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Choconut Creek at Vestal Center, N.Y                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Little Snake Creek at Brackney, Pa                        | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Seeley Creek at Seeley Creek, N.Y.                        | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Snake Creek at Brookdale, Pa                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary South Creek at Fassett, Pa.                               | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Troups Creek at Austinburg, Pa                            | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Trowbridge Creek at Great Bend, Pa                        | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Wappasening Creek at Nichols, N.Y                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Big Branch Deer Creek at Fawn Grove, Pa                   | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Conowingo Creek at Pleasant Grove, Pa                     | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Deer Creek at Gorsuch Mills, Md.                          | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Ebaughs Creek at Stewartstown, Pa.                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Falling Branch Deer Creek at Fawn Grove, Pa               | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Long Arm Creek at Bandanna, Pa.                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Octoraro Creek at Rising Sun, Md.                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Scott Creek at Delta, Pa                                  | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary South Branch Conewago Creek at Bandanna, Pa               | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Chemung River at Chemung, N.Y                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Cowanesque River (COWN 2.2) at Lawrenceville, Pa          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Cowanesque River (COWN 1.0) at Lawrenceville, Pa          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Susquehanna River at Windsor, N.Y                         | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Susquehanna River at Kirkwood, N.Y                        | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Susquehanna River at Sayre, Pa                            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Susquehanna River at Marietta, Pa                         | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Susquehanna River at Conowingo, Md.                       | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Water Quality Summary Tioga River at Lindley, N.Y.                              | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary of Overall Direction of Trends                                          | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                 | Summary of Pennsylvania -Maryland Sites Physical Habitat Data<br>Summary of River Sites Physical Habitat Data<br>Trend Summary of Group 3 Sites Physical Habitat Data<br>Trend Summary of Selected Parameters for Group 1 Streams, 1986-98<br>Trend Category Counts and Weighted Values of Concentrations for Group 1 Streams.<br>Trend Category Counts and Weighted Values of Flow-Adjusted Concentrations for<br>Group 1 Streams.<br>Abbreviations Used in Tables 21 Through 51<br>Water Quality Summary Apalachin Creek at Little Meadows, Pa.<br>Water Quality Summary Apalachin Creek at Little Meadows, Pa.<br>Water Quality Summary Cascade Creek at Lanesboro, Pa.<br>Water Quality Summary Cayuta Creek at Wellsburg, N.Y.<br>Water Quality Summary Cayuta Creek at Westal Center, N.Y.<br>Water Quality Summary Choconut Creek at Vestal Center, N.Y.<br>Water Quality Summary Seeley Creek at Seley Creek, N.Y.<br>Water Quality Summary Seeley Creek at Brackney, Pa.<br>Water Quality Summary South Creek at Brookdale, Pa.<br>Water Quality Summary South Creek at Fasckt, Pa.<br>Water Quality Summary South Creek at Fasckt, Pa.<br>Water Quality Summary Torubys Creek at Austinburg, Pa.<br>Water Quality Summary Big Branch Deer Creek at Fawn Grove, Pa.<br>Water Quality Summary Deer Creek at Gorsuch Mills, Md.<br>Water Quality Summary Deer Creek at Gorsuch Mills, Md.<br>Water Quality Summary Deer Creek at Gorsuch Mills, Md.<br>Water Quality Summary Long Arm Creek at Bandanna, Pa.<br>Water Quality Summary South Branch Deer Creek at Fawn Grove, Pa.<br>Water Quality Summary Scott Creek at Bandanna, Pa.<br>Water Quality Summary Scott Branch Conewago Creek at Bandanna, Pa.<br>Water Quality Summary Scott Creek at Chemung, N.Y.<br>Water Quality Summary Scott Branch Conewago Creek at Bandanna, Pa.<br>Water Quality Summary Scott Creek at Chemung, N.Y.<br>Water Quality Summary Susquehanna River at Chemung, N.Y.<br>Water Quality Summary Susquehanna River at Chemung, N.Y.<br>Water Quality Summary Susquehanna River |

# FIGURES

| Figure 1. | Interstate Streams Along the New York-Pennsylvania Border Between Apalachin      |    |
|-----------|----------------------------------------------------------------------------------|----|
|           | Creek and Cascade Creek                                                          | 8  |
| Figure 2. | Interstate Streams Along the New York-Pennsylvania Border Between Seeley Creek   |    |
| -         | and Wappasening Creek                                                            | 9  |
| Figure 3. | Interstate Streams Along the New York-Pennsylvania Border Between North Fork     |    |
|           | Cowanesque River and Tioga River                                                 | 11 |
| Figure 4. | Interstate Streams Along the Pennsylvania - Maryland Border                      | 13 |
| Figure 5. | Parameters Exceeding Water Quality Standards                                     | 24 |
| Figure 6. | Summary of New York-Pennsylvania Border Streams Habitat and Biological Condition |    |
| -         | Scores                                                                           | 40 |
| Figure 7. | Summary of Pennsylvania-Maryland Border Streams Habitat and Biological Condition |    |
| -         | Scores                                                                           | 41 |
| Figure 8. | Summary of River Habitat and Biological Condition Scores                         | 42 |
| Figure 9. | Summary of Group 3 Streams Habitat and Biological Condition Scores               |    |
|           |                                                                                  |    |

# APPENDIXES

| Appendix A. | Water Quality Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania -Maryland Borders     | 99  |
|-------------|---------------------------------------------------------------------------------------------------------------------|-----|
| Appendix B. | Organic Pollution-Tolerance and Functional Feeding Group Designations of Benthic<br>Macroinvertebrate Taxa          | 115 |
| Appendix C. | Macroinvertebrate Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania -Maryland Borders | 119 |
| Appendix D. | Water Classification and Best Usage Regulations                                                                     | 149 |
| Appendix E. | Statistical Trend Results By Parameter                                                                              | 153 |
|             |                                                                                                                     |     |

### ACKNOWLEDGMENTS

The authors would like to acknowledge those who made significant contributions to the completion of this project. The Pennsylvania Department of Environmental Protection, Bureau of Laboratories, in Harrisburg, Pa., conducted all laboratory analysis of chemical water quality. The authors collected all macroinvertebrate samples, physical habitat information, and water quality samples for laboratory analysis. Robert Edwards assisted with trends analysis of water quality and reviewed the report. Donna Fiscus and Mike Goeckel produced all maps. Doreen McCabe provided proofreading and formatting services, and David Heicher and Susan Obleski provided helpful reviews of this report. Additional thanks go the U.S. Environmental Protection Agency, which provided funding for this project.

# ASSESSMENT OF INTERSTATE STREAMS IN THE SUSQUEHANNA RIVER BASIN

Monitoring Report No. 14 July 1, 1999, Through June 30, 2000

Jennifer L. R. Hoffman, Aquatic Ecologist Darryl L. Sitlinger, Water Quality Technician

### ABSTRACT

The Susquehanna River Basin Commission (SRBC) used a water quality index (WQI) and the Environmental Protection U.S. Agency's (USEPA's) Rapid Bioassessment Protocol III (RBP III) to assess the chemical water quality, biological conditions, and physical habitat of 51 sample sites in the Interstate Streams Water Ouality Network from July 1, 1999, to June 30, 2000. Only 39 out of 2,662 parameter observations exceeded water quality standards. Assessment results indicate that approximately 26 percent of the sites supported nonimpaired biological communities. Water quality impacts in the New York-Pennsylvania border streams were while mostly from metals. Pennsvlvania -Maryland border sites suffered from high nutrient levels.

A Seasonal Kendall Test was performed to determine trends and their magnitudes for 1986-2000. Overall, an increasing trend was found in total chloride, while decreasing trends were found for total ammonia, total phosphorus, total sulfate, total iron, total manganese, and WQI.

A Pearson Product Moment Correlation was performed on WQI, RBP III score, and physical habitat score. A significant (p<0.05) positive correlation occurred between biological community and physical habitat score for New York-Pennsylvania sites and for river sites. These relationships, while based on a small number of observations, are presented as subjects to be considered by resource managers, elected officials, and local interest groups.

### INTRODUCTION

One of SRBC's functions is to review projects that may have interstate impacts on water resources in the Susquehanna River Basin. SRBC established a monitoring program in 1986 to collect data that were not available from monitoring programs implemented by New York, Pennsylvania, and Maryland. The state agencies do not assess all of the interstate streams and do not produce comparable data needed to determine potential impacts on the water quality of interstate streams. SRBC's ongoing interstate monitoring program is partially funded through a grant from the USEPA.

The interstate water quality monitoring program includes periodic collection of water and biological samples from, as well as physical habitat assessments of, interstate streams. Water quality data are used to: (1) assess compliance with water quality standards; (2) characterize stream quality and seasonal variations; (3) build a database for assessment of water quality trends; (4) identify streams for reporting to USEPA under Section 305(b) of the Clean Water Act: (5) provide information to signatory states for 303(d) listing and possible Total Maximum Daily Load (TMDL) development; and (6) identify areas for restoration and protection. Biological conditions assessed benthic are using macroinvertebrate populations, which provide an

indication of the biological health of a stream and serve as indicators of water quality. Habitat assessments provide information concerning potential stream impairment from erosion and sedimentation, as well as an indication of the stream's ability to support a healthy biological community.

SRBC's interstate monitoring program began in April 1986. For the first five years, results were reported for water years that ran from October to September. In 1991, SRBC changed the reporting periods to correspond with its fiscal year that covers the period from July 1 to June 30. This report is presented for fiscal year 2000, which covers July 1, 1999, to June 30, 2000.

### **BASIN GEOGRAPHY**

The Susquehanna River Basin is the largest river basin on the Atlantic Coast of the United States, draining 27,510 square miles. The Susquehanna River originates at the outlet of Otsego Lake, Cooperstown, N.Y., and flows 444 miles through New York, Pennsylvania, and Maryland to the Chesapeake Bay at Havre de Grace, Maryland. Eighty-three streams cross state lines in the basin (Table 1). Several streams traverse the state lines at multiple points, contributing to 91 crossings. At 45 of these locations, streams flow from New York into Pennsylvania. Twenty-two reaches cross from Pennsylvania into New York, 15 from Pennsylvania into Maryland, and nine from Maryland into Pennsylvania. Many streams are small, and 32 are unnamed.

### METHODS

### **Field and Laboratory Methods**

### Sampling frequency

In Water Year 1989, the interstate streams were divided into three groups, according to the degree of water quality impairment, historical water quality impacts, and potential fordegradation. These groupings were determined based on historical water quality and land use. To date, these groups remain consistent and are described below.

Streams with impaired water quality or judged to have a high potential for degradation due to large drainage areas or historical pollution were assigned to Group 1. Group 1 streams are sampled quarterly for water chemistry and annually for benthic macroinvertebrates and habitat information. During fiscal year 2000, New York-Pennsylvania streams were sampled in November, February, and July, Mav. Pennsylvania-Maryland stations were sampled in August, November, February, and May. Benthic macroinvertebrates were collected and habitat assessments were performed in Group 1 streams during July and August 1999.

Streams judged to have a moderate potential for impacts were assigned to Group 2. Water quality samples, benthic macroinvertebrate samples, and physical habitat information are obtained from Group 2 stations annually, preferably during base flow conditions in the summer months. During fiscal year 2000, water chemistry, macroinvertebrate, and physical habitat information were collected during July and August 1999.

Streams judged to have a low potential for impacts were assigned to Group 3. During fiscal year 2000, the biological and habitat conditions of these streams were assessed during May 2000. Stream field chemistry parameters also were measured on Group 3 streams at the time of biological sampling.

| Stream<br>Name                        | Monitoring<br>Group | Flow Direction<br>(from ® to)                           |
|---------------------------------------|---------------------|---------------------------------------------------------|
| Streams Along the New York-Pennsylvan | nia Border          |                                                         |
| Apalachin Creek                       | 2                   | $Pa. \rightarrow N.Y.$                                  |
| Babcock Run                           | 3                   | $N.Y. \rightarrow Pa.$                                  |
| Bentley Creek                         | 1                   | $Pa. \rightarrow N.Y.$                                  |
| Bill Hess Creek                       | 3                   | N.Y.→Pa.                                                |
| Bird Creek                            | 3                   | $Pa. \rightarrow N.Y.$                                  |
| Biscuit Hollow                        | 3                   | N.Y.→Pa.                                                |
| Briggs Hollow Run                     | 3                   | N.Y.→Pa.                                                |
| Bulkley Brook                         | 3                   | N.Y.→Pa.                                                |
| Camp Brook                            | 3                   | N.Y.→Pa.                                                |
| Cascade Creek                         | 1                   | N.Y.→Pa.                                                |
| Cayuta Creek                          | 1                   | N.Y.→Pa.                                                |
| Chemung River                         | 1                   | $N.Y. \rightarrow Pa. \rightarrow N.Y. \rightarrow Pa.$ |
| Choconut Creek                        | 2                   | $Pa. \rightarrow N.Y.$                                  |
| Cook Hollow                           | 3                   | N.Y.→Pa.                                                |
| Cowanesque River                      | 1                   | $Pa. \rightarrow N.Y.$                                  |
| Deep Hollow Brook                     | 3                   | N.Y.→Pa.                                                |
| Denton Creek                          | 3                   | N.Y.→Pa.                                                |
| Dry Brook                             | 3                   | N.Y.→Pa.                                                |
| Holden Creek                          | 2                   | N.Y.→Pa.                                                |
| Little Snake Creek                    | 1                   | $Pa. \rightarrow N.Y.$                                  |
| Little Wappasening Creek              | 3                   | $Pa. \rightarrow N.Y.$                                  |
| North Fork Cowanesque River           | 2                   | N.Y.→Pa.                                                |
| Parks Creek                           | 3                   | $Pa. \rightarrow N.Y.$                                  |
| Prince Hollow Run                     | 3                   | N.Y.→Pa.                                                |
| Red House/Beagle Hollow               | 3                   | N.Y.→Pa.                                                |
| Russell Run                           | 3                   | N.Y.→Pa.                                                |
| Sackett Creek                         | 3                   | $Pa. \rightarrow N.Y.$                                  |
| Seeley Creek                          | 1                   | $Pa. \rightarrow N.Y.$                                  |
| South Creek                           | 2                   | $Pa. \rightarrow N.Y.$                                  |
| Snake Creek                           | 2                   | $Pa. \rightarrow N.Y.$                                  |
| Strait Creek                          | 3                   | N.Y.→Pa.                                                |
| Susquehanna River                     | 1                   | $N.Y. \rightarrow Pa. \rightarrow N.Y. \rightarrow Pa.$ |
| Tioga River                           | 1                   | $Pa. \rightarrow N.Y.$                                  |
| Troups Creek                          | 1                   | N.Y.→Pa.                                                |
| Trowbridge Creek                      | 2                   | N.Y.→Pa.                                                |
| Wappasening Creek                     | 2                   | $Pa. \rightarrow N.Y.$                                  |
| White Branch Cowanesque River         | 3                   | N.Y.→Pa.                                                |
| White Hollow                          | 3                   | $Pa. \rightarrow N.Y.$                                  |
| 17 Unnamed tributaries                | 3                   | N.Y.→Pa.                                                |
| 2 Unnamed tributaries                 | 3                   | $Pa. \rightarrow N.Y.$                                  |
| 2 Unnamed tributaries                 | 3                   | $Pa. \rightarrow N.Y. \rightarrow Pa.$                  |
| 1 Unnamed tributary                   | 3                   | N.Y.→Pa.→N.Y.                                           |

# Table 1. Interstate Streams in the Susquehanna River Basin

| Stream<br>Name                                 | Monitoring<br>Group | Flow Direction<br>(from→to) |  |  |
|------------------------------------------------|---------------------|-----------------------------|--|--|
| Streams Along the Pennsylvania-Maryland Border |                     |                             |  |  |
| Big Branch Deer Creek                          | 2                   | Pa.→Md.                     |  |  |
| Conowingo Creek                                | 1                   | Pa.→Md.                     |  |  |
| Deer Creek                                     | 1                   | Pa.→Md.                     |  |  |
| Ebaughs Creek                                  | 1                   | Pa.→Md.                     |  |  |
| Falling Branch Deer Creek                      | 2                   | Pa.→Md.                     |  |  |
| Island Branch                                  | 3                   | Pa.→Md.                     |  |  |
| Long Arm Creek                                 | 2                   | Md.→Pa.                     |  |  |
| Octoraro Creek                                 | 1                   | Pa.→Md.                     |  |  |
| Scott Creek                                    | 1                   | Md.→Pa.                     |  |  |
| South Branch Conewago Creek                    | 2                   | Md.→Pa.                     |  |  |
| Susquehanna River                              | 1                   | Pa.→Md.                     |  |  |
| 6 Unnamed tributaries                          | 3                   | Md.→Pa.                     |  |  |
| 7 Unnamed tributaries                          | 3                   | Pa.→Md.                     |  |  |

 Table 1.
 Interstate Streams in the Susquehanna River Basin—Continued

New York-Pennsylvania border and Pennsylvania-Maryland border stream stations sampled during fiscal year 2000 are listed in Tables 2 and 3, respectively, and are depicted in Figures 1 through 4.

### Stream discharge

Stream discharge was measured at all Group 1 and 2 stations unless high streamflows made access impossible. Several stations are located Survey near U.S. Geological (USGS) These stations include the streamgages. following: the Susquehanna River at Windsor, N.Y., Kirkwood, N.Y., Sayre, Pa., Marietta, Pa., and Conowingo, Md.; the Chemung River at Chemung, N.Y.; the Tioga River at Lindley, N.Y.: and the Cowanesque River at Lawrenceville, Pa. Recorded stages from USGS gaging stations and rating curves were used to determine instantaneous discharges in cubic feet per second (cfs). Instantaneous discharges for stations not located near USGS gaging stations were measured at the time of sampling, using standard USGS procedures. Stream discharges are tabulated according to station name and date in Appendix A.

### Water samples

Water samples were collected at each of the Group 1 and 2 sites to measure nutrient and

metal concentrations. Chemical and physical parameters monitored are listed in Table 4. Water samples were collected using a depthintegrating sampler. Composite samples were obtained by collecting eight depth-integrated samples across the stream channel and combining them in a churn splitter that was previously rinsed with distilled water. Water samples were thoroughly mixed in the churn splitter and collected in 250-ml bottles. One whole-water sample and one filtered sample were collected for nutrient analysis. A whole water sample and a filtered sample were collected in acid-rinsed bottles and fixed with concentrated nitric acid (HNO3) for metal analysis. A whole water sample and a filtered water sample were collected and fixed with concentrated sulfuric acid  $(H_2SO_4)$  to analyze total and dissolved ammonia, phosphorus, and orthophosphate. A cellulose acetate filter with 0.45-micrometer pore size was used to obtain the filtrate for laboratory analysis. The samples were chilled on ice and sent to the Pennsylvania Department of Environmental Protection (Pa. DEP), Bureau of Laboratories in Harrisburg, Pa., within 24 hours of collection.

### Field chemistry

Temperature, dissolved oxygen, conductivity, pH, alkalinity, and acidity were measured at all sites in the field. Dissolved oxygen was measured using a YSI model 55 dissolved oxygen meter that was calibrated at the beginning of each day when water samples were collected. A VWR Scientific Model 2052 conductivity meter was used to measure conductivity. A Cole Parmer meter was used to measure pH. The pH meter was calibrated at the beginning of the day and randomly checked throughout the day. Alkalinity was determined by titrating a known volume of water to pH 4.5 with 0.02 N sulfuric acid. Acidity was measured by titrating a known volume of sample water to pH 8.3 with 0.02N sodium hydroxide (NaOH).

 Table 2.
 Stream Stations Sampled Along the New York–Pennsylvania Border and Sampling Rationale

| Station   | Stream and Location                        | Monitoring<br>Group | Rationale                                             |
|-----------|--------------------------------------------|---------------------|-------------------------------------------------------|
| APAL 6.9  | Apalachin Creek,<br>Little Meadows, Pa.    | 2                   | Monitor for potential water quality impacts           |
| BABC      | Babcock Run,<br>Cadis, Pa.                 | 3                   | Monitor for potential impacts                         |
| BILL      | Bill Hess Creek,<br>Nelson, Pa.            | 3                   | Monitor for potential impacts                         |
| BIRD      | Bird Creek<br>Webb Mills, N.Y.             | 3                   | Monitor for potential impacts                         |
| BISC      | Biscuit Hollow,<br>Austinburg, Pa.         | 3                   | Monitor for potential impacts                         |
| BNTY 0.9  | Bentley Creek,<br>Wellsburg, N.Y.          | 1                   | Monitor for potential water quality impacts           |
| BRIG      | Briggs Hollow,<br>Nichols, N.Y.            | 3                   | Monitor for potential impacts                         |
| BULK      | Bulkley Brook,<br>Knoxville, Pa.           | 3                   | Monitor for potential impacts                         |
| САМР      | Camp Brook,<br>Osceola, Pa.                | 3                   | Monitor for potential impacts                         |
| CASC 1.6  | Cascade Creek,<br>Lanesboro, Pa.           | 1                   | Monitor for potential water quality impacts           |
| CAYT 1.7  | Cayuta Creek,<br>Waverly, N.Y.             | 1                   | Municipal discharge from Waverly, N.Y.                |
| CHEM 12.0 | Chemung River,<br>Chemung, N.Y.            | 1                   | Municipal and industrial discharges from Elmira, N.Y. |
| CHOC 9.1  | Choconut Creek,<br>Vestal Center, N.Y.     | 2                   | Monitor for potential water quality impacts           |
| COOK      | Cook Hollow,<br>Austinburg, Pa.            | 3                   | Monitor for potential impacts                         |
| COWN 2.2  | Cowanesque River,<br>Lawrenceville, Pa.    | 1                   | Impacts from flood control reservoir                  |
| COWN 1.0  | Cowanesque River,<br>Lawrenceville, Pa.    | 1                   | Recovery zone from upstream flood control reservoir   |
| DEEP      | Deep Hollow Brook,<br>Danville, N.Y.       | 3                   | Monitor for potential impacts                         |
| DENT      | Denton Creek,<br>Hickory Grove, Pa.        | 3                   | Monitor for potential impacts                         |
| DRYB      | Dry Brook,<br>Waverly, N.Y.                | 3                   | Monitor for potential impacts                         |
| LSNK 7.6  | Little Snake Creek,<br>Brackney, Pa.       | 1                   | Monitor for potential water quality impacts           |
| LWAP      | Little Wappasening Creek,<br>Nichols, N.Y. | 3                   | Monitor for potential impacts                         |

| Station    | Stream and Location                               | Monitoring<br>Group | Rationale                                                                                                                                             |
|------------|---------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARK       | Parks Creek,<br>Litchfield, N.Y.                  | 3                   | Monitor for potential impacts                                                                                                                         |
| PRIN       | Prince Hollow Run<br>Cadis, Pa.                   | 3                   | Monitor for potential impacts                                                                                                                         |
| REDH       | Red House Run,<br>Osceola, Pa.                    | 3                   | Monitor for potential impacts                                                                                                                         |
| RUSS       | Russell Run,<br>Windham, Pa.                      | 3                   | Monitor for potential impacts                                                                                                                         |
| SACK       | Sackett Creek,<br>Nichols, N.Y.                   | 3                   | Monitor for potential impacts                                                                                                                         |
| SEEL 10.3  | Seeley Creek,<br>Seeley Creek, N.Y.               | 1                   | Monitor for potential water quality impacts                                                                                                           |
| SMIT       | Smith Creek,<br>East Lawrence, Pa.                | 3                   | Monitor for potential impacts                                                                                                                         |
| SNAK 2.3   | Snake Creek,<br>Brookdale, Pa.                    | 2                   | Monitor for potential water quality impacts                                                                                                           |
| SOUT 7.8   | South Creek,<br>Fassett, Pa.                      | 2                   | Monitor for potential water quality impacts                                                                                                           |
| STRA       | Strait Creek,<br>Nelson, Pa.                      | 3                   | Monitor for potential impacts                                                                                                                         |
| SUSQ 365.0 | Susquehanna River,<br>Windsor, N.Y.               | 1                   | Large drainage area (1,882 sq. mi.); municipal discharges from Cooperstown, Sidney, Bainbridge, and Oneonta, N.Y.                                     |
| SUSQ 340.0 | Susquehanna River,<br>Kirkwood, N.Y.              | 1                   | Large drainage area (2,232 sq. mi.); historical<br>pollution due to sewage from Lanesboro,<br>Oakland, Susquehanna, Great Bend, and<br>Hallstead, Pa. |
| SUSQ 289.1 | Susquehanna River,<br>Sayre, Pa.                  | 1                   | Large drainage area (4,933 sq. mi.); municipal and industrial discharges                                                                              |
| TIOG 10.8  | Tioga River,<br>Lindley, N.Y.                     | 1                   | Pollution from acid mine discharges and impacts from flood control reservoirs                                                                         |
| TRUP 4.5   | Troups Creek,<br>Austinburg, Pa.                  | 1                   | High turbidity and moderately impaired macroinvertebrate populations                                                                                  |
| TROW 1.8   | Trowbridge Creek,<br>Great Bend, Pa.              | 2                   | Monitor for potential water quality impacts                                                                                                           |
| WAPP 2.6   | Wappasening Creek,<br>Nichols, N.Y.               | 2                   | Monitor for potential water quality impacts                                                                                                           |
| WBCO       | White Branch Cowanesque River,<br>North Fork, Pa. | 3                   | Monitor for potential impacts                                                                                                                         |
| WHIT       | White Hollow,<br>Wellsburg, N.Y.                  | 3                   | Monitor for potential impacts                                                                                                                         |

# Table 2.Stream Stations Sampled Along the New York–Pennsylvania Border and Sampling<br/>Rationale - Continued

| Station   | Stream and Location                           | Monitoring<br>Group | Rationale                                                                                                                                                 |
|-----------|-----------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| LNGA 2.5  | Long Arm Creek,<br>Bandanna, Pa.              | 2                   | Monitor for potent ial water quality impacts                                                                                                              |
| SBCC 20.4 | South Branch Conewago Creek,<br>Bandanna, Pa. | 2                   | Monitor for potential water quality impacts                                                                                                               |
| DEER 44.2 | Deer Creek,<br>Gorsuch Mills, Md.             | 1                   | Past pollution from Gorsuch Mills, Md.,<br>Stewartstown, Pa.; Nonpoint runoff to<br>Chesapeake Bay                                                        |
| EBAU 1.5  | Ebaughs Creek,<br>Stewartstown, Pa.           | 1                   | Municipal discharge from Stewartstown, Pa.;<br>Nonpoint runoff to Chesapeake Bay                                                                          |
| SCTT 3.0  | Scott Creek,<br>Delta, Pa.                    | 1                   | Pollution from untreated sewage                                                                                                                           |
| BBDC 4.1  | Big Branch Deer Creek,<br>Fawn Grove, Pa.     | 2                   | Monitor for potential water quality impacts                                                                                                               |
| FBDC 4.1  | Falling Branch Deer Creek,<br>Fawn Grove, Pa. | 2                   | Monitor for potential water quality impacts                                                                                                               |
| CNWG 4.4  | Conowingo Creek,<br>Pleasant Grove, Pa.       | 1                   | High nutrient loads and other agricultural runoff; Nonpoint runoff to Chesapeake Bay                                                                      |
| OCTO 6.6  | Octoraro Creek,<br>Rising Sun, Md.            | 1                   | High nutrient loads due to agricultural runoff<br>from New Bridge, Md.; Water quality impacts<br>from Octoraro Lake; Nonpoint runoff to<br>Chesapeake Bay |
| SUSQ 44.5 | Susquehanna River,<br>Marietta, Pa.           | 1                   | Bracket hydroelectric dams near the state line                                                                                                            |
| SUSQ 10.0 | Susquehanna River,<br>Conowingo, Md.          | 1                   | Bracket hydroelectric dams near the state line                                                                                                            |

# Table 3.Stream Stations Sampled Along the Pennsylvania–Maryland Border and Sampling<br/>Rationale

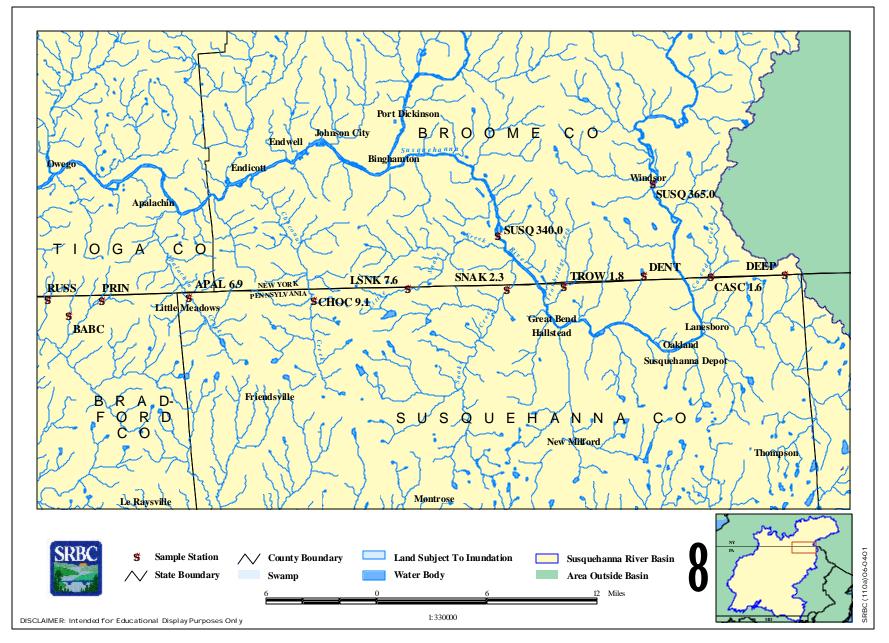



Figure 1. Interstate Streams Along the New York-Pennsylvania Border Between Russell Run and Deep Hollow Run

 $\infty$ 

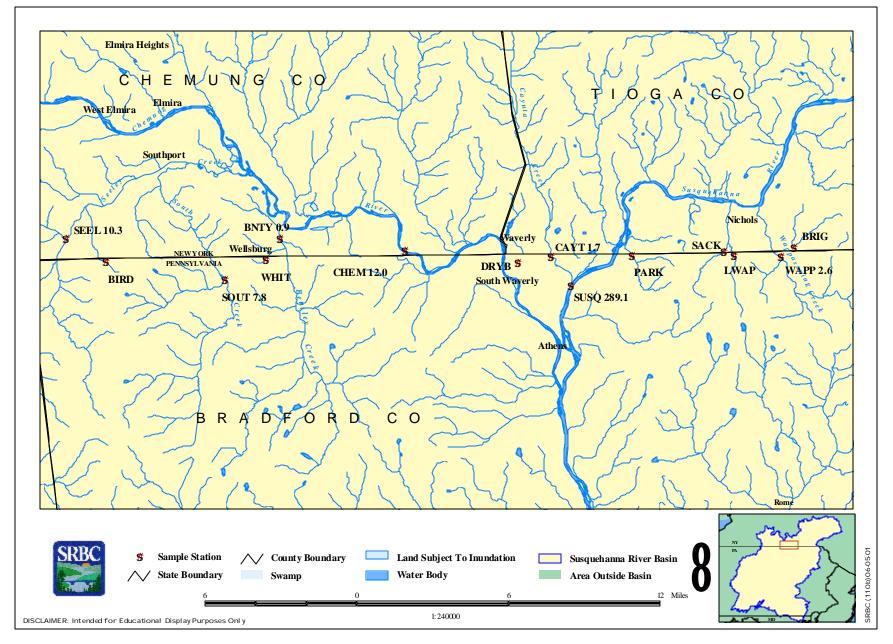



Figure 2. Interstate Streams Along the New York-Pennsylvania Border Between Seeley Creek and Briggs Hollow Run

9

This page is intentionally blank.

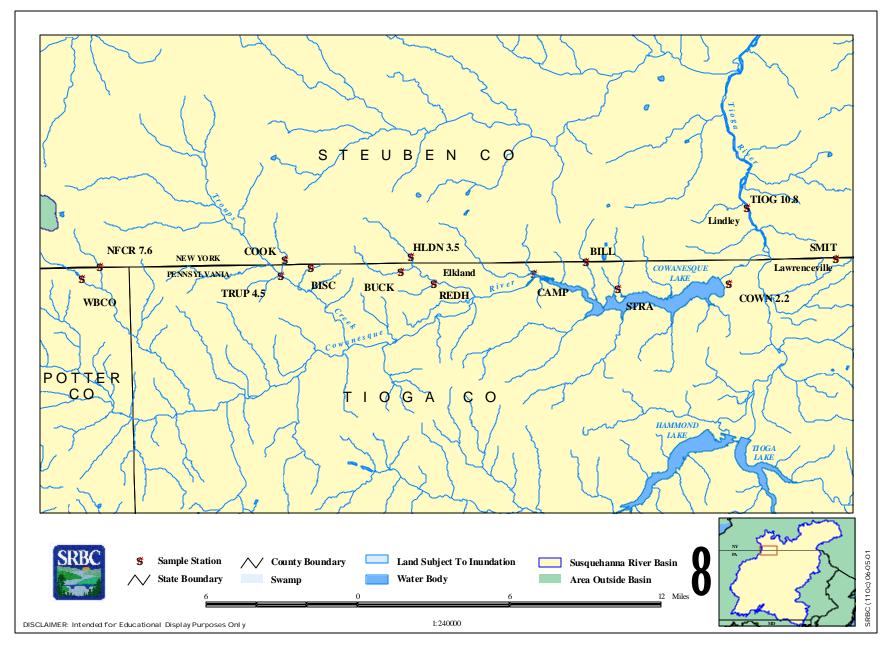



Figure 3. Interstate Streams Along the New York-Pennsylvania Border Between White Branch Cowanesque River and Smith Creek

This page is intentionally blank.

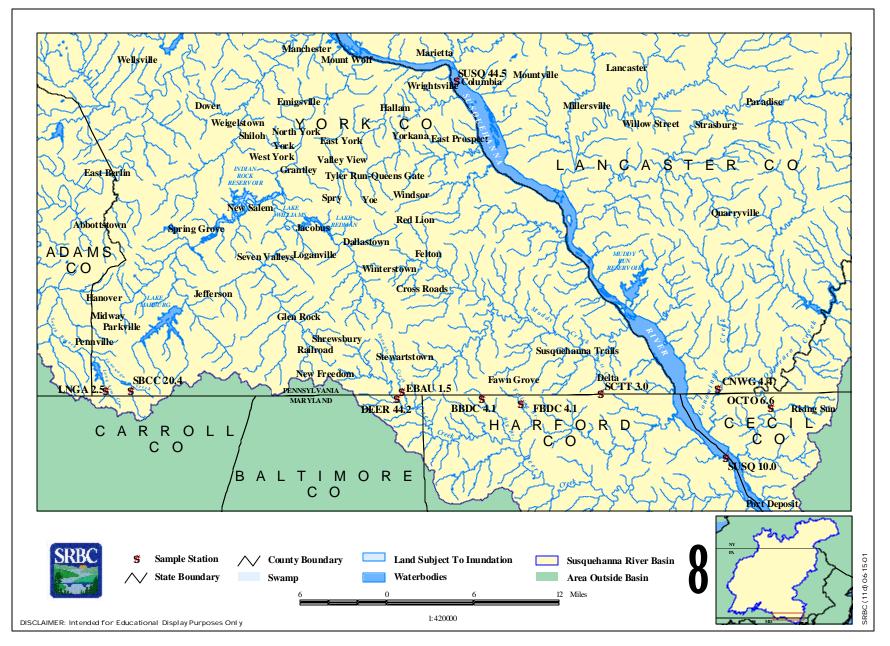



Figure 4. Interstate Sreams Along the Pennsylvania-Maryland Border

| Parameter                      | STORET Code |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Physical                       |             |  |  |  |  |
| Discharge                      | 00060       |  |  |  |  |
| Temperature                    | 00010       |  |  |  |  |
| Chemical                       |             |  |  |  |  |
| Field Analyses                 |             |  |  |  |  |
| Conductivity                   | 00095       |  |  |  |  |
| Dissolved Oxygen               | 00300       |  |  |  |  |
| pH                             | 00400       |  |  |  |  |
| Alkalinity                     | 00410       |  |  |  |  |
| Acidity                        | 00435       |  |  |  |  |
| Laboratory Analyses            |             |  |  |  |  |
| Solids, Dissolved              | 00515       |  |  |  |  |
| Solids, Total                  | 00500       |  |  |  |  |
| Ammonia as Nitrogen, Dissolved | 00608       |  |  |  |  |
| Ammonia as Nitrogen, Total     | 00610       |  |  |  |  |
| Nitrite as Nitrogen, Dissolved | 00613       |  |  |  |  |
| Nitrite as Nitrogen, Total     | 00615       |  |  |  |  |
| Nitrate as Nitrogen, Dissolved | 00618       |  |  |  |  |
| Nitrate as Nitrogen, Total     | 00620       |  |  |  |  |
| Phosphorus, Dissolved          | 00666       |  |  |  |  |
| Phosphorus, Total              | 00665       |  |  |  |  |
| Orthophosphate, Dissolved      | 00671       |  |  |  |  |
| Orthophosphate, Total          | 70507       |  |  |  |  |
| Organic Carbon, Total          | 00680       |  |  |  |  |
| Calcium, Total                 | 00916       |  |  |  |  |
| Magnesium, Total               | 00927       |  |  |  |  |
| Chloride, Total                | 00940       |  |  |  |  |
| Sulfate, Total                 | 00945       |  |  |  |  |
| Iron, Dissolved                | 01046       |  |  |  |  |
| Iron, Total                    | 01045       |  |  |  |  |
| Manganese, Dissolved           | 01056       |  |  |  |  |
| Manganese, Total               | 01055       |  |  |  |  |
| Aluminum, Dissolved            | 01106       |  |  |  |  |
| Aluminum, Total                | 01105       |  |  |  |  |
| Turbidity                      | 82079       |  |  |  |  |

### Table 4.Monitored Parameters

# Macroinvertebrate and physical habitat sampling

SRBC staff collected benthic macroinvertebrate samples from Group 1 and Group 2 stations between July 19 and August 5, 1999 and from Group 3 streams between May 15 and 23. 2000. The benthic macroinvertebrate community was sampled to provide an indication of the biological condition of the stream. Macroinvertebrates are defined as aquatic insects and other invertebrates too large to pass through a No. 30 sieve.

Benthic macroinvertebrate samples were analyzed using field and laboratory methods described in <u>Rapid Bioassessment Protocol for</u> <u>Use in Streams and Rivers</u> by Plafkin and others (1989). Sampling was performed using a 1-metersquare kick screen with size No. 30 mesh. The kick screen was stretched across the current to collect organisms dislodged from riffle/run areas by physical agitation of the stream substrate. Two kick screen samples were collected from a representative riffle/run at each station. The two samples were composited and preserved in isopropyl alcohol for later laboratory analysis.

In the laboratory, composite samples were sorted into 100-organism subsamples using a gridded pan and a random numbers table. The organisms contained in the subsamples were identified to genus (except Chironomidae) and enumerated. Each taxon was assigned an organic pollution tolerance value and a functional feeding category as outlined in Appendix B. A taxa list for each station can be found in Appendix C.

Physical habitat conditions at each station were assessed using a slightly modified version of the habitat assessment procedure outlined by Plafkin and others (1989). Eleven habitat parameters were field-evaluated at each site and used to calculate a site-specific habitat assessment score. Habitat parameters were identified as primary, secondary, or tertiary parameters, based on their contribution to habitat quality. Primary parameters, stream habitat features that have the greatest direct influence on the structure of aquatic macroinvertebrate communities, were evaluated on a scale of 0 to 20 and included stream bottom substrate, embeddedness, and velocity/depth diversity. Secondary parameters included stream channel morphology characteristics, such as pool/riffle ratio, pool quality, riffle/run quality, and channel alteration, and were scored on a scale of 0 to 15. Tertiary parameters. such as streambank erosion. streambank stability, streamside vegetative cover, and riparian buffer zone width, characterized riparian and bank conditions and were scored on a scale of 0 to 10. Table 5 summarizes criteria used to evaluate habitat parameters.

### Data Synthesis Methods

### Chemical water quality

Results of laboratory analysis for chemical parameters were compared to New York. Pennsylvania, and Maryland State water quality standards. In addition, a simple WQI was calculated, using procedures established by McMorran and Bollinger (1990). The WQI was used to make comparisons between sampling periods and stations within the same geographical region; therefore, the water quality data were divided into two groups. One group contained stations along the New York-Pennsylvania border, and the other group contained stations along the Pennsylvania-Maryland border. The data in each group were sorted by parameter and ranked by increasing order of magnitude, with several exceptions. Dissolved oxygen was ranked by decreasing order of magnitude, while pH, alkalinity, and acidity were not factored into the percentile scores. The rank of each chemical analysis was divided by the total number of observations in the group to obtain a percentile. The WQI score was calculated by averaging all percentile ranks for each sample. Water quality index scores range from 1 to 100, and high WQI scores indicate poor water quality. Water quality scores and a list of parameters exceeding standards for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 49.

### Reference category designations

Four reference sites were included in this study. These four sites represented the best

| Table 5. | Criteria | Used to | Evaluate | <b>Physical</b> | Habitat |
|----------|----------|---------|----------|-----------------|---------|
|          |          |         |          |                 |         |

| Habitat Parameter        | Excellent                             | Good                                  | Fair                                 | Poor                                   |
|--------------------------|---------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------|
| 1 Bottom Substrate       | Greater than 50% cobble, gravel,      | 30-50% cobble, gravel, or other       | 10-30% cobble, gravel, or other      | Less than 10% cobble, gravel, or       |
|                          | submerged logs, undercut banks, or    | stable habitat. Adequate habitat.     | stable habitat. Habitat availability | other stable habitat. Lack of habitat  |
|                          | other stable habitat.                 |                                       | is less than desirable.              | is obvious.                            |
|                          | (16-20)                               | (11-15)                               | (6-10)                               | (0-5)                                  |
| 2 Embeddedness (a)       | Larger substrate particles (e.g.,     | Larger substrate particles (e.g.,     | Larger substrate particles (e.g.,    | Larger substrate particles (e.g.,      |
|                          | gravel, cobble, boulders) are         | gravel, cobble, boulders) are         | gravel, cobble, boulders) are        | gravel, cobble, boulders) are over     |
|                          | between 0 and 25% surrounded by       |                                       | between 50 and 75% surrounded by     | 75% surrounded by fine sediment.       |
|                          | fine sediment.                        | fine sediment.                        | fine sediment.                       |                                        |
|                          | (16-20)                               | (11-15)                               | (6-10)                               | (0-5)                                  |
| 3 Velocity/Depth         | Four habitat categories consisting of | Only three of the four habitat        | Only two of the four habitat         | Dominated by one velocity/depth        |
| Diversity                | slow (<1.0 ft/s), deep (>1.5 ft);     | categories are present.               | categories are present.              | category (usually pools).              |
|                          | slow, shallow (<1.5 ft); fast         |                                       |                                      |                                        |
|                          | (> 1.0 ft/s), deep; fast, shallow     |                                       |                                      |                                        |
|                          | habitats are all present.             |                                       |                                      |                                        |
|                          | (16-20)                               | (11-15)                               | (6-10)                               | (0-5)                                  |
| 4 Pool/Riffle Ratio (or  |                                       |                                       | Distance between riffles divided by  |                                        |
| Run/Bend)                | mean wetted width equals 5-7.         | mean wetted width equals 7-15.        | mean wetted width equals 15-25.      | mean wetted width >25. Stream is       |
|                          | Stream contains a variety of habitats | Adequate depth in pools and riffles.  | Stream contains occasional riffles.  | essentially straight with all flat     |
|                          | including deep riffles and pools.     |                                       |                                      | water or shallow riffle. Poor          |
|                          |                                       |                                       | ( <b>1</b> – )                       | habitat.                               |
|                          | (12-15)                               | (8-11)                                | (4-7)                                | (0-3)                                  |
| 5 Pool Quality (b)       | Pool habitat contains both deep       | Pool habitat contains both deep       | Pool habitat consists primarily of   | Pool habitat rare with maximum         |
|                          |                                       | (>1.5 ft) and shallow (<1.5 ft) areas |                                      | depth <0.5 ft, or pool habitat absent  |
|                          | with complex cover and/or depth       | with some cover present.              | cover.                               | completely.                            |
|                          | greater than 5 ft.                    | (0.11)                                |                                      |                                        |
|                          | (12-15)                               | (8-11)                                | (4-7)                                | (0-3)                                  |
| 6 Riffle/Run Quality (c) | Riffle/run depth generally >8 in.     | Riffle/run depth generally 4-8 in.    | Riffle/run depth generally 1-4 in.;  | Riffle/run depth <1 in.; or riffle/run |
|                          | and consisting of stable substrate    | and with a variety of current         | primarily a single current velocity. | substrates concreted.                  |
|                          | materials and a variety of current    | velocities.                           |                                      |                                        |
|                          | velocities.                           | (0.11)                                |                                      |                                        |
|                          | (12-15)                               | (8-11)                                | (4-7)                                | (0-3)                                  |
| 7 Channel Alteration (d) | Little or no enlargement of islands   | Some new increase in bar              | Moderate deposition of new gravel,   | Heavy deposits of fine material,       |
|                          | or point bars, and/or no              | formation, mostly from coarse         | coarse sand on old and new bars;     | increased bar development; most        |
|                          | channelization.                       | gravel; and/or some channelization    | pools partially filled with silt;    | pools filled with silt; and/or         |
|                          |                                       | present.                              | and/or embankments on both banks.    |                                        |
|                          | (12-15)                               | (8-11)                                | (4-7)                                | (0-3)                                  |

| Table 5. Criteria Used to Evaluate Physical Habitat—Contin | nued |
|------------------------------------------------------------|------|
|------------------------------------------------------------|------|

|     | Habitat Parameter     | Excellent                            | Good                                 | Fair                                   | Poor                                    |
|-----|-----------------------|--------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------------|
| 8.  | Upper and Lower       | Stable. No evidence of erosion or    | Moderately stable. Infrequent,       | Moderately unstable. Moderate          | Unstable. Many eroded areas. Side       |
|     | Streambank Erosion    | of bank failure. Side slopes         | small areas of erosion mostly healed | frequency and size of erosional        | slopes >60% common. "Raw" areas         |
|     | (e)                   | generally <30%. Little potential for | over. Side slopes up to 40% on one   | areas. Side slopes up to 60% in        | frequent along straight sections and    |
|     |                       | future problems.                     | bank. Slight potential in extreme    | some areas. High erosion potential     | bends.                                  |
|     |                       |                                      | floods.                              | during extreme high flow.              |                                         |
|     |                       | (9-10)                               | (6-8)                                | (3-5)                                  | (0-2)                                   |
| 9.  | Upper and Lower       | Over 80% of the streambank surface   | 50-79% of the streambank surface     | 25-49% of the streambank surface       | Less than 25% of the streambank         |
|     | Streambank Stability  | is covered by vegetation or boulders | is covered by vegetation, gravel, or | is covered by vegetation, gravel, or   | surface is covered by vegetation,       |
|     | (e)                   | and cobble.                          | larger material.                     | larger material.                       | gravel, or larger material.             |
|     |                       | (9-10)                               | (6-8)                                | (3-5)                                  | (0-2)                                   |
| 10. | Streamside Vegetative | Dominant vegetation that provides    | Dominant vegetation that provides    | Dominant vegetation that provides      | Over 50% of the streambank has no       |
|     | Cover (Both Banks)    | stream shading, escape cover,        | stream shading, escape cover,        | stream shading, escape cover,          | vegetation and dominant material is     |
|     |                       | and/or refuge for fish within the    | and/or refuge for fish within the    | and/or refuge for fish within the      | soil, rock, bridge materials, culverts, |
|     |                       | bankfull stream channel is shrub.    | bankfull stream channel is trees.    | bankfull stream channel is forbs and   | or mine tailings.                       |
|     |                       |                                      |                                      | grasses.                               |                                         |
|     |                       | (9-10)                               | (6-8)                                | (3-5)                                  | (0-2)                                   |
| 11. | Forested Riparian     | Riparian area consists of all three  | Riparian area consists of Zones 1    | Riparian area is limited primarily to  | Riparian area lacks Zone 1 with or      |
|     | Buffer Zone Width (f) | zones of vegetation, Zones 1-3.      | and 2.                               | Zone 1. Zone 2 may be forested but     | without Zones 2 and/or 3.               |
|     | (Least Forested Bank) | (See zone descriptions (f).          |                                      | is subject to disturbance (e.g.        |                                         |
|     |                       |                                      |                                      | grazing, intensive forestry practices, |                                         |
|     |                       |                                      |                                      | roads).                                |                                         |
|     |                       | (9-10)                               | (6-8)                                | (3-5)                                  | (0-2)                                   |

| (a) | Embeddedness                   | The degree to which the substrate materials that serve as habitat for benthic macroinvertebrates and for fish spawning and egg incubation (predominantly cobble       |
|-----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                | and/or gravel) are surrounded by fine sediment. Embeddedness is evaluated with respect to the suitability of these substrate materials as habitat for                 |
|     |                                | macroinvertebrates and fish by providing shelter from the current and predators, and by providing egg deposition and incubation sites.                                |
| (b) | Pool Quality                   | Rated based on the variety and spatial complexity of slow- or still-water habitat within the sample segment. It should be noted that even in high - gradient          |
|     |                                | segments, functionally important slow-water habitat may exist in the form of plunge-pools and/or larger eddies. Within a category, higher scores are assigned to      |
|     |                                | segments that have undercut banks, woody debris, or other types of cover for fish.                                                                                    |
| (c) | Riffle/Run Quality             | Rated based on the depth, complexity, and functional importance of riffle/run habitat in the segment, with highest scores assigned to segments dominated by           |
|     |                                | deeper riffle/run areas, stable substrates, and a variety of current velocities.                                                                                      |
| (d) | Channel Alteration             | A measure of large-scale changes in the shape of the stream channel. Channel alteration includes: concrete channels, artificial embankments, obvious                  |
|     |                                | straightening of the natural channel, rip -rap, or other structures, as well as recent sediment bar development. Sediment bars typically form on the inside of bends, |
|     |                                | below channel constrictions, and where stream gradient decreases. Bars tend to increase in depth and length with continued watershed disturbance. Ratings for         |
|     |                                | this metric are based on the presence of artificial structures as well as the existence, extent, and coarseness of sediment bars, which indicate the degree of flow   |
|     |                                | fluctuations and substrate stability.                                                                                                                                 |
| (e) | Upper and Lower Streambank     | These parameters include the concurrent assessment of both the upper and lower banks. The upper bank is the land area from the break in the general slope of the      |
|     | Erosion and Stability          | surrounding land to the top of the bankfull channel. The lower bank is the intermittently submerged portion of the stream cross section from the top of the           |
|     |                                | bankfull channel to the exist ing waterline.                                                                                                                          |
| (f) | Forested Riparian Buffer Zone  | Zone 1: a 15-ft-wide buffer of essentially undisturbed forest located immediately adjacent to the stream.                                                             |
|     | Width                          | Zone 2: a 100-ft-wide buffer of forest, located adjacent to Zone 1, which may be subject to non-intensive forest management practices.                                |
|     |                                | Zone 3: a 20-ft-wide buffer of vegetation, located adjacent to Zone 2 that provides sediment filtering and promotes the formation of sheet flow runoff into           |
|     |                                | Zone 2. Zone 3 may be composed of trees, shrubs, and/or dense grasses and forbs, which are subject to having and grazing, as of as long as vegetation                 |
|     |                                | is maintained in vigorous condition.                                                                                                                                  |
| Sou | rce: Modified from Plafkin and | l others, 1989.                                                                                                                                                       |

available suite of conditions, in terms of habitat and biological community, for each of the categories. Sites located on the New York-Pennsylvania border were compared to Snake Creek (SNAK 2.3) at Brookdale, Pa. Snake Creek represented the best biological and habitat conditions in the Northern Appalachian Plateau and Uplands Ecoregion (Omernik, 1987). Big Branch Deer Creek (BBDC 4.1) near Fawn Grove, Pa., served as the reference site for sampling stations located on the Pennsylvania-Maryland border. Big Branch Deer Creek had the best biological and habitat conditions in the Northern Piedmont Ecoregion (Omernik, 1987). The Susquehanna River (SUSQ 365) at Windsor, N.Y., was used as the reference site for all of the Susquehanna River main stem samples, as well as for Cowanesque River, Chemung River, and Tioga River sites. Cook Hollow near Austinburg, Pa., served as the reference site for the Group 3 sites as it had the best biological and habitat conditions of these sites.

### **Biological and physical habitat conditions**

Benthic macroinvertebrate samples were assessed using procedures described by Plafkin and others (1989). Using this method, staff calculated a series of biological indexes for a stream and compared them to a nonimpaired reference station in the same region to determine the degree of impairment. The metrics used in this survey are summarized in Table 6. Metrics 1. 3, 4, 6, and 8 were taken directly from Plafkin and others (1989). Metric 2 (Shannon Diversity Index) was substituted for the recommended ratio of shredders to total macroinvertebrates, which required specialized sampling procedures. Metric 5 (Percent Trophic Similarity) was substituted for ratio of scrapers to filtering collectors and ratio of shredders to total metrics. Metric 7 (Percent Taxonomic Similarity) was substituted for the community loss metrics.

The 100-organism subsample data were used to generate scores for each of the eight metrics. Each metric score was then converted to a biological condition score, based on the percent similarity of the metric score, relative to the metric score of the reference site. The sum of the biological condition scores constituted the total biological score for the sample site, and total biological scores were used to assign each site to a biological condition category (Table 7). Habitat assessment scores of sample sites were compared to those of reference sites to classify each sample site into a habitat condition category (Table 8).

### <u>Trend analysis</u>

A long-term trend has been defined as a steady increase or decrease of a variable over time, as opposed to a change (step trend), which is a sudden difference in water quality associated with an event (Bauer and others, 1984). As the interstate streams data are not useful for analyzing step trends due to large drainage areas and insufficient information about discharges, only long-term trends were included in this study. Trends analysis was performed on all Group 1 streams (see Table 1) for the following parameters: total suspended solids, total ammonia, total nitrogen, total phosphorus, total chloride, total sulfate, total iron, total aluminum, total manganese, and water quality index. The period covered for the trends analysis was April 1986 through June 2000.

The nonparametric trend test used in this study was the Seasonal Kendall Test, which is described by Bauer and others (1984) and Smith and others (1982). The Seasonal Kendall Test was used to detect the presence or absence of monotonic trends in the parameters described above. This test is useful for testing trends of quarterly water quality samples with seasonal variability, because seasonality is removed by comparing data points only within the same quarter for all years in the data set. Outliers also do not present a problem, because the test only considers differences in the data points. The Seasonal Kendall Test also can be used with missing and censored data.

Differences in flow also can produce trends in water quality. To adjust the concentrations to remove the effects of flow, a technique known as Locally Weighted Scatterplot Smoothing (LOWESS), described by Hirsch and others (1991), was used. This technique examines the relationship between concentration and flow and uses the residual (the actual concentration

| Metric                              | Description                                                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Taxonomic Richness (a)           | The total number of taxa present in the 100 organism subsample                                                                              |
| 2. Shannon Diversity Index (b)      | A measure of biological community complexity based on the number of equally or nearly equally abundant taxa in the community                |
| 3. Hilsenhoff Biotic Index (a)      | A measure of the overall pollution tolerance of a benthic macroinvertebrate community                                                       |
| 4. EPT Index (a)                    | The total number of Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) taxa present in the 100 organism subsample   |
| 5. Percent Trophic Similarity (b)   | A measure of the similarity between the functional feeding group<br>composition of a sample site and its appropriate reference<br>community |
| 6. Ratio of EPT/Chironomids (a)     | A measure of community balance and indicator of environmental stress                                                                        |
| 7. Percent Taxonomic Similarity (b) | A measure of the similarity between taxonomic composition of the sample site and its appropriate reference community                        |
| 8. Percent Dominant Taxa (a)        | A measure of community balance at the lowest positive taxonomic level                                                                       |

#### Summary of Metrics Used to Evaluate the Overall Biological Integrity of Stream and River Table 6. Benthic Macroinvertebrate Communities

Sources: (a) Plafkin and others (1998); and (b) calculated using software developed by Kovach (1993)

| Table 7. | Summary of Criteria                     | Used to Classify the | <b>Biological</b> Cond | litions of Sample Sites                                                       |
|----------|-----------------------------------------|----------------------|------------------------|-------------------------------------------------------------------------------|
|          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                      |                        | $j \sim \dots p \sim p \sim$ |



| TOTAL BIOLOGICAL SCORE DETERMINATION    |              |                     |                          |       |
|-----------------------------------------|--------------|---------------------|--------------------------|-------|
| Biological Condition Scoring Criteria   |              |                     |                          | ia    |
| Metric                                  | 6            | 4                   | 4 2                      |       |
|                                         | 00.04        |                     | <b>7</b> 0 <b>1</b> 0 01 | 10.04 |
| 1. Taxonomic Richness (a)               | >80 %        | 79 – 60 %           | 59 – 40 %                | <40 % |
| 2. Shannon Diversity Index (a)          | >75 %        | 74 – 50 %           | 49 - 25 %                | <25 % |
| 3. Modified Hilsenhoff Biotic Index (b) | >85 %        | 84 - 70 %           | 69 – 50 %                | <50 % |
| 4. EPT Index (a)                        | >90 %        | 89 - 80 %           | 79 – 70 %                | <70 % |
| 5. Percent Trophic Similarity (c,d)     | >75 %        | 74 – 50 %           | 49 – 25 %                | <25 % |
| 6. Ratio EPT/Chironomids (a)            | >75 %        | 74 - 50 %           | 49 – 25 %                | <25 % |
| 7. Percent Taxonomic Similarity (d)     | >45 %        | 44 – 33 %           | 32 - 20 %                | <20 % |
| 8. Percent Dominant Taxa (e)            | <20 %        | 20-30 %             | 31 – 40 %                | >40 % |
| Total Biological Score (f)              |              |                     |                          |       |
|                                         | $\downarrow$ |                     |                          |       |
|                                         | $\downarrow$ |                     |                          |       |
|                                         |              |                     |                          |       |
|                                         | BIOASSESSM   | FNT                 |                          |       |
| Percent Comparability of Study and Ref  |              |                     |                          |       |
| Site Total Biological Scores (g)        |              | Biologica           | Condition Categ          | jory  |
|                                         |              |                     |                          |       |
| >83                                     |              | Nonimpaired         |                          |       |
| 79 - 54                                 |              | Slightly Impaired   |                          |       |
| 50 - 21                                 |              | Moderately Impaired |                          |       |
| <17                                     |              | Severely Impaired   |                          |       |

(a) Score is study site value/reference site value X 100.

(b) Score is reference site value/study site value X 100.

(c) Functional Feeding Group Designations are summarized in Appendix B.

(d) Range of values obtained. A comparison to the reference station is incorporated in these indices.

(e) Scoring criteria evaluate actual percent contribution, not percent comparability to the reference station.

(f) Total Biological Score = the sum of Biological Condition Scores assigned to each metric.

(g) Values obtained that are intermediate to the indicated ranges will require subjective judgment as to the correct placement into a biological condition category.

| DETERMINATION OF HABITAT ASSESSMENT SCORES<br>Habitat Parameter Scoring Criteria |               |             |                   |         |
|----------------------------------------------------------------------------------|---------------|-------------|-------------------|---------|
| Parameter                                                                        | Excellent     | Good        | Fair              | Poor    |
| Bottom Substrate                                                                 | 20-16         | 15-11       | 10-6              | 5-0     |
| Embeddedness                                                                     | 20-16         | 15-11       | 10-6              | 5-0     |
| Velocity/Depth Diversity                                                         | 20-16         | 15-11       | 10-6              | 5-0     |
| Pool-Riffle (Run-Bend) Ratio                                                     | 15-12         | 11-8        | 7-4               | 3-0     |
| Pool Quality                                                                     | 15-12         | 11-8        | 7-4               | 3-0     |
| Riffle/Run Quality                                                               | 15-12         | 11-8        | 7-4               | 3-0     |
| Channel Alteration                                                               | 15-12         | 11-8        | 7-4               | 3-0     |
| Upper and Lower Streambank Erosion                                               | 10-9          | 8-6         | 5-3               | 2-0     |
| Upper and Lower Streambank Stability                                             | 10-9          | 8-6         | 5-3               | 2-0     |
| Streamside Vegetative Cover                                                      | 10-9          | 8-6         | 5-3               | 2-0     |
| Forested Riparian Buffer Zone Width                                              | 10-9          | 8-6         | 5-3               | 2-0     |
| Habitat Assessment Score (a)                                                     |               |             |                   |         |
|                                                                                  | $\downarrow$  |             |                   |         |
|                                                                                  | $\downarrow$  |             |                   |         |
|                                                                                  | $\downarrow$  |             |                   |         |
|                                                                                  | HABITAT ASSES | SMENT       |                   |         |
| Percent Comparability of Study<br>Reference Site Habitat Assessment              | and<br>Scores | Habitat     | Condition Categ   | jory    |
| >90                                                                              |               | Excellent ( | comparable to ref | erence) |

Supporting Partially Supporting

Nonsupporting

### Table 8. Summary of Criteria Used to Classify the Habitat Conditions of Sample Sites

(a) Habitat Assessment Score = Sum of Habitat Parameter Scores

89-75

74-60

<60

minus the expected concentration) to test for trend. The residual also is known as the flowadjusted concentration (FAC). The residuals were tested for trends using the Seasonal Kendall Test. Detailed descriptions of the procedures for Seasonal Kendall Test and LOWESS can be found in <u>Trends in Nitrogen</u>, Phosphorus, and <u>Suspended Sediment in the Susquehanna River</u> <u>Basin</u>, 1974-93 (Edwards, 1995).

### RESULTS

### Water Quality

During fiscal year 2000, water quality in most interstate streams continued to meet designated use classes and water quality standards (Table 9, Appendix D). The parameter that most frequently exceeded water quality standards was total iron (Table 10, Figure 5). Only 39 out of 2,662 observations exceeded water quality standards.

# Biological Communities and Physical Habitat

RBP III biological data for New York-Pennsylvania, Pennsylvania-Maryland, river sites, and Group 3 streams are summarized in Tables 11 through 14, respectively. A high rapid bioassessment protocol score indicates a low degree of impairment and a healthy macroinvertebrate population. RBP III results for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 49.

RBP III physical habitat data for New York-Pennsylvania, Pennsylvania-Maryland, river sites, and Group 3 streams are presented in Tables 15 through 18, respectively. A high score indicates a high-quality physical habitat. RBP III physical habitat and biological data are summarized in Figures 6 through 9.

### New York-Pennsylvania streams

New York-Pennsylvania sampling stations consisted of 12 sites located near  $\sigma$  on the New

York-Pennsylvania border. The biological communities of two (16.6 percent) of these streams were nonimpaired. Five streams were slightly impaired (41.7 percent), and five streams were moderately impaired (41.7 percent). Two of the New York-Pennsylvania sites had excellent habitats (16.6 percent). Five sites (41.7 percent) had supporting habitats, three sites (25 percent) had partially supporting habitats, and two sites (16.6 percent) had nonsupporting habitats. Holden Creek and North Fork Cowanesque River were not sampled due to drought conditions.

#### Pennsylvania-Maryland streams

The Pennsylvania - Maryland interstate streams included nine stations located on or near the Pennsylvania-Maryland border. One (11.1 percent) designated stream was nonimpaired, using RBP III protocol designations. Of the remaining eight sites, four sites (44.4 percent) were slightly impaired, and three sites (33.3 percent) were moderately impaired, while one site (11.1 percent) was designated severely impaired. Four (44.4 percent) of the Pennsylvania-Maryland border sites had excellent habitats. Three sites (33.3 percent) had partially supporting habitats, and two sites (22.2 percent) had nonsupporting habitats.

#### River sites

River sites consisted of nine stations located on the Susquehanna River, Chemung River, Cowanesque River, and Tioga River. One station (SUSQ 10.0) was not sampled for macroinvertebrates due to deep water and a lack of riffle habitat at the site. The biological communities of six sites (75 percent) were nonimpaired, one site (12.5 percent) was slightly impaired, and one site (12.5 percent) was moderately impaired. Five of the sites (62.5 percent) had excellent habitats. Of the remaining sites, two sites (25 percent) had supporting habitats, and one site (12.5 percent) had a partially supporting habitat.

| Stream                        | Pa. Classification * | N.Y. Classification * |
|-------------------------------|----------------------|-----------------------|
| Apalachin Creek               | CWF                  | D                     |
| Babcock Run                   | CWF                  | С                     |
| Bentley Creek                 | WWF                  | D                     |
| Bill Hess Creek               | WWF                  | С                     |
| Bird Creek                    | CWF                  | Ā                     |
| Biscuit Hollow                | CWF                  | С                     |
| Briggs Hollow                 | CWF                  | Č                     |
| Bulkley Brook                 | WWF                  | C                     |
| Camp Brook                    | WWF                  | Č                     |
| Cascade Creek                 | CWF                  | C(T)                  |
| Cayuta Creek                  | WWF                  | B                     |
| Chemung River                 | WWF                  | Č                     |
| Choconut Creek                | WWF                  | C                     |
| Cook Hollow                   | CWF                  | Ċ                     |
| Cowanesque River              | WWF                  | Ċ                     |
| Deep Hollow Brook             | CWF                  | C                     |
| Denton Creek                  | CWF                  | C                     |
| Dry Brook                     | WWF                  | C                     |
| Little Snake Creek            | CWF                  | C                     |
| Little Wappasening Creek      | WWF                  | Č                     |
| Parks Creek                   | WWF                  | C                     |
| Prince Hollow Run             | CWF                  | Č                     |
| Red House Hollow              | WWF                  | C                     |
| Russell Run                   | CWF                  | C                     |
| Sackett Creek                 | WWF                  | Č                     |
| Seeley Creek                  | CWF                  | C                     |
| Smith Creek                   | WWF                  | Č                     |
| Snake Creek                   | CWF                  | C                     |
| South Creek                   | TSF                  | Č                     |
| Strait Creek                  | WWF                  | C                     |
| Susquehanna River @ Windsor   |                      | B                     |
| Susquehanna River @ Kirkwood  | WWF                  |                       |
| Susquehanna River @ Waverly   | WWF                  | В                     |
| Tioga River                   | WWF                  | С                     |
| Trowbridge Creek              | CWF                  | Č                     |
| Troups Creek                  | CWF                  | D                     |
| Wappasening Creek             | CWF                  | С                     |
| White Branch Cowanesque River | WWF                  | С                     |
| White Hollow                  | WWF                  | С                     |
|                               | Pa. Classification   | Md. Classification *  |
| Big Branch Deer Creek         | CWF                  | III-P                 |
| Conowingo Creek               | CWF                  | I-P                   |
| Deer Creek                    | CWF                  | III-P                 |
| Ebaughs Creek                 | CWF                  | III-P                 |
| Falling Branch Deer Creek     | CWF                  | IV-P                  |
| Long Arm Creek                | WWF                  | I-P                   |
| Octoraro Creek                | TSF-MF               | IV-P                  |
| Scott Creek                   | TSF                  | 1-7-1                 |
| South Branch Conewago Creek   | WWF                  |                       |
| Susquehanna River @ Marietta  | WWF                  |                       |
| Susquehanna River @ Conowingo | ¥¥ ¥¥ I '            | I                     |
| Susquenanna Kiver & Conowingo |                      | 1                     |

# Table 9.Stream Classifications

\* See Appendix D for stream classification descriptions

| Parameter        | Number of<br>Observations | Number<br>Exceeding Standards | Standard                                       |
|------------------|---------------------------|-------------------------------|------------------------------------------------|
| Alkalinity       | 92                        | 4                             | Pa. aquatic life                               |
| Dissolved Iron   | 92                        | 5                             | Pa. aquatic life                               |
| Total Iron       | 92<br>92                  | 15<br>4                       | N.Y. health (water source)<br>Pa. aquatic life |
| Total Manganese  | 92<br>92                  | 1 2                           | N.Y. health (water source)<br>Pa. water supply |
| рН               | 92<br>92                  | 3 1                           | N.Y. aquatic life<br>Md. aquatic life          |
| Dissolved Oxygen | 89<br>89                  | 1 3                           | N.Y. aquatic life<br>Pa. aquatic life          |

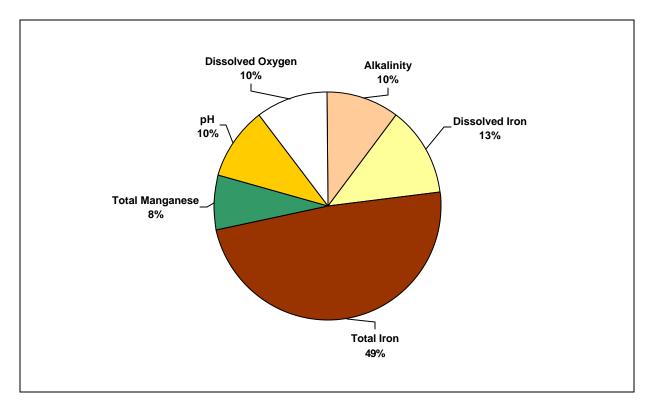



Figure 5. Parameters Exceeding Water Quality Standards

|                                  | SNAK<br>2.3 | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 | CAYT<br>1.7 | CHOC<br>9.1 |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Raw Summary                      | •           |             | •           |             | •           |             |
| Number of Individuals            | 139         | 140         | 122         | 146         | 139         | 142         |
| % Shredders                      | 0.7         | 0.7         | 0.0         | 2.7         | 0.0         | 0.0         |
| % Collector-Gatherers            | 18.7        | 14.3        | 23.0        | 29.5        | 11.5        | 9.9         |
| % Filterer-Collectors            | 59.0        | 37.1        | 52.5        | 30.1        | 43.2        | 45.1        |
| % Scrapers                       | 15.1        | 40.7        | 12.3        | 24.7        | 36.7        | 31.0        |
| % Predators                      | 6.5         | 7.1         | 12.3        | 13.0        | 8.6         | 14.1        |
| Number of EPT Taxa               | 18          | 8           | 8           | 16          | 9           | 10          |
| Number of EPT Individuals        | 112         | 55          | 71          | 69          | 78          | 75          |
| Metric Scores                    | ·           |             | •           |             | ·           |             |
| Taxonomic Richness               | 27          | 15          | 15          | 27          | 16          | 18          |
| Shannon Diversity Index          | 3.9         | 3.0         | 2.9         | 3.7         | 3.5         | 3.6         |
| Modified Hilsenhoff Biotic Index | 3.7         | 4.4         | 4.0         | 3.9         | 4.1         | 3.8         |
| EPT Index                        | 18          | 8           | 8           | 16          | 9           | 10          |
| Percent Trophic Similarity       | 100.0       | 73.7        | 89.9        | 71.1        | 76.3        | 76.5        |
| Ratio EPT/Chironomids            | 11.2        | 2.8         | 2.5         | 1.7         | 4.9         | 5.8         |
| Percent Taxonomic Similarity     | 100.0       | 40.9        | 50.6        | 50.5        | 43.9        | 64.1        |
| Percent Dominant Taxa            | 19.4        | 27.1        | 24.6        | 28.1        | 30.9        | 16.2        |
| Percent of Reference             | •           |             | •           |             | •           |             |
| Taxonomic Richness               | 100.0       | 55.6        | 55.6        | 100.0       | 59.3        | 66.7        |
| Shannon Diversity Index          | 100.0       | 75.9        | 74.7        | 93.4        | 82.6        | 91.6        |
| Hilsenhoff Index                 | 100.0       | 82.4        | 90.6        | 93.3        | 88.6        | 95.9        |
| EPT Index                        | 100.0       | 44.4        | 44.4        | 88.9        | 50.0        | 55.6        |
| Percent Trophic Similarity       | 100.0       | 73.7        | 89.9        | 71.1        | 76.3        | 76.5        |
| Ratio EPT/Chironomids            | 100.0       | 24.6        | 22.6        | 15.0        | 43.5        | 51.5        |
| Percent Taxonomic Similarity     | 100.0       | 40.9        | 50.6        | 50.5        | 43.9        | 64.1        |
| Percent Dominant Taxa            | 19.4        | 27.1        | 24.6        | 28.1        | 30.9        | 16.2        |
| Biological Condition Scores      |             |             |             |             |             |             |
| Taxonomic Richness               | 6           | 2           | 2           | 6           | 2           | 4           |
| Shannon Diversity Index          | 6           | 6           | 4           | 6           | 6           | 6           |
| Hilsenhoff Index                 | 6           | 4           | 6           | 6           | 6           | 6           |
| EPT Index                        | 6           | 0           | 0           | 4           | 0           | 0           |
| Percent Trophic Similarity       | 6           | 4           | 6           | 4           | 6           | 6           |
| Ratio EPT/Chironomids            | 6           | 0           | 0           | 0           | 2           | 4           |
| Percent Taxonomic Similarity     | 6           | 4           | 6           | 6           | 4           | 6           |
| Percent Dominant Taxa            | 6           | 4           | 4           | 4           | 2           | 6           |
| Total Biological Score           |             |             |             |             |             |             |
| Total Biological Score           | 48          | 24          | 28          | 36          | 28          | 38          |
| Biological % of Reference        | 100         | 50          | 58          | 75          | 58          | 79          |

# Table 11. Summary of New York-Pennsylvania Border RBP III Biological Data

|                                  | LSNK<br>7.6 | SEEL<br>10.3 | SOUT<br>7.8 | TROW<br>1.5 | TRUP<br>4.5 | WAPP<br>2.6 |
|----------------------------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Raw Summary                      |             |              |             | •           | •           | •           |
| Number of Individuals            | 150         | 177          | 143         | 131         | 132         | 140         |
| % Shredders                      | 2.0         | 0.0          | 0.7         | 0.8         | 0.0         | 0.0         |
| % Collector-Gatherers            | 25.3        | 46.3         | 33.6        | 41.7        | 19.7        | 25.0        |
| % Filterer-Collectors            | 58.7        | 47.5         | 28.0        | 15.2        | 14.4        | 42.9        |
| % Scrapers                       | 4.7         | 1.7          | 27.3        | 27.3        | 9.1         | 26.4        |
| % Predators                      | 9.3         | 4.5          | 10.5        | 15.2        | 56.8        | 5.7         |
| Number of EPT Taxa               | 11          | 7            | 10          | 11          | 8           | 12          |
| Number of EPT Individuals        | 92          | 113          | 49          | 28          | 24          | 101         |
| Metric Scores                    |             |              |             |             |             |             |
| Taxonomic Richness               | 21          | 14           | 19          | 18          | 22          | 19          |
| Shannon Diversity Index          | 3.4         | 2.4          | 3.4         | 3.1         | 3.2         | 3.5         |
| Modified Hilsenhoff Biotic Index | 4.6         | 4.9          | 4.9         | 5.1         | 3.8         | 3.6         |
| EPT Index                        | 11          | 7            | 10          | 11          | 8           | 12          |
| Percent Trophic Similarity       | 89.2        | 42.4         | 69.0        | 56.2        | 48.7        | 82.4        |
| Ratio EPT/Chironomids            | 2.6         | 2.1          | 1.1         | 0.6         | 1.1         | 3.9         |
| Percent Taxonomic Similarity     | 56.8        | 30.4         | 35.5        | 27.3        | 31.0        | 60.9        |
| Percent Dominant Taxa            | 24.0        | 37.3         | 30.8        | 38.6        | 37.9        | 18.6        |
| Percent of Reference             |             |              |             | •           | •           |             |
| Taxonomic Richness               | 77.8        | 51.9         | 70.4        | 66.7        | 81.5        | 70.4        |
| Shannon Diversity Index          | 87.0        | 60.6         | 86.1        | 77.4        | 80.8        | 89.5        |
| Hilsenhoff Index                 | 80.1        | 75.1         | 74.7        | 70.9        | 95.5        | 101.3       |
| EPT Index                        | 61.1        | 38.9         | 55.6        | 61.1        | 44.4        | 66.7        |
| Percent Trophic Similarity       | 89.2        | 72.4         | 69.0        | 56.2        | 48.7        | 82.4        |
| Ratio EPT/Chironomids            | 22.8        | 18.3         | 9.9         | 4.9         | 9.7         | 34.7        |
| Percent Taxonomic Similarity     | 56.7        | 30.4         | 35.5        | 27.3        | 31.0        | 60.9        |
| Percent Dominant Taxa            | 24.0        | 37.3         | 30.8        | 38.6        | 37.9        | 18.6        |
| Biological Condition Scores      |             |              |             |             |             |             |
| Taxonomic Richness               | 4           | 2            | 4           | 4           | 6           | 4           |
| Shannon Diversity Index          | 6           | 4            | 6           | 6           | 6           | 6           |
| Hilsenhoff Index                 | 4           | 4            | 4           | 4           | 6           | 6           |
| EPT Index                        | 0           | 0            | 0           | 0           | 0           | 0           |
| Percent Trophic Similarity       | 6           | 4            | 4           | 4           | 2           | 6           |
| Ratio EPT/Chironomids            | 0           | 0            | 0           | 0           | 0           | 2           |
| Percent Taxonomic Similarity     | 6           | 2            | 4           | 2           | 2           | 6           |
| Percent Dominant Taxa            | 4           | 2            | 2           | 2           | 2           | 6           |
| Total Biological Score           |             |              |             | •           |             |             |
| Total Biological Score           | 30          | 18           | 24          | 22          | 24          | 36          |
| Biological % of Reference        | 63          | 38           | 50          | 46          | 50          | 75          |

 Table 11.
 Summary of New York-Pennsylvania Border RBP III Biological Data — Continued

|                                  | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.2 | EBAU<br>1.5 | FBDC<br>4.1 |
|----------------------------------|-------------|-------------|--------------|-------------|-------------|
| Raw Data Summary                 |             |             |              |             |             |
| Number of Individuals            | 194         | 194         | 187          | 175         | 178         |
| % Shredders                      | 25.8        | 0.5         | 1.1          | 1.7         | 4.5         |
| % Collector-Gatherers            | 9.3         | 11.9        | 13.4         | 9.7         | 34.8        |
| % Filterer-Collectors            | 20.1        | 24.8        | 53.5         | 18.3        | 30.9        |
| % Scrapers                       | 27.3        | 58.2        | 11.8         | 66.3        | 15.7        |
| % Predators                      | 17.5        | 4.6         | 20.3         | 4.0         | 14.0        |
| Number of EPT Taxa               | 17          | 9           | 10           | 8           | 9           |
| Number of EPT Individuals        | 123         | 101         | 114          | 45          | 76          |
| Metric Scores                    |             |             |              |             |             |
| Taxonomic Richness               | 25          | 16          | 21           | 18          | 22          |
| Shannon Diversity Index          | 3.9         | 3.2         | 3.8          | 2.7         | 3.4         |
| Modified Hilsenhoff Biotic Index | 2.8         | 4.3         | 4.0          | 4.7         | 5.1         |
| EPT Index                        | 17          | 9           | 10           | 8           | 9           |
| Percent Trophic Similarity       | 100.0       | 61.9        | 59.7         | 60.6        | 63.7        |
| Ratio EPT/Chironomids            | 12.3        | 5.6         | 6.7          | 7.5         | 1.5         |
| Percent Taxonomic Similarity     | 100.0       | 26.8        | 31.5         | 41.7        | 31.2        |
| Percent Dominant Taxa            | 19.6        | 31.4        | 21.4         | 51.4        | 28.7        |
| Percent of Reference             |             |             |              |             |             |
| Taxonomic Richness               | 100.0       | 64.0        | 84.0         | 72.0        | 88.0        |
| Shannon Diversity Index          | 100.0       | 82.7        | 98.4         | 68.6        | 87.9        |
| Hilsenhoff Index                 | 100.0       | 65.1        | 69.8         | 59.6        | 55.3        |
| EPT Index                        | 100.0       | 52.9        | 58.8         | 47.1        | 52.9        |
| Percent Trophic Similarity       | 100.0       | 61.9        | 59.7         | 60.6        | 63.7        |
| Ratio EPT/Chironomids            | 100.0       | 45.6        | 54.5         | 61.0        | 12.1        |
| Percent Taxonomic Similarity     | 100.0       | 26.8        | 31.5         | 41.7        | 31.2        |
| Percent Dominant Taxa            | 19.6        | 31.4        | 21.4         | 51.4        | 28.7        |
| Biological Condition Scores      |             | •           | •            | •           |             |
| Taxonomic Richness               | 6           | 4           | 6            | 4           | 6           |
| Shannon Diversity Index          | 6           | 6           | 6            | 4           | 6           |
| Hilsenhoff Index                 | 6           | 2           | 2            | 2           | 2           |
| EPT Index                        | 6           | 0           | 0            | 0           | 0           |
| Percent Trophic Similarity       | 6           | 4           | 4            | 4           | 4           |
| Ratio EPT/Chironomids            | 6           | 2           | 4            | 4           | 0           |
| Percent Taxonomic Similarity     | 6           | 2           | 2            | 4           | 2           |
| Percent Dominant Taxa            | 6           | 2           | 4            | 0           | 4           |
| Total Biological Score           |             | •           |              | •           |             |
| Total Biological Score           | 48          | 22          | 28           | 22          | 24          |
| Biological % of Reference        | 100         | 46          | 58           | 46          | 50          |

# Table 12. Summary of Pennsylvania-Maryland Border RBP III Biological Data

|                                  | LNGA<br>2.5 | OCTO<br>6.6 | SBCC<br>20.4 | SCTT<br>3.0 |
|----------------------------------|-------------|-------------|--------------|-------------|
| Raw Data Summary                 |             |             |              |             |
| Number of Individuals            | 152         | 148         | 116          | 96          |
| % Shredders                      | 8.6         | 7.4         | 16.4         | 3.1         |
| % Collector-Gatherers            | 12.5        | 14.2        | 17.2         | 90.6        |
| % Filterer-Collectors            | 36.2        | 48.6        | 29.3         | 0.0         |
| % Scrapers                       | 18.4        | 28.4        | 19.8         | 6.3         |
| % Predators                      | 24.3        | 1.4         | 17.2         | 0.0         |
| Number of EPT Taxa               | 9           | 11          | 11           | 0           |
| Number of EPT Individuals        | 70          | 96          | 57           | 0           |
| Metric Scores                    |             | •           | •            | ·           |
| Taxonomic Richness               | 19          | 19          | 21           | 4           |
| Shannon Diversity Index          | 3.5         | 3.6         | 3.7          | 0.9         |
| Modified Hilsenhoff Biotic Index | 4.0         | 4.4         | 3.2          | 7.3         |
| EPT Index                        | 9           | 11          | 11           | 0           |
| Percent Trophic Similarity       | 73.9        | 65.5        | 82.8         | 18.7        |
| Ratio EPT/Chironomids            | 5.0         | 13.7        | 3.2          | 0.0         |
| Percent Taxonomic Similarity     | 26.0        | 22.8        | 44.5         | 6.9         |
| Percent Dominant Taxa            | 21.1        | 18.2        | 15.5         | 83.3        |
| Percent of Reference             |             | •           | •            | ·           |
| Taxonomic Richness               | 76.0        | 76.0        | 84.0         | 16.0        |
| Shannon Diversity Index          | 91.3        | 93.7        | 94.7         | 23.3        |
| Hilsenhoff Index                 | 70.5        | 63.0        | 88.6         | 38.2        |
| EPT Index                        | 52.9        | 64.7        | 64.7         | 0.0         |
| Percent Trophic Similarity       | 73.9        | 65.5        | 82.8         | 18.7        |
| Ratio EPT/Chironomids            | 40.7        | 111.5       | 25.7         | 0.0         |
| Percent Taxonomic Similarity     | 26.0        | 22.8        | 44.5         | 6.9         |
| Percent Dominant Taxa            | 21.1        | 18.2        | 15.5         | 83.3        |
| Biological Condition Scores      |             | •           | •            | •           |
| Taxonomic Richness               | 4           | 4           | 6            | 0           |
| Shannon Diversity Index          | 6           | 6           | 6            | 0           |
| Hilsenhoff Index                 | 4           | 2           | 6            | 0           |
| EPT Index                        | 0           | 0           | 0            | 0           |
| Percent Trophic Similarity       | 4           | 4           | 6            | 0           |
| Ratio EPT/Chironomids            | 2           | 6           | 2            | 0           |
| Percent Taxonomic Similarity     | 2           | 2           | 4            | 0           |
| Percent Dominant Taxa            | 4           | 6           | 6            | 0           |
| Total Biological Score           |             |             |              |             |
| Total Biological Score           | 26          | 30          | 36           | 0           |
| Biological % of Reference        | 54          | 63          | 75           | 0           |

# Table 12. Summary of Pennsylvania-Maryland Border RBP III Biological Data—Continued

|                                  | SUSQ<br>365 | CHEM<br>12.0 | COWN<br>2.2 | COWN<br>1.0 |
|----------------------------------|-------------|--------------|-------------|-------------|
| Raw Summary                      |             |              |             |             |
| Number of Individuals            | 180         | 235          | 118         | 152         |
| % Shredders                      | 0.6         | 0.0          | 47.5        | 17.1        |
| % Collector-Gatherers            | 21.7        | 20.0         | 27.1        | 25.6        |
| % Filterer-Collectors            | 25.0        | 59.1         | 5.9         | 35.5        |
| % Scrapers                       | 42.8        | 18.7         | 9.3         | 19.7        |
| % Predators                      | 10.0        | 2.1          | 10.2        | 2.0         |
| Number of EPT Taxa               | 14          | 10           | 4           | 7           |
| Number of EPT Individuals        | 86          | 164          | 17          | 65          |
| Metric Scores                    |             | •            | •           |             |
| Taxonomic Richness               | 25          | 18           | 10          | 19          |
| Shannon Diversity Index          | 4.0         | 3.6          | 2.4         | 3.3         |
| Modified Hilsenhoff Biotic Index | 4.2         | 4.5          | 6.9         | 5.3         |
| EPT Index                        | 14          | 10           | 4           | 7           |
| Percent Trophic Similarity       | 100.0       | 65.9         | 47.5        | 68.9        |
| Ratio EPT/Chironomids            | 6.1         | 5.3          | 0.6         | 2.1         |
| Percent Taxonomic Similarity     | 100.0       | 44.8         | 14.1        | 41.0        |
| Percent Dominant Taxa            | 22.8        | 17.9         | 44.1        | 23.0        |
| Percent of Reference             |             |              |             |             |
| Taxonomic Richness               | 100.0       | 72.0         | 40.0        | 76.0        |
| Shannon Diversity Index          | 100.0       | 90.1         | 59.5        | 84.4        |
| Hilsenhoff Index                 | 100.0       | 93.9         | 61.8        | 79.7        |
| EPT Index                        | 100.0       | 71.4         | 28.6        | 50.0        |
| Percent Trophic Similarity       | 100.0       | 65.9         | 47.5        | 68.9        |
| Ratio EPT/Chironomids            | 100.0       | 86.1         | 9.9         | 34.1        |
| Percent Taxonomic Similarity     | 100.0       | 44.8         | 14.1        | 41.0        |
| Percent Dominant Taxa            | 22.8        | 17.9         | 44.1        | 23.0        |
| Biological Condition Scores      |             |              |             |             |
| Taxonomic Richness               | 6           | 4            | 2           | 4           |
| Shannon Diversity Index          | 6           | 6            | 4           | 6           |
| Hilsenhoff Index                 | 6           | 6            | 2           | 4           |
| EPT Index                        | 6           | 2            | 0           | 0           |
| Percent Trophic Similarity       | 6           | 4            | 2           | 4           |
| Ratio EPT/Chironomids            | 6           | 6            | 0           | 2           |
| Percent Taxonomic Similarity     | 6           | 4            | 0           | 4           |
| Percent Dominant Taxa            | 4           | 6            | 0           | 4           |
| Total Biological Score           |             |              |             |             |
| Total Biological Score           | 46          | 38           | 10          | 28          |
| Percent of Reference             | 100         | 83           | 22          | 61          |

## Table 13. Summary of River RBP III Biological Data

|                                  | SUSQ<br>340 | SUSQ<br>289.1 | SUSQ<br>44.5 | TIOG<br>10.8 |
|----------------------------------|-------------|---------------|--------------|--------------|
| Raw Summary                      |             |               |              |              |
| Number of Individuals            | 118         | 134           | 146          | 142          |
| % Shredders                      | 0.0         | 0.0           | 0.0          | 0.0          |
| % Collector-Gatherers            | 12.7        | 4.5           | 13.7         | 19.7         |
| % Filterer-Collectors            | 33.1        | 53.7          | 36.3         | 64.8         |
| % Scrapers                       | 50.0        | 37.3          | 47.3         | 9.9          |
| % Predators                      | 4.2         | 4.5           | 2.7          | 5.6          |
| Number of EPT Taxa               | 14          | 11            | 13           | 10           |
| Number of EPT Individuals        | 60          | 80            | 88           | 108          |
| Metric Scores                    |             |               |              |              |
| Taxonomic Richness               | 21          | 18            | 20           | 20           |
| Shannon Diversity Index          | 4.1         | 3.4           | 3.3          | 3.4          |
| Modified Hilsenhoff Biotic Index | 4.5         | 4.2           | 4.3          | 3.9          |
| EPT Index                        | 14          | 11            | 13           | 10           |
| Percent Trophic Similarity       | 84.7        | 71.3          | 84.2         | 60.2         |
| Ratio EPT/Chironomids            | 8.6         | 26.7          | 22.0         | 5.1          |
| Percent Taxonomic Similarity     | 43.6        | 55.4          | 54.0         | 41.0         |
| Percent Dominant Taxa            | 11.9        | 23.9          | 32.9         | 19.7         |
| Percent of Reference             |             |               |              |              |
| Taxonomic Richness               | 84.0        | 72.0          | 80.0         | 80.0         |
| Shannon Diversity Index          | 102.5       | 86.4          | 82.6         | 85.6         |
| Hilsenhoff Index                 | 94.4        | 101.2         | 99.3         | 109.2        |
| EPT Index                        | 100.0       | 78.6          | 92.9         | 71.4         |
| Percent Trophic Similarity       | 84.7        | 71.3          | 84.2         | 60.2         |
| Ratio EPT/Chironomids            | 139.5       | 434.1         | 358.1        | 83.7         |
| Percent Taxonomic Similarity     | 43.6        | 55.4          | 54.0         | 41.0         |
| Percent Dominant Taxa            | 11.9        | 23.9          | 32.9         | 19.7         |
| Biological Condition Scores      |             |               |              |              |
| Taxonomic Richness               | 6           | 4             | 6            | 6            |
| Shannon Diversity Index          | 6           | 6             | 6            | 6            |
| Hilsenhoff Index                 | 6           | 6             | 6            | 6            |
| EPT Index                        | 6           | 2             | 6            | 2            |
| Percent Trophic Similarity       | 6           | 4             | 6            | 4            |
| Ratio EPT/Chironomids            | 6           | 6             | 6            | 6            |
| Percent Taxonomic Similarity     | 4           | 6             | 6            | 4            |
| Percent Dominant Taxa            | 6           | 4             | 2            | 6            |
| Total Biological Score           |             |               | I            |              |
| Total Biological Score           | 46          | 38            | 44           | 40           |
| Percent of Reference             | 100         | 83            | 96           | 87           |

# Table 13. Summary of River RBP III Biological Data—Continued

|                                  | COOK  | BABC  | BILL  | BIRD  | BISC  | BRIG  |
|----------------------------------|-------|-------|-------|-------|-------|-------|
| Raw Summary                      | •     | •     |       | •     | •     | •     |
| Number of Individuals            | 112   | 119   | 115   | 112   | 105   | 56    |
| % Shredders                      | 12.5  | 21.0  | 0.9   | 1.8   | 4.8   | 3.6   |
| % Collector-Gatherers            | 40.2  | 68.9  | 81.7  | 83.9  | 74.3  | 91.1  |
| % Filterer-Collectors            | 5.6   | 4.2   | 0.9   | 10.7  | 7.6   | 3.6   |
| % Scrapers                       | 38.4  | 1.7   | 8.7   | 2.7   | 8.6   | 1.8   |
| % Predators                      | 3.6   | 4.2   | 7.8   | 0.9   | 4.8   | 0.0   |
| Number of EPT Taxa               | 14    | 10    | 10    | 8     | 11    | 8     |
| Number of EPT Individuals        | 80    | 97    | 97    | 97    | 96    | 55    |
| Metric Scores                    | -     | •     |       | •     | •     | •     |
| Taxonomic Richness               | 21    | 14    | 17    | 12    | 16    | 10    |
| Shannon Diversity Index          | 3.8   | 2.6   | 2.7   | 2.5   | 2.7   | 1.5   |
| Modified Hilsenhoff Biotic Index | 3.4   | 2.1   | 2.3   | 1.5   | 1.1   | 0.4   |
| EPT Index                        | 14    | 10    | 10    | 8     | 11    | 8     |
| Percent Trophic Similarity       | 100.0 | 62.1  | 54.2  | 50.9  | 62.4  | 49.1  |
| Ratio EPT/Chironomids            | 11.4  | 5.1   | 13.9  | 8.1   | 19.2  | 55.0  |
| Percent Taxonomic Similarity     | 100.0 | 27.7  | 35.2  | 18.8  | 30.4  | 20.2  |
| Percent Dominant Taxa            | 14.3  | 43.7  | 44.4  | 37.5  | 47.6  | 75.0  |
| Percent of Reference             | -     | •     |       | •     | •     | •     |
| Taxonomic Richness               | 100.0 | 66.7  | 81.0  | 57.1  | 76.2  | 47.6  |
| Shannon Diversity Index          | 100.0 | 68.6  | 70.7  | 65.3  | 71.0  | 38.7  |
| Hilsenhoff Index                 | 100.0 | 158.5 | 149.1 | 217.3 | 301.3 | 817.4 |
| EPT Index                        | 100.0 | 71.4  | 71.4  | 57.1  | 78.6  | 57.1  |
| Percent Trophic Similarity       | 100.0 | 62.1  | 54.2  | 50.9  | 62.4  | 49.1  |
| Ratio EPT/Chironomids            | 100.0 | 44.7  | 121.3 | 70.7  | 168.0 | 481.3 |
| Percent Taxonomic Similarity     | 100.0 | 27.7  | 35.2  | 18.8  | 30.4  | 20.2  |
| Percent Dominant Taxa            | 14.3  | 43.7  | 44.0  | 37.5  | 47.6  | 75.0  |
| Biological Condition Scores      |       | ·     |       | ·     | ·     | ·     |
| Taxonomic Richness               | 6     | 4     | 6     | 2     | 4     | 2     |
| Shannon Diversity Index          | 6     | 4     | 4     | 4     | 4     | 2     |
| Hilsenhoff Index                 | 6     | 6     | 6     | 6     | 6     | 6     |
| EPT Index                        | 6     | 2     | 2     | 0     | 2     | 0     |
| Percent Trophic Similarity       | 6     | 4     | 4     | 4     | 4     | 2     |
| Ratio EPT/Chironomids            | 6     | 2     | 6     | 4     | 6     | 6     |
| Percent Taxonomic Similarity     | 6     | 2     | 4     | 0     | 2     | 2     |
| Percent Dominant Taxa            | 6     | 0     | 0     | 2     | 0     | 0     |
| Total Biological Score           |       |       |       |       |       |       |
| Total Biological Score           | 48    | 24    | 32    | 22    | 28    | 20    |
| Biological % of Reference        | 100   | 50    | 67    | 46    | 58    | 42    |

# Table 14. Summary of Group 3 Sites RBP III Biological Data

|                                    | BULK  | CAMP  | DEEP  | DENT | DRYB | LWAP  |
|------------------------------------|-------|-------|-------|------|------|-------|
| Raw Summary                        | •     |       | •     |      |      |       |
| Number of Individuals              | 114   | 112   | 117   | 191  | 118  | 101   |
| % Shredders                        | 12.3  | 13.4  | 23.9  | 1.0  | 1.7  | 10.9  |
| % Collector-Gatherers              | 37.7  | 67.0  | 49.6  | 25.1 | 83.1 | 72.3  |
| % Filterer-Collectors              | 13.2  | 3.6   | 3.4   | 70.2 | 10.2 | 0.0   |
| % Scrapers                         | 12.3  | 7.1   | 6.0   | 2.6  | 2.5  | 5.9   |
| % Predators                        | 24.6  | 8.9   | 17.1  | 1.0  | 2.5  | 10.9  |
| Number of EPT Taxa                 | 12    | 11    | 16    | 4    | 7    | 11    |
| Number of EPT Individuals          | 97    | 95    | 67    | 78   | 43   | 95    |
| Metric Scores                      |       | •     | ·     | •    |      |       |
| Taxonomic Richness                 | 20    | 17    | 27    | 11   | 14   | 17    |
| Shannon Diversity Index            | 3.6   | 2.8   | 3.6   | 2.3  | 2.4  | 2.6   |
| Modified Hilsenhoff Biotic Index   | 1.6   | 1.1   | 3.7   | 5.6  | 5.4  | 0.6   |
| EPT Index                          | 12    | 11    | 16    | 4    | 7    | 11    |
| Percent Trophic Similarity         | 71.2  | 67.0  | 65.7  | 35.2 | 52.3 | 60.6  |
| Ratio EPT/Chironomids              | 24.3  | 15.8  | 2.0   | 1.6  | 0.7  | 47.5  |
| Percent Taxonomic Similarity       | 26.6  | 28.6  | 27.1  | 5.3  | 27.0 | 22.5  |
| Percent Dominant Taxa              | 20.2  | 49.1  | 29.1  | 29.8 | 50.0 | 43.6  |
| Percent of Reference               |       |       |       |      |      |       |
| Taxonomic Richness                 | 95.2  | 81.0  | 128.6 | 52.4 | 66.7 | 81.0  |
| Shannon Diversity Index            | 94.3  | 72.9  | 94.0  | 59.5 | 61.7 | 69.0  |
| Hilsenhoff Index                   | 205.8 | 313.3 | 89.7  | 60.2 | 61.8 | 521.6 |
| EPT Index                          | 85.7  | 78.6  | 114.3 | 28.6 | 50.0 | 78.6  |
| Percent Trophic Similarity         | 71.2  | 67.0  | 65.7  | 35.2 | 52.3 | 60.6  |
| Ratio EPT/Chironomids              | 212.2 | 138.5 | 17.2  | 14.2 | 6.4  | 415.6 |
| Percent Taxonomic Similarity       | 26.6  | 28.6  | 27.1  | 5.3  | 27.0 | 22.5  |
| Percent Dominant Taxa              | 20.2  | 49.1  | 29.1  | 29.8 | 50.0 | 43.6  |
| <b>Biological Condition Scores</b> |       |       |       |      |      |       |
| Taxonomic Richness                 | 6     | 6     | 6     | 2    | 4    | 6     |
| Shannon Diversity Index            | 6     | 4     | 6     | 4    | 4    | 4     |
| Hilsenhoff Index                   | 6     | 6     | 6     | 2    | 2    | 6     |
| EPT Index                          | 4     | 2     | 6     | 0    | 0    | 2     |
| Percent Trophic Similarity         | 4     | 4     | 4     | 2    | 4    | 4     |
| Ratio EPT/Chironomids              | 6     | 6     | 0     | 0    | 0    | 6     |
| Percent Taxonomic Similarity       | 2     | 2     | 2     | 0    | 2    | 2     |
| Percent Dominant Taxa              | 4     | 0     | 4     | 4    | 0    | 0     |
| Total Biological Score             |       |       |       |      |      |       |
| Total Biological Score             | 38    | 30    | 34    | 14   | 16   | 30    |
| Biological % of Reference          | 79    | 63    | 71    | 29   | 33   | 63    |

 Table 14.
 Summary of Group 3 Sites RBP III Biological Data — Continued

|                                    | PARK  | PRIN | REDH  | RUSS  | SACK  | SMIT  |
|------------------------------------|-------|------|-------|-------|-------|-------|
| Raw Summary                        |       | 1    | 1     | 1     | I     | I     |
| Number of Individuals              | 110   | 109  | 108   | 106   | 110   | 159   |
| % Shredders                        | 26.4  | 5.5  | 72.2  | 9.4   | 16.4  | 54.1  |
| % Collector-Gatherers              | 57.3  | 83.5 | 12.0  | 84.0  | 64.5  | 17.6  |
| % Filterer-Collectors              | 1.8   | 1.8  | 4.6   | 0.0   | 1.8   | 4.4   |
| % Scrapers                         | 9.1   | 5.5  | 0.9   | 2.8   | 10.9  | 13.8  |
| % Predators                        | 5.5   | 3.7  | 10.2  | 3.8   | 6.4   | 10.1  |
| Number of EPT Taxa                 | 10    | 12   | 9     | 7     | 13    | 11    |
| Number of EPT Individuals          | 102   | 84   | 97    | 96    | 107   | 114   |
| Metric Scores                      |       | •    | •     |       | •     | •     |
| Taxonomic Richness                 | 15    | 18   | 15    | 13    | 17    | 21    |
| Shannon Diversity Index            | 2.9   | 3.4  | 1.9   | 2.2   | 2.7   | 3.2   |
| Modified Hilsenhoff Biotic Index   | 1.1   | 3.4  | 0.8   | 0.8   | 1.0   | 2.2   |
| EPT Index                          | 10    | 12   | 9     | 7     | 13    | 11    |
| Percent Trophic Similarity         | 67.2  | 56.6 | 33.7  | 56.0  | 69.0  | 51.9  |
| Ratio EPT/Chironomids              | 34.0  | 4.4  | 16.2  | 24.0  | 107.0 | 9.5   |
| Percent Taxonomic Similarity       | 29.7  | 43.4 | 19.1  | 22.9  | 29.7  | 36.2  |
| Percent Dominant Taxa              | 40.0  | 20.2 | 68.5  | 60.4  | 48.2  | 40.9  |
| Percent of Reference               |       | •    | •     | •     | •     | •     |
| Taxonomic Richness                 | 71.4  | 85.7 | 74.4  | 61.9  | 81.0  | 100.0 |
| Shannon Diversity Index            | 75.1  | 88.8 | 50.4  | 57.3  | 71.5  | 83.9  |
| Hilsenhoff Index                   | 307.7 | 97.6 | 412.0 | 418.7 | 341.9 | 155.6 |
| EPT Index                          | 71.4  | 85.7 | 64.3  | 50.0  | 92.9  | 78.6  |
| Percent Trophic Similarity         | 67.2  | 56.6 | 33.7  | 56.0  | 69.0  | 51.9  |
| Ratio EPT/Chironomids              | 297.5 | 38.7 | 141.5 | 210.0 | 936.3 | 83.1  |
| Percent Taxonomic Similarity       | 29.7  | 43.4 | 19.1  | 22.9  | 29.7  | 36.2  |
| Percent Dominant Taxa              | 40.0  | 20.2 | 68.5  | 60.4  | 48.2  | 41.0  |
| <b>Biological Condition Scores</b> |       |      |       |       |       |       |
| Taxonomic Richness                 | 4     | 6    | 4     | 4     | 6     | 6     |
| Shannon Diversity Index            | 6     | 6    | 4     | 4     | 4     | 6     |
| Hilsenhoff Index                   | 6     | 6    | 6     | 6     | 6     | 6     |
| EPT Index                          | 2     | 4    | 0     | 0     | 6     | 2     |
| Percent Trophic Similarity         | 4     | 4    | 2     | 4     | 4     | 4     |
| Ratio EPT/Chironomids              | 6     | 2    | 6     | 6     | 6     | 6     |
| Percent Taxonomic Similarity       | 2     | 4    | 0     | 2     | 2     | 4     |
| Percent Dominant Taxa              | 2     | 4    | 0     | 0     | 0     | 0     |
| Total Biological Score             |       |      |       |       |       |       |
| Total Biological Score             | 32    | 36   | 22    | 26    | 34    | 34    |
| Biological % of Reference          | 67    | 75   | 46    | 54    | 71    | 71    |

# Table 14. Summary of Group 3 Sites RBP III Biological Data — Continued

|                                  | STRA  | WBCO  | WHIT  |
|----------------------------------|-------|-------|-------|
| Raw Summary                      |       |       | 1     |
| Number of Individuals            | 113   | 135   | 128   |
| % Shredders                      | 4.4   | 5.9   | 31.3  |
| % Collector-Gatherers            | 57.5  | 61.5  | 51.6  |
| % Filterer-Collectors            | 8.8   | 3.0   | 2.3   |
| % Scrapers                       | 23.0  | 25.2  | 3.1   |
| % Predators                      | 6.2   | 4.4   | 11.7  |
| Number of EPT Taxa               | 17    | 13    | 10    |
| Number of EPT Individuals        | 82    | 112   | 118   |
| Metric Scores                    |       | •     | ·     |
| Taxonomic Richness               | 25    | 19    | 13    |
| Shannon Diversity Index          | 3.8   | 3.5   | 2.9   |
| Modified Hilsenhoff Biotic Index | 2.6   | 2.8   | 1.8   |
| EPT Index                        | 17    | 13    | 10    |
| Percent Trophic Similarity       | 76.5  | 77.8  | 61.7  |
| Ratio EPT/Chironomids            | 5.9   | 8.6   | 13.1  |
| Percent Taxonomic Similarity     | 40.0  | 42.9  | 40.8  |
| Percent Dominant Taxa            | 16.8  | 21.5  | 31.3  |
| Percent of Reference             |       |       | •     |
| Taxonomic Richness               | 119.0 | 90.5  | 61.9  |
| Shannon Diversity Index          | 99.7  | 92.2  | 75.4  |
| Hilsenhoff Index                 | 129.9 | 118.6 | 191.0 |
| EPT Index                        | 121.4 | 92.9  | 71.4  |
| Percent Trophic Similarity       | 76.5  | 77.8  | 61.7  |
| Ratio EPT/Chironomids            | 51.3  | 75.4  | 114.7 |
| Percent Taxonomic Similarity     | 40.0  | 42.9  | 40.8  |
| Percent Dominant Taxa            | 16.8  | 21.5  | 31.3  |
| Biological Condition Scores      |       | •     |       |
| Taxonomic Richness               | 6     | 6     | 4     |
| Shannon Diversity Index          | 6     | 6     | 6     |
| Hilsenhoff Index                 | 6     | 6     | 6     |
| EPT Index                        | 6     | 6     | 2     |
| Percent Trophic Similarity       | 6     | 6     | 4     |
| Ratio EPT/Chironomids            | 4     | 6     | 6     |
| Percent Taxonomic Similarity     | 4     | 4     | 4     |
| Percent Dominant Taxa            | 6     | 4     | 2     |
| Total Biological Score           |       |       |       |
| Total Biological Score           | 44    | 44    | 34    |
| Biological % of Reference        | 92    | 92    | 71    |

 Table 14.
 Summary of Group 3 Sites RBP III Biological Data — Continued

|                              | SNAK<br>2.3 | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 | CAYT<br>1.7 | CHOC<br>9.1 |
|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Primary Parameters           |             |             |             |             |             |             |
| Bottom Substrate             | 17          | 15          | 9           | 10          | 15          | 15          |
| Embeddedness                 | 17          | 15          | 16          | 15          | 15          | 16          |
| Velocity/Depth Diversity     | 16          | 10          | 8           | 7           | 17          | 11          |
| Secondary Parameters         |             |             |             |             |             |             |
| Pool/Riffle Ratio            | 13          | 7           | 7           | 7           | 12          | 13          |
| Pool Quality                 | 11          | 8           | 6           | 6           | 11          | 7           |
| Riffle/Run Quality           | 12          | 6           | 7           | 6           | 11          | 9           |
| Channel Alteration           | 11          | 9           | 3           | 10          | 10          | 9           |
| Tertiary Parameters          |             |             |             |             |             |             |
| Streambank Erosion           | 8           | 7           | 2           | 6           | 7           | 7           |
| Streambank Stability         | 8           | 7           | 5           | 8           | 9           | 7           |
| Streamside Vegetative Cover  | 7           | 7           | 2           | 7           | 5           | 5           |
| Riparian Buffer Zone         | 2           | 2           | 2           | 5           | 2           | 2           |
| Total Habitat Score          |             |             |             |             |             |             |
| Total Habitat Score          | 122         | 93          | 67          | 87          | 114         | 101         |
| Habitat Percent of Reference | 100         | 76          | 55          | 71          | 93          | 83          |

## Table 15.Summary of New York-Pennsylvania Sites Physical Habitat Data

|                              | LSNK | SEEL | SOUT | TROW | TRUP | WAPP |
|------------------------------|------|------|------|------|------|------|
|                              | 7.6  | 10.3 | 7.8  | 1.5  | 4.5  | 2.6  |
| Primary Parameters           |      |      |      |      |      |      |
| Bottom Substrate             | 15   | 8    | 12   | 14   | 16   | 15   |
| Embeddedness                 | 17   | 15   | 16   | 15   | 16   | 16   |
| Velocity/Depth Diversity     | 10   | 7    | 9    | 6    | 10   | 13   |
| Secondary Parameters         |      |      |      |      |      |      |
| Pool/Riffle Ratio            | 10   | 4    | 8    | 5    | 11   | 9    |
| Pool Quality                 | 7    | 6    | 7    | 4    | 7    | 10   |
| Riffle/Run Quality           | 7    | 3    | 6    | 5    | 8    | 8    |
| Channel Alteration           | 8    | 3    | 9    | 12   | 11   | 8    |
| Tertiary Parameters          |      |      |      |      |      |      |
| Streambank Erosion           | 7    | 2    | 7    | 6    | 7    | 6    |
| Streambank Stability         | 9    | 3    | 7    | 7    | 8    | 7    |
| Streamside Vegetative Cover  | 9    | 4    | 5    | 5    | 5    | 5    |
| Riparian Buffer Zone         | 6    | 2    | 2    | 2    | 2    | 5    |
| Total Habitat Score          |      |      |      |      |      |      |
| Total Habitat Score          | 105  | 57   | 88   | 81   | 101  | 102  |
| Habitat Percent of Reference | 86   | 47   | 72   | 66   | 83   | 84   |

|                              | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.2 | EBAU<br>1.5 | FBDC<br>4.1 |
|------------------------------|-------------|-------------|--------------|-------------|-------------|
| Primary Parameters           |             |             |              | 1           | •           |
| Bottom Substrate             | 17          | 17          | 12           | 9           | 13          |
| Embeddedness                 | 17          | 16          | 12           | 11          | 11          |
| Velocity/Depth Diversity     | 12          | 17          | 13           | 9           | 7           |
| Secondary Parameters         |             |             |              |             |             |
| Pool/Riffle Ratio            | 11          | 13          | 11           | 8           | 8           |
| Pool Quality                 | 10          | 12          | 10           | 8           | 6           |
| Riffle/Run Quality           | 10          | 10          | 9            | 9           | 6           |
| Channel Alteration           | 12          | 10          | 7            | 12          | 9           |
| Tertiary Parameters          |             |             |              |             |             |
| Streambank Erosion           | 7           | 6           | 2            | 8           | 7           |
| Streambank Stability         | 9           | 8           | 4            | 9           | 9           |
| Streamside Vegetative Cover  | 9           | 7           | 4            | 5           | 9           |
| Riparian Buffer Zone         | 7           | 5           | 2            | 2           | 2           |
| Total Habitat Score          |             |             |              |             |             |
| Total Habitat Score          | 121         | 121         | 86           | 90          | 87          |
| Habitat Percent of Reference | 100         | 100         | 71           | 74          | 72          |

# Table 16. Summary of Pennsylvania-Maryland Sites Physical Habitat Data

|                              | LNGA<br>2.5 | ОСТО<br>6.6 | SBCC<br>20.4 | SCTT<br>3.0 |
|------------------------------|-------------|-------------|--------------|-------------|
| Primary Parameters           | •           | •           | •            | 1           |
| Bottom Substrate             | 5           | 17          | 16           | 6           |
| Embeddedness                 | 7           | 16          | 17           | 10          |
| Velocity/Depth Diversity     | 8           | 15          | 13           | 7           |
| Secondary Parameters         |             |             |              |             |
| Pool/Riffle Ratio            | 6           | 13          | 9            | 5           |
| Pool Quality                 | 8           | 9           | 8            | 4           |
| Riffle/Run Quality           | 6           | 11          | 7            | 4           |
| Channel Alteration           | 7           | 12          | 12           | 11          |
| Tertiary Parameters          |             |             |              |             |
| Streambank Erosion           | 5           | 8           | 8            | 7           |
| Streambank Stability         | 6           | 9           | 9            | 9           |
| Streamside Vegetative Cover  | 5           | 5           | 8            | 6           |
| Riparian Buffer Zone         | 2           | 2           | 8            | 2           |
| Total Habitat Score          |             |             |              |             |
| Total Habitat Score          | 65          | 117         | 115          | 71          |
| Habitat Percent of Reference | 54          | 97          | 95           | 59          |

#### SUSQ CHEM COWN COWN 12.0 2.2 1.0 Primary Parameters Bottom Substrate Embeddedness Velocity/Depth Diversity Secondary Parameters Pool/Riffle Ratio Pool Quality Riffle/Run Quality Channel Alteration **Tertiary Parameters** Streambank Erosion Streambank Stability Streamside Vegetative Cover Riparian Buffer Zone Total Habitat Score Total Habitat Score Habitat Percent of Reference

| Table 17. Sumn | ary of River | Sites Physical | l Habitat Data |
|----------------|--------------|----------------|----------------|
|----------------|--------------|----------------|----------------|

|                              | SUSQ<br>340 | SUSQ<br>289.1 | SUSQ<br>44.5 | TIOG<br>10.8 |
|------------------------------|-------------|---------------|--------------|--------------|
| Primary Parameters           | 540         | 203.1         | 44.5         | 10.8         |
| Bottom Substrate             | 13          | 16            | 10           | 17           |
| Embeddedness                 | 16          | 16            | 16           | 16           |
| Velocity/Depth Diversity     | 17          | 16            | 16           | 17           |
| Secondary Parameters         | ·           | ·             |              |              |
| Pool/Riffle Ratio            | 9           | 13            | 10           | 13           |
| Pool Quality                 | 11          | 11            | 10           | 12           |
| Riffle/Run Quality           | 11          | 12            | 12           | 12           |
| Channel Alteration           | 11          | 10            | 12           | 11           |
| Tertiary Parameters          |             |               |              |              |
| Streambank Erosion           | 6           | 7             | 8            | 7            |
| Streambank Stability         | 9           | 9             | 8            | 7            |
| Streamside Vegetative Cover  | 5           | 5             | 5            | 6            |
| Riparian Buffer Zone         | 5           | 2             | 2            | 5            |
| Total Habitat Score          |             |               |              |              |
| Total Habitat Score          | 113         | 117           | 109          | 123          |
| Habitat Percent of Reference | 93          | 96            | 89           | 101          |

|                              | COOK | BABC | BILL | BIRD | BISC | BRIG |
|------------------------------|------|------|------|------|------|------|
| Primary Parameters           | ·    | •    |      | •    |      |      |
| Bottom Substrate             | 17   | 18   | 17   | 16   | 11   | 12   |
| Embeddedness                 | 16   | 17   | 17   | 16   | 13   | 16   |
| Velocity/Depth Diversity     | 10   | 17   | 11   | 10   | 10   | 10   |
| Secondary Parameters         |      |      |      |      |      |      |
| Pool/Riffle Ratio            | 10   | 13   | 10   | 11   | 8    | 10   |
| Pool Quality                 | 8    | 13   | 7    | 9    | 7    | 8    |
| Riffle/Run Quality           | 9    | 12   | 9    | 11   | 9    | 9    |
| Channel Alteration           | 12   | 12   | 12   | 11   | 12   | 4    |
| Tertiary Parameters          |      |      |      |      |      |      |
| Streambank Erosion           | 6    | 8    | 8    | 5    | 6    | 4    |
| Streambank Stability         | 8    | 8    | 9    | 6    | 8    | 4    |
| Streamside Vegetative Cover  | 8    | 9    | 8    | 8    | 9    | 6    |
| Riparian Buffer Zone         | 5    | 6    | 9    | 5    | 2    | 5    |
| Total Habitat Score          |      |      |      |      |      |      |
| Total Habitat Score          | 109  | 133  | 117  | 108  | 95   | 88   |
| Habitat Percent of Reference | 100  | 122  | 107  | 99   | 87   | 81   |

# Table 18. Summary of Group 3 Sites Physical Habitat Data

|                              | BULK | CAMP | DEEP | DENT | DRY | LWAP |
|------------------------------|------|------|------|------|-----|------|
| Primary Parameters           |      | •    |      |      | •   |      |
| Bottom Substrate             | 18   | 14   | 18   | 16   | 12  | 15   |
| Embeddedness                 | 17   | 16   | 18   | 17   | 15  | 16   |
| Velocity/Depth Diversity     | 10   | 10   | 13   | 15   | 10  | 10   |
| Secondary Parameters         |      |      |      |      |     |      |
| Pool/Riffle Ratio            | 9    | 11   | 12   | 10   | 9   | 11   |
| Pool Quality                 | 7    | 7    | 11   | 7    | 10  | 8    |
| Riffle/Run Quality           | 10   | 11   | 13   | 11   | 10  | 11   |
| Channel Alteration           | 13   | 7    | 12   | 12   | 8   | 4    |
| Tertiary Parameters          |      |      |      |      |     |      |
| Streambank Erosion           | 8    | 3    | 8    | 7    | 8   | 3    |
| Streambank Stability         | 9    | 5    | 9    | 8    | 8   | 5    |
| Streamside Vegetative Cover  | 9    | 6    | 8    | 8    | 8   | 6    |
| Riparian Buffer Zone         | 5    | 5    | 9    | 5    | 2   | 9    |
| Total Habitat Score          |      |      |      |      |     |      |
| Total Habitat Score          | 115  | 95   | 131  | 116  | 100 | 98   |
| Habitat Percent of Reference | 106  | 87   | 120  | 106  | 92  | 90   |

|                              | PARK | PRIN | REDH | RUSS | SACK | SMIT |
|------------------------------|------|------|------|------|------|------|
| Primary Parameters           |      |      |      |      |      | •    |
| Bottom Substrate             | 10   | 10   | 18   | 12   | 13   | 18   |
| Embeddedness                 | 15   | 14   | 18   | 16   | 15   | 16   |
| Velocity/Depth Diversity     | 11   | 12   | 10   | 11   | 10   | 11   |
| Secondary Parameters         |      |      |      |      |      |      |
| Pool/Riffle Ratio            | 11   | 9    | 11   | 9    | 10   | 11   |
| Pool Quality                 | 10   | 7    | 3    | 7    | 7    | 11   |
| Riffle/Run Quality           | 10   | 9    | 11   | 10   | 9    | 10   |
| Channel Alteration           | 3    | 3    | 12   | 3    | 3    | 12   |
| Tertiary Parameters          |      |      |      |      |      |      |
| Streambank Erosion           | 2    | 2    | 8    | 2    | 2    | 7    |
| Streambank Stability         | 3    | 3    | 9    | 2    | 3    | 9    |
| Streamside Vegetative Cover  | 7    | 5    | 8    | 2    | 5    | 9    |
| Riparian Buffer Zone         | 3    | 1    | 9    | 7    | 2    | 8    |
| Total Habitat Score          |      |      |      |      |      |      |
| Total Habitat Score          | 85   | 75   | 117  | 81   | 79   | 122  |
| Habitat Percent of Reference | 78   | 69   | 107  | 74   | 72   | 112  |

| Table 18. Su | mmary of Group | 3 Sites | <b>Physical Habita</b> | t Data – continued. |
|--------------|----------------|---------|------------------------|---------------------|
|--------------|----------------|---------|------------------------|---------------------|

|                              | STRA | WBCO | WHIT |
|------------------------------|------|------|------|
| Primary Parameters           | ·    | ·    | •    |
| Bottom Substrate             | 15   | 16   | 17   |
| Embeddedness                 | 15   | 16   | 17   |
| Velocity/Depth Diversity     | 11   | 9    | 10   |
| Secondary Parameters         |      |      |      |
| Pool/Riffle Ratio            | 9    | 10   | 11   |
| Pool Quality                 | 8    | 7    | 11   |
| Riffle/Run Quality           | 8    | 10   | 11   |
| Channel Alteration           | 7    | 12   | 11   |
| Tertiary Parameters          |      |      |      |
| Streambank Erosion           | 5    | 8    | 8    |
| Streambank Stability         | 6    | 8    | 9    |
| Streamside Vegetative Cover  | 5    | 7    | 8    |
| Riparian Buffer Zone         | 5    | 5    | 5    |
| Total Habitat Score          |      |      |      |
| Total Habitat Score          | 94   | 108  | 118  |
| Habitat Percent of Reference | 86   | 99   | 108  |

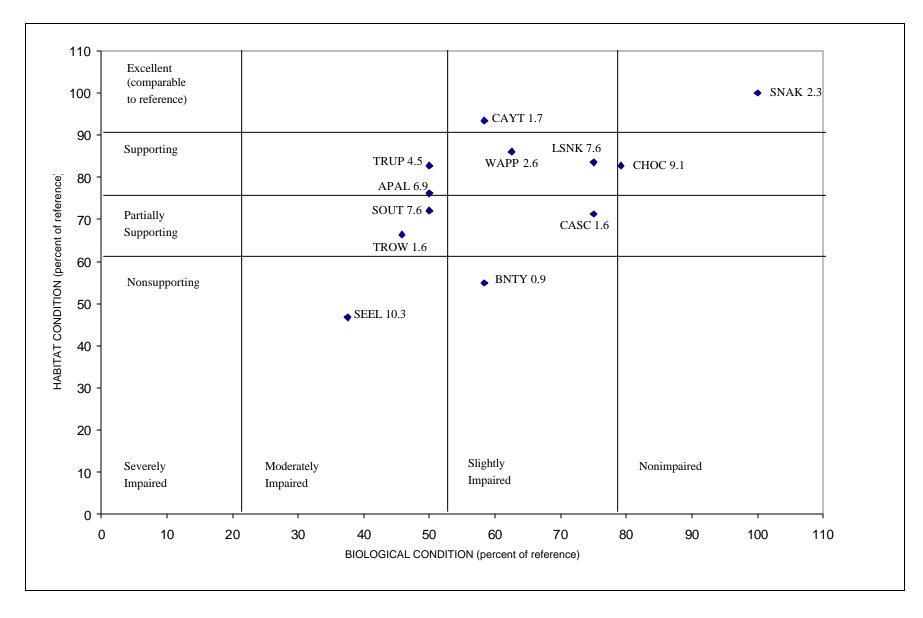



Figure 6. Summary of New York-Pennsylvania Border Streams Habitat and Biological Condition Scores

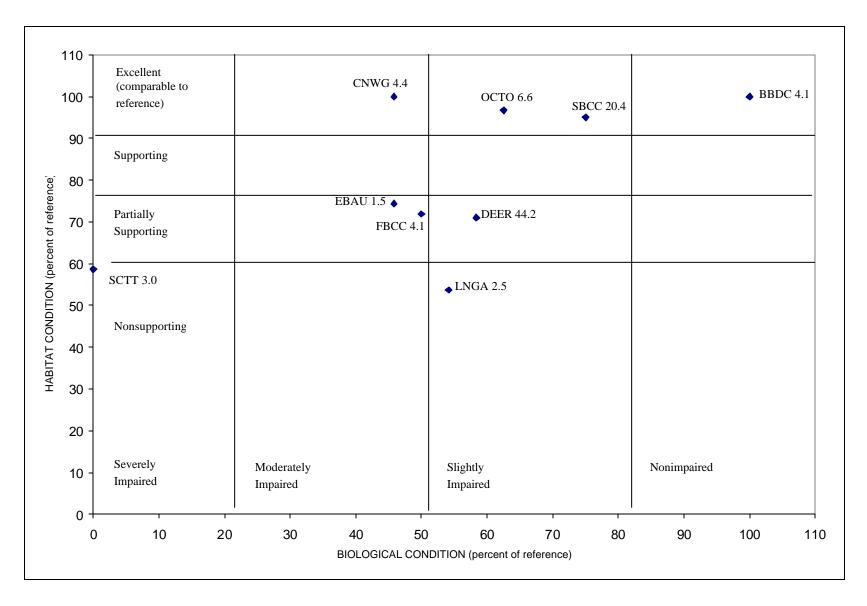



Figure 7. Summary of Pennsylvania-Maryland Border Streams Habitat and Biological Condition Scores

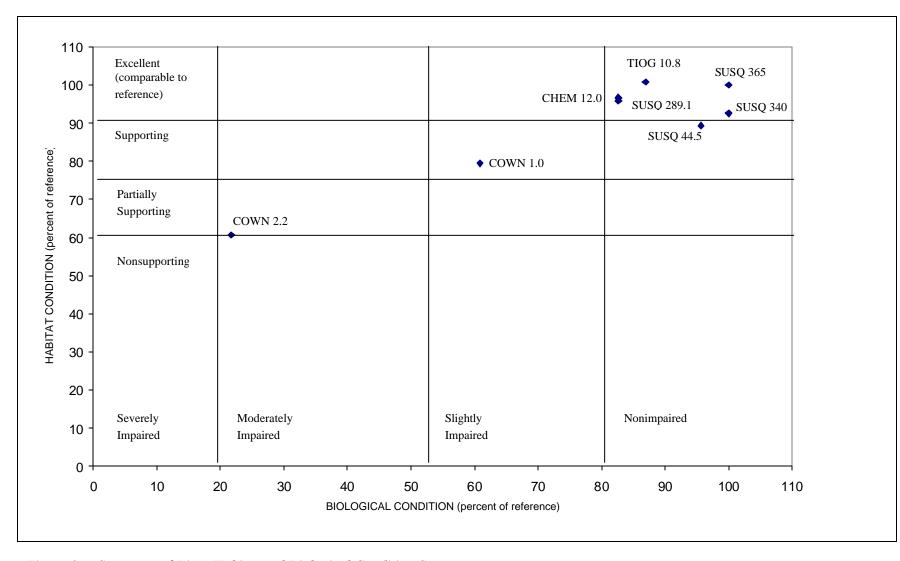



Figure 8. Summary of River Habitat and Biological Condition Scores

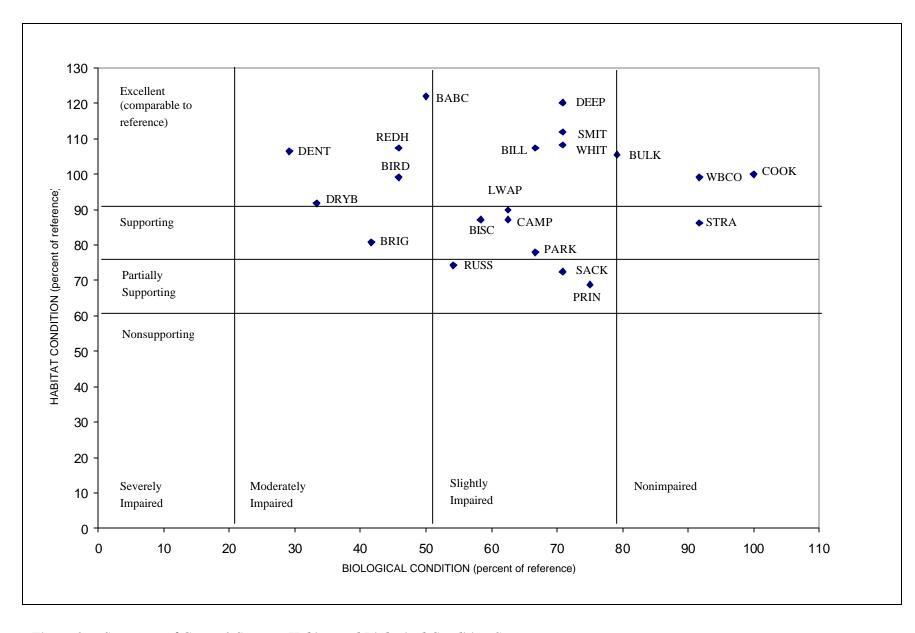



Figure 9. Summary of Group 3 Streams Habitat and Biological Condition Scores

#### Group 3 sites

Group 3 sampling stations consisted of 21 sites on small streams located along the New York-Pennsylvania border. Four of the sites (19 percent) had nonimpaired biological Eleven sites (52.4 percent) were conditions. slightly impaired, and six sites (28.6 percent) were moderately impaired. Eleven (52.4 percent) of the Group 3 sites had excellent habitat scores. Six sites (28.6 percent) had supporting habitat conditions, and the remaining four sites (19 percent) had partially supporting habitats.

#### Trends Analysis

Trend analysis is performed on Group 1 A summary of trend statistics is streams. presented in Table 19. The statistical trends were simplified into trend categories: a highly significant (p<0.05) trend that was increasing (INC) or decreasing (DEC); a significant (p<0.10) trend that was increasing (inc) or decreasing (dec); or no trend (0). The trend categories are presented for both the concentration and the flowadjusted concentrations. In Tables 20 and 21, weighted values were assigned for each station, and an average weighted value was calculated to indicate the strength of an overall trend for each variable. Each category was given a value: -2 for DEC, -1 for dec, 0 for 0, +1 for inc, and +2 for INC. An average value was calculated for each parameter. An analysis of "strong decreasing trend" required an average weighted value of less than -1.50. An analysis of "decreasing trend" required an average value between -1.00 and -1.50. An analysis of no trend was indicated by a value of -1.00 to +1.00.

Detailed results of the Seasonal Kendall Test are presented in Appendix E, Tables E1-E8. The statistics include the probability (P), slope (b), Kendall's Tau median, and percent slope. The median was calculated from the median of the entire quarterly time series. The percent slope was expressed in percent of the median concentration per year and was calculated by dividing the slope by the median and multiplying by 100. The percent slope identifies those stations for which slope is large with respect to the median value.

#### Total suspended solids

Trend analysis results for total suspended solids are presented in Appendix E, Table E1. Concentration values at the stations showed one strongly decreasing trend at Tioga River and one increasing trend at Ebaughs Creek (Table 19). Flow-adjusted concentration analysis indicated one increasing trend at Scott Greek (Table 19). There was no overall trend, indicated by a weighted value of -0.07 for concentrations and 0.07 for flow-adjusted concentrations (Tables 20 and 21, respectively).

#### Total ammonia

Total ammonia trend analysis results are presented in Appendix E. Table E2. Concentration values showed strongly decreasing values at Cayuta Creek, Chemung River, Deer Creek, Ebaughs Creek, Octoraro Creek, Tioga River, and Susquehanna River sites 289.1, 340, and 365 (Table 19). Flow adjusted concentrations indicated strongly decreasing trends at Cayuta Creek, Chemung River, Cowanesque River, Tioga River, and Susquehanna River sites and a decreasing trend at Susquehanna River site 44.5 (Table 19). There was an overall decreasing trend in concentration with a weighted value of -1.20 (Table 20), but a weighted value of -0.87 indicates that there was no overall trend in flow-adjusted concentrations (Table 21). This result may indicate that the apparent trends in NH<sub>3</sub> concentrations may be an artifact of climatic conditions, since no overall trend was detected in FAC.

#### Total nitrogen

The results of trend analysis for total nitrogen are presented in Appendix E, Table E3. Concentration values at the Group 1 stations showed strongly decreasing trends at Tioga River and Susquehanna River sites 289.1, 340, and 365, decreasing trends at Chemung River and Cowanesque River, an increasing trend at Octoraro Creek, and a strongly increasing trend at Conowingo Creek (Table 19). Note that increasing trends for total nitrogen were found only in Pennsylvania-Maryland border sites, which are heavily influenced by agriculture. Flow

|                         | Total | Solids | Total A | mmonia | nmonia Total Nitrogen |     | Total Phosphorus |     | Total Chloride |     |
|-------------------------|-------|--------|---------|--------|-----------------------|-----|------------------|-----|----------------|-----|
| Site                    | CONC  | FAC    | CONC    | FAC    | CONC                  | FAC | CONC             | FAC | CONC           | FAC |
| Cayuta Creek            | 0     | 0      | DEC     | DEC    | 0                     | DEC | DEC              | 0   | 0              | 0   |
| Chemung River           | 0     | 0      | DEC     | DEC    | dec                   | 0   | 0                | 0   | INC            | INC |
| Conowingo Creek         | 0     | 0      | 0       | 0      | INC                   | INC | dec              | dec | INC            | INC |
| Cowanesque River        | 0     | 0      | 0       | DEC    | dec                   | 0   | 0                | 0   | 0              | 0   |
| Deer Creek              | 0     | 0      | DEC     | 0      | 0                     | inc | DEC              | DEC | INC            | INC |
| Ebaughs Creek           | inc   | 0      | DEC     | 0      | 0                     | 0   | DEC              | dec | INC            | INC |
| Octoraro Creek          | 0     | 0      | DEC     | 0      | inc                   | 0   | DEC              | DEC | INC            | INC |
| Scott Creek             | 0     | inc    | 0       | 0      | 0                     | 0   | DEC              | 0   | inc            | INC |
| Susquehanna River 10.0  | 0     | 0      | 0       | 0      | 0                     | dec | DEC              | DEC | 0              | 0   |
| Susquehanna River 44.5  | 0     | 0      | 0       | dec    | 0                     | 0   | dec              | 0   | 0              | 0   |
| Susquehanna River 289.1 | 0     | 0      | DEC     | 0      | DEC                   | DEC | DEC              | DEC | INC            | INC |
| Susquehanna River 340   | 0     | 0      | DEC     | DEC    | DEC                   | DEC | DEC              | DEC | INC            | INC |
| Susquehanna River 365   | 0     | 0      | DEC     | DEC    | DEC                   | 0   | DEC              | dec | INC            | 0   |
| Tioga River             | DEC   | 0      | DEC     | DEC    | DEC                   | dec | 0                | 0   | 0              | 0   |
| Troups Creek            | 0     | 0      | 0       | 0      | 0                     | 0   | dec              | 0   | inc            | 0   |

 Table 19.
 Trend Summary of Selected Parameters for Group 1 Streams, 1986-98

|                         | Total S | Sulfate | Tota | Iron | Total Al | uminum | Total Ma | nganese | WQI  |     |
|-------------------------|---------|---------|------|------|----------|--------|----------|---------|------|-----|
| Site                    | CONC    | FAC     | CONC | FAC  | CONC     | FAC    | CONC     | FAC     | CONC | FAC |
| Cayuta Creek            | DEC     | DEC     | DEC  | 0    | 0        | 0      | DEC      | 0       | dec  | 0   |
| Chemung River           | DEC     | DEC     | DEC  | DEC  | 0        | 0      | dec      | dec     | 0    | 0   |
| Conowingo Creek         | 0       | 0       | DEC  | DEC  | DEC      | DEC    | 0        | 0       | DEC  | DEC |
| Cowanesque River        | DEC     | DEC     | 0    | 0    | 0        | 0      | INC      | 0       | 0    | 0   |
| Deer Creek              | inc     | 0       | DEC  | DEC  | 0        | 0      | dec      | 0       | DEC  | dec |
| Ebaughs Creek           | 0       | 0       | DEC  | DEC  | 0        | 0      | 0        | 0       | 0    | 0   |
| Octoraro Creek          | 0       | 0       | 0    | 0    | 0        | 0      | 0        | 0       | DEC  | 0   |
| Scott Creek             | DEC     | DEC     | dec  | 0    | 0        | 0      | dec      | 0       | DEC  | 0   |
| Susquehanna River 10.0  | DEC     | 0       | DEC  | DEC  | 0        | dec    | DEC      | 0       | DEC  | DEC |
| Susquehanna River 44.5  | 0       | DEC     | DEC  | DEC  | DEC      | 0      | DEC      | DEC     | DEC  | DEC |
| Susquehanna River 289.1 | DEC     | DEC     | DEC  | DEC  | dec      | DEC    | 0        | 0       | dec  | 0   |
| Susquehanna River 340   | 0       | dec     | DEC  | DEC  | 0        | 0      | 0        | 0       | dec  | 0   |
| Susquehanna River 365   | 0       | DEC     | DEC  | DEC  | 0        | DEC    | 0        | 0       | 0    | 0   |
| Tioga River             | DEC     | DEC     | 0    | 0    | 0        | inc    | DEC      | DEC     | 0    | 0   |
| Troups Creek            | DEC     | DEC     | 0    | 0    | 0        | 0      | 0        | 0       | 0    | 0   |

INC

Strong, Significant Increasing Trend; Probability < 5 % Significant Increasing Trend; 5 % < Probability < 10 % No Significant Trend; Probability > 10% inc

0

Significant Decreasing Trend; 5 % < Probability < 10 % dec

Strong, Significant Decreasing Trend; Probability < 5 % DEC

CONC Concentrations

FAC Flow-Adjusted Concentrations

|                     |     | Trend Category Count |    |     |     |       |  |  |  |  |
|---------------------|-----|----------------------|----|-----|-----|-------|--|--|--|--|
| Concentration       | DEC | dec                  | 0  | inc | INC | Total |  |  |  |  |
| Total Solids        | 1   | 0                    | 13 | 1   | 0   | 15    |  |  |  |  |
| Total Ammonia       | 9   | 0                    | 6  | 0   | 0   | 15    |  |  |  |  |
| Total Nitrogen      | 4   | 2                    | 7  | 1   | 1   | 15    |  |  |  |  |
| Total Phosphorus    | 9   | 3                    | 3  | 0   | 0   | 15    |  |  |  |  |
| Total Chlorides     | 0   | 0                    | 5  | 2   | 8   | 15    |  |  |  |  |
| Total Sulfate       | 8   | 0                    | 6  | 1   | 0   | 15    |  |  |  |  |
| Total Iron          | 10  | 1                    | 4  | 0   | 0   | 15    |  |  |  |  |
| Total Aluminum      | 2   | 1                    | 12 | 0   | 0   | 15    |  |  |  |  |
| Total Manganese     | 6   | 3                    | 6  | 0   | 0   | 15    |  |  |  |  |
| Water Quality Index | 6   | 3                    | 6  | 0   | 0   | 15    |  |  |  |  |

#### Table 20. Trend Category Counts and Weighted Values of Concentrations for Group 1 Streams

|                     |     |     | W | eighted Valu | les |     |                   |
|---------------------|-----|-----|---|--------------|-----|-----|-------------------|
| Concentration       | DEC | dec | о | inc          | INC | Sum | Average<br>Value* |
| Total Solids        | -2  | 0   | 0 | 1            | 0   | -1  | -0.07             |
| Total Ammonia       | -18 | 0   | 0 | 0            | 0   | -18 | -1.20             |
| Total Nitrogen      | -8  | -2  | 0 | 1            | 2   | -7  | -0.47             |
| Total Phosphorus    | -18 | -3  | 0 | 0            | 0   | -21 | -1.40             |
| Total Chlorides     | 0   | 0   | 0 | 2            | 16  | 18  | 1.20              |
| Total Sulfate       | -16 | 0   | 0 | 1            | 0   | -15 | -1.00             |
| Total Iron          | -20 | -1  | 0 | 0            | 0   | -21 | -1.40             |
| Total Aluminum      | -4  | -1  | 0 | 0            | 0   | -5  | -0.33             |
| Total Manganese     | -12 | -3  | 0 | 0            | 0   | -15 | -1.00             |
| Water Quality Index | -12 | -3  | 0 | 0            | 0   | -15 | -1.00             |

 $\begin{array}{ll} \text{DEC} &= -2 \text{ each} \\ \text{dec} &= -1 \text{ each} \\ 0 &= 0 \text{ each} \\ \text{inc} &= 1 \text{ each} \end{array}$ 

INC =2 each

\*Average Value

- < 1.50 -1.5 to -1.00 -1.00 to 1.00
- -1.00 to 1.00 No 1.00 to 1.50 Inc
- >1.50

Strong Decreasing Trend Decreasing Trend

- No Trend
- 50 Increasing Trend
- 50 Strong Increasing Trend

| Table 21. | Trend Category Counts and Weighted Values of Flow-Adjusted Concentrations for |
|-----------|-------------------------------------------------------------------------------|
|           | Group 1 Streams                                                               |

|                     | Trend Category Count |     |    |     |     |       |  |  |  |  |
|---------------------|----------------------|-----|----|-----|-----|-------|--|--|--|--|
| Concentration       | DEC                  | dec | 0  | inc | INC | Total |  |  |  |  |
| Total Solids        | 0                    | 0   | 14 | 1   | 0   | 15    |  |  |  |  |
| Total Ammonia       | 6                    | 1   | 8  | 0   | 0   | 15    |  |  |  |  |
| Total Nitrogen      | 3                    | 2   | 8  | 1   | 1   | 15    |  |  |  |  |
| Total Phosphorus    | 5                    | 3   | 7  | 0   | 0   | 15    |  |  |  |  |
| Total Chlorides     | 0                    | 0   | 7  | 0   | 8   | 15    |  |  |  |  |
| Total Sulfate       | 9                    | 1   | 5  | 0   | 0   | 15    |  |  |  |  |
| Total Iron          | 9                    | 0   | 6  | 0   | 0   | 15    |  |  |  |  |
| Total Aluminum      | 3                    | 1   | 10 | 1   | 0   | 15    |  |  |  |  |
| Total Manganese     | 2                    | 1   | 12 | 0   | 0   | 15    |  |  |  |  |
| Water Quality Index | 3                    | 1   | 11 | 0   | 0   | 15    |  |  |  |  |

|                     |     | Weighted Values |   |     |     |     |                   |  |  |  |  |
|---------------------|-----|-----------------|---|-----|-----|-----|-------------------|--|--|--|--|
| Concentration       | DEC | dec             | о | inc | INC | Sum | Average<br>Value* |  |  |  |  |
| Total Solids        | 0   | 0               | 0 | 1   | 0   | 1   | 0.07              |  |  |  |  |
| Total Ammonia       | -12 | -1              | 0 | 0   | 0   | -13 | -0.87             |  |  |  |  |
| Total Nitrogen      | -6  | -2              | 0 | 1   | 2   | -5  | -0.33             |  |  |  |  |
| Total Phosphorus    | -10 | -3              | 0 | 0   | 0   | -13 | -0.87             |  |  |  |  |
| Total Chlorides     | 0   | 0               | 0 | 0   | 16  | 16  | 1.07              |  |  |  |  |
| Total Sulfate       | -18 | -1              | 0 | 0   | 0   | -19 | -1.27             |  |  |  |  |
| Total Iron          | -18 | 0               | 0 | 0   | 0   | -18 | -1.20             |  |  |  |  |
| Total Aluminum      | -6  | -1              | 0 | 1   | 2   | -5  | -0.33             |  |  |  |  |
| Total Manganese     | -4  | -1              | 0 | 0   | 0   | -5  | -0.33             |  |  |  |  |
| Water Quality Index | -6  | -1              | 0 | 0   | 0   | -7  | -0.08             |  |  |  |  |

 $\begin{array}{l} \text{DEC} &= -2 \text{ each} \\ \text{dec} &= -1 \text{ each} \end{array}$ 0 = 0 each inc = 1 each INC = 2 each

- \*Average Value < 1.50
  - -1.5 to -1.00 -1.00 to 1.00
  - 1.00 to 1.50
    - >1.50
- Strong Decreasing Trend Decreasing Trend No Trend Increasing Trend Strong Increasing Trend

adjusted concentrations indicated strongly decreasing trends at Cayuta Creek and Susquehanna River sites 289.1 and 340. Decreasing trends were found at Susquehanna River site 10 and Tioga River. An increasing trend occurred at Deer Creek, while a strongly increasing trend was found at Conowingo Creek (Table 19). Overall, there was no trend in either concentration or flow-adjusted concentrations, with average weighted values of -0.47 and -0.33, respectively (Tables 20 and 21).

#### Total phosphorus

Trend analysis results for total phosphorus are presented Appendix in E. Table E4. Concentration values showed strongly decreasing trends at Susquehanna River sites 10, 289.1, 340, and 365, Cayuta Creek, Deer Creek, Ebaughs Creek, Octoraro Creek, and Scott Creek, and decreasing trends Conowingo at Creek. Susquehanna River 44.5, and Troups Creek (Table 19). Flow-adjusted concentrations showed strongly decreasing trends at Susquehanna River sites 10, 289.1, and 340, Deer Creek. and Octoraro Creek. Decreasing trends were found at Ebaughs Conowingo Creek, Creek, and Susquehanna River site 365 (Table 19). Overall, there was a decreasing trend in phosphorus concentrations (average value = -1.40), but no trend in flow-adjusted concentrations (average value = -0.87) (Tables 20 and 21).

#### Total chloride

The results of trend analysis for total chloride are presented in Appendix E, Table E5. Concentration values showed strongly increasing trends in Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, Octoraro Creek, and Susquehanna River sites 289.1, 340, and 365. Increasing trends also were found in Scott Creek and Troups Creek (Table 19). Flow-adjusted concentrations indicated strongly decreasing trends at Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, Octoraro Creek, Deer Creek, Ebaughs Creek, Octoraro Creek, Scott Creek, and Susquehanna River sites 289.1 and 340 (Table 19). Overall, there was an increasing trend in both concentration and flow-adjusted concentrations, with average weighted values of 1.20 and 1.07, respectively (Tables 20 and 21). This indicates that there is some process other than flow causing the increase in total chloride.

#### Total sulfate

Trend analysis results for total sulfate are presented in Appendix E, Table E6. Concentration values at the stations showed strongly decreasing trends at Cayuta Creek, Chemung River, Cowanesque River, Scott Creek, Susquehanna River sites 10 and 289.1, Tioga River, and Troups Creek, and an increasing trend at Deer Creek (Table 19). Strongly decreasing trends were found at Cayuta Creek, Chemung Cowanesque River. Scott River. Creek. Susquehanna River sites 44.5, 289.1, and 365, Tioga River, and Troups Creek, with a decreasing trend at Susquehanna River 340, indicated by flow-adjusted concentrations (Table 19). There were overall decreasing trends in concentrations and flow-adjusted concentrations, with weighted values of -1.00 and -1.27, respectively (Tables 20 and 21). This indicates that some process other than flow is causing a reduction in sulfate.

#### Total iron

Total iron trend analysis results are found in Appendix E, Table E7. Group 1 concentration values showed strongly decreasing trends at all Susquehanna River sites, Cayuta Creek, Chemung River, Conowingo Creek, Deer Creek, and Ebaughs Creek and a decreasing trend at Scott Creek (Table 19). Flow-adjusted concentrations indicated similar results, with strongly decreasing trends at Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, and all Susquehanna River sites (Table 19). Overall, there were decreasing trends in both concentrations and flow-adjusted concentrations for iron, indicated by values of -1.40 and -1.20, respectively (Tables 20 and 21). This indicates that some process other than flow is causing a reduction in iron.

#### Total aluminum

The results of trend analysis for total aluminum are presented in Appendix E, Table E8. Concentration values at the Group 1 stations showed strongly decreasing trends at Conowingo Creek and Susquehanna River site 44.5 and a decreasing trend at Susquehanna River 289.1 (Table 19). Flow-adjusted concentration values showed strongly decreasing trends at Conowingo Creek, and Susquehanna River sites 289.1 and 365, a decreasing trend at Susquehanna River site 10, and an increasing trend at Tioga River (Table 19). There was no overall trend, indicated by a weighted value of -0.33 for both the concentrations and flow-adjusted concentrations (Tables 20 and 21).

#### Total manganese

Trend analysis results for total manganese are presented in Appendix E, Table E9. Concentration values showed strongly decreasing trends at Cayuta Creek, Susquehanna River sites 10 and 44.5, and Tioga River, decreasing trends at Chemung River, Deer Creek, and Scott Creek, and a strongly increasing trend at Cowanesque River (Table 19). Flow-adjusted concentrations showed strongly decreasing tends at Susquehanna River site 44.5 and Tioga River. A decreasing trend was found at Chemung River (Table 19). Overall, there was a decreasing trend in manganese concentrations (average value = 1.00), but not flow-adjusted concentrations with a value of -0.33 (Tables 20 and 21).

#### Water quality index

Trend analysis results for the water quality index are presented in Appendix E. Table E10. Concentration values at the stations showed strongly decreasing trends at Conowingo Creek, Deer Creek, Octoraro Creek, Scott Creek, and Susquehanna River sites 10 and 44.5. Decreasing trends were found at Cayuta Creek and Susquehanna River sites 289.1 and 340 (Table 19). Flow-adjusted concentrations indicated strongly decreasing trends at Conowingo Creek and Susquehanna River sites 10 and 44.5, and a decreasing trend at Deer Creek (Table 19). There was an overall trend with an average weighted value of -1.00 for concentrations but no trend for flow-adjusted concentrations, with an average weighted value of -0.08 (Tables 20 and 21).

### BIOASSESSMENT OF INTERSTATE STREAMS

Abbreviations for water quality standards are provided in Table 22. Summaries of all stations include WQI scores, parameters that exceeded water quality standards, and parameters that exceeded the 90<sup>th</sup> percentile at each station. RBP III biological and habitat data also are provided, along with graphs depicting historical water quality and biological conditions over the past five years. A white bar indicates fiscal year 2000 WQI scores, and black bars in all WQI graphs indicate previous WQI scores.

#### New York-Pennsylvania Border Streams

#### Apalachin Creek (APAL 6.9)

Apalachin Creek at Little Meadows, Pa., (APAL 6.9) showed a moderately impaired biological community during fiscal year 2000, decreased from a nonimpaired designation the previous year. Impairment conditions may have been due to low flow conditions at the time of sampling. Additionally, very little riffle habitat is present at the site due to still-water conditions, which may affect the biological community.

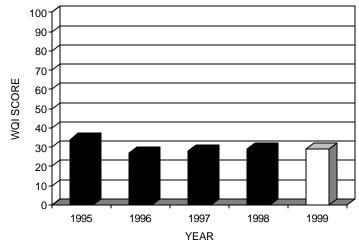
Total iron exceeded water quality standards during July 1999. Dissolved manganese also exceeded the 90<sup>th</sup> percentile, and the water quality index was elevated for a Group 2 stream (Table 23).

#### Bentley Creek (BNTY 0.9)

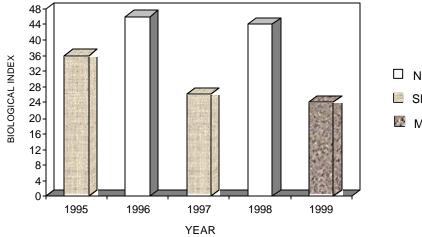
A slightly impaired biological community existed at Bentley Creek at Wellsburg, N.Y. (BNTY 0.9). Biological conditions at BNTY 0.9 have been poor for the past ten years. Impairment may have been due to rechannelization of the stream or to low flow conditions at the time of sampling. The habitat at this site is considered nonsupporting and heavily altered.

During fiscal year 2000, water quality sampling at BNTY 0.9 was increased to quarterly sampling, and the stream was added to the Group 1 stations. Total iron concentrations exceeded New York standards during February and May 2000. Additionally, total ammonia, dissolved oxygen, and total orthophosphates exceeded the 90<sup>th</sup> percentile during the sampling period (Table 24).

| Abbreviation | Parameter                    |
|--------------|------------------------------|
| ALK          | Alkalinity                   |
| COND         | Conductivity                 |
| DAI          | Dissolved Aluminum           |
| TAI          | Total Aluminum               |
| TCa          | Total Calcium                |
| TCl          | Total Chloride               |
| DFe          | Dissolved Iron               |
| TFe          | Total Iron                   |
| TMg          | Total Magnesium              |
| DMn          | Dissolved Manganese          |
| TMn          | Total Manganese              |
| DNH3         | Dissolved Ammonia            |
| TNH3         | Total Ammonia                |
| DNO2         | Dissolved Nitrite            |
| TNO2         | Total Nitrite                |
| DNO3         | Dissolved Nitrate            |
| TNO3         | Total Nitrate                |
| DO           | Dissolved Oxy gen            |
| DP           | Dissolved Phosphorus         |
| TP           | Total Phosphorus             |
| DPO4         | Dissolved Orthophosphate     |
| TPO4         | Total Orthophosphate         |
| DS           | Dissolved Solids             |
| TS           | Total Solids                 |
| TSO4         | Total Sulfate                |
| TOC          | Total Organic Carbon         |
| TURB         | Turbidity                    |
| WQI          | Water Quality Index          |
| RBP          | Rapid Bioassessment Protocol |


Table 22.Abbreviations Used in Tables 21 Through 51

| Table 23. Water Quality Summary Apalachin Creek at Little Meadows, Pa. |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|


| Parameters Exceeding Standards |          |          |           |                                             |  |  |  |
|--------------------------------|----------|----------|-----------|---------------------------------------------|--|--|--|
| Parameter                      | Date     | Value    | Standar d | State                                       |  |  |  |
| TFe                            | 07/20/99 | 596 µg/l | 300 µg/l  | N.Y. health (water source) and aquatic life |  |  |  |

| Date     | WQI |     | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|-----|--------------------------------------------------|--|--|--|--|--|--|
| 07/20/99 | 29  | DMn |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |                     |  |  |  |  |  |
|--------------------------------|---------------------|--|--|--|--|--|
| Number of Taxa                 | 15                  |  |  |  |  |  |
| Diversity Index                | 2.9                 |  |  |  |  |  |
| RBP Score                      | 24                  |  |  |  |  |  |
| RBP Condition                  | Moderately Impaired |  |  |  |  |  |
| Total Habitat Score            | 93                  |  |  |  |  |  |
| Habitat Condition Category     | Supporting          |  |  |  |  |  |

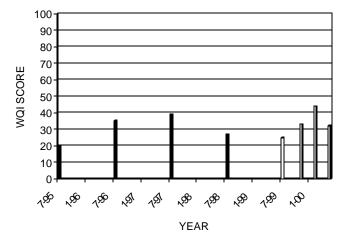


Water Quality Index

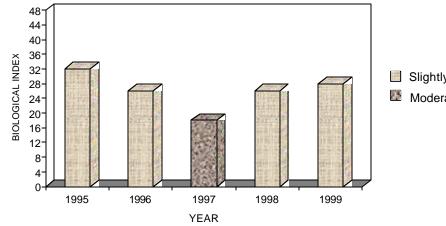




- E Slightly Impaired
- Moderately Impaired


**Biological Index** 

| Table 24. Water Qual | ty Summary Bentley | › Creek at Wellsburg, | <i>N.Y.</i> |
|----------------------|--------------------|-----------------------|-------------|
|----------------------|--------------------|-----------------------|-------------|


|           | Parameters Exceeding Standards      |          |          |                                             |  |  |  |  |  |
|-----------|-------------------------------------|----------|----------|---------------------------------------------|--|--|--|--|--|
| Parameter | Parameter Date Value Standard State |          |          |                                             |  |  |  |  |  |
| TFe       | 02/16/00                            | 374 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |  |  |
| TFe       | 05/10/00                            | 507 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/26/99 | 25  |      |                                                  |  |  |  |  |  |  |
| 11/09/99 | 33  | TNH3 | DFe                                              |  |  |  |  |  |  |
| 02/16/00 | 44  | DO   | TPO4                                             |  |  |  |  |  |  |
| 05/10/00 | 32  |      |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 15                |  |  |  |  |  |
| Diversity Index                | 2.94              |  |  |  |  |  |
| RBP III Score                  | 28                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 67                |  |  |  |  |  |
| Habitat Condition Category     | Nonsupporting     |  |  |  |  |  |



Water Quality Index



Slightly ImpairedModerately Impaired

**Biological Index** 

#### Cascade Creek (CASC 1.6)

During fiscal year 2000, Cascade Creek at Lanesboro, Pa., (CASC 1.6) showed a slightly impaired macroinvertebrate community. This stream also was designated slightly impaired during the 1999 fiscal year.

Cascade Creek was added to the Group 1 streams during the 2000 sampling season to monitor conditions in the stream during the winter months. Water quality standards for total and dissolved iron, pH, and alkalinity were exceeded during the sampling period (Table 25). The marginal macroinvertebrate community may be due to low flow conditions during July 1999, which can cause stress on the biological community, to poor habitat conditions at the site, or to poor water quality during the winter sampling season.

#### Cayuta Creek (CAYT 1.7)

Biological conditions of Cayuta Creek at Waverly, N.Y., (CAYT 1.7) were designated slightly impaired, decreased from nonimpaired conditions the previous year. Total iron and pH exceeded water quality standards during fiscal year 2000 at CAYT 1.7. Water quality analysis also indicated that Cayuta Creek at Waverly contained elevated concentrations of total and dissolved phosphorus, total and dissolved orthophosphates, total and dissolved solids, and total chlorides (Table 26).

Poor water quality conditions may be due to a variety of causes, including wastewater discharges from the Waverly sewage treatment facility, runoff from the city of Waverly, failure of upstream septic systems, or agriculture. More detailed studies would need to be performed in order to determine the cause of impairment.

Cayuta Creek showed several downward trends for total concentrations. WQI showed a significant decreasing trend (0.05 , while strong, significant decreasing trends <math>(p < 0.05) were observed for total ammonia, total phosphorus, total sulfate, total iron, and total manganese (Table 19). When flow-adjusted concentrations were calculated, total ammonia,

total nitrogen, and total sulfate showed strong, significant decreasing trends (Table 19).

#### Choconut Creek (CHOC 9.1)

During fiscal year 1999, the biological community of Choconut Creek at Vestal Center, N.Y., (CHOC 9.1) was designated nonimpaired for the third consecutive year. CHOC 9.1 had several pollution-intolerant taxa, including *Atherix* (Diptera: Athericidae), Isonychia (Ephemeroptera: Isonychiidae), Nigronia (Megaloptera: Corydalidae), **Ophiogomphus** (Odonata: Gomphidae), and *Acroneuria* (Plecoptera: Perlidae).

No parameters exceeded standards during July 1999, and water quality analysis indicated that water quality conditions were comparable to the reference site. No parameters exceeded the 90<sup>th</sup> percentile (Table 27). Impairment during 1996 may have been due to rechannelization, as evidenced by large amounts of riprap at the site.

#### Little Snake Creek (LSNK 7.6)

Little Snake Creek at Brackney, Pa., (LSNK 7.6) showed a slightly impaired biological community again in July 1999, as it had during the previous sampling period. The impairment may be due to low flow conditions at the time of sampling.

During fiscal year 2000, Little Snake Creek was added to the Group 1 streams and sampled quarterly. Total and dissolved iron exceeded water quality standards during July 1999, alkalinity during February 2000, and total iron during May 2000 (Table 28). Additionally, LSNK 7.6 had one of the highest WQI scores among the annually-sampled New York-Pennsylvania streams, with total and dissolved iron exceeding the 90<sup>th</sup> percentile.

#### Seeley Creek (SEEL 10.3)

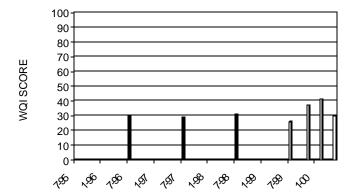
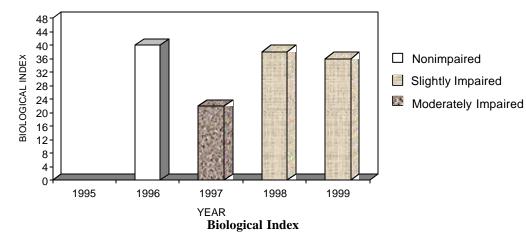

Seeley Creek at Seeley Creek, N.Y., (SEEL 10.3) contained a moderately impaired biological community and had shown a slightly to moderately impaired biological community for the past 10 years. During the 2000 sampling season,

 Table 25.
 Water Quality Summary Cascade Creek at Lanesboro, Pa.

|           |          | Parar    | neters Exceeding Star | ndards                                      |
|-----------|----------|----------|-----------------------|---------------------------------------------|
| Parameter | Date     | Value    | Standard              | State                                       |
| TFe       | 07/10/99 | 460 µg/l | 300 µg/l              | N.Y. health (water source) and aquatic life |
| ALK       | 11/08/99 | 20 mg/l  | 20 mg/l               | Pa. aquatic life                            |
| pН        | 02/15/00 | 5.9      | 6.5-8.5               | N.Y. aquatic life                           |
| pН        | 02/15/00 | 5.9      | 6.0-9.0               | Pa. aquatic life                            |
| ALK       | 02/15/00 | 4 mg/l   | 20 mg/l               | Pa. aquatic life                            |
| TFe       | 02/15/00 | 578 µg/l | 300 µg/l              | N.Y. health (water source) and aquatic life |
| DFe       | 02/15/00 | 437 µg/l | 300 µg/l              | Pa. aquatic life                            |
| ALK       | 05/09/00 | 14 mg/l  | 20 mg/l               | Pa. aquatic life                            |
| TFe       | 05/09/00 | 372 µg/l | 300 µg/l              | N.Y. health (water source) and aquatic life |

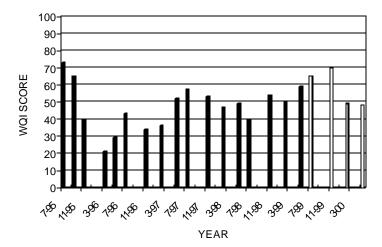

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/19/99 | 26  | DMn  |                                                  |  |  |  |  |  |  |
| 11/08/99 | 37  | TNH3 | DFe                                              |  |  |  |  |  |  |
| 02/15/00 | 41  | DO   | DFe                                              |  |  |  |  |  |  |
| 05/09/00 | 30  | DFe  | TPO4                                             |  |  |  |  |  |  |

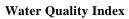
| Biological and Habitat Summary |                      |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|
| Number of Taxa                 | 27                   |  |  |  |  |  |
| Diversity Index                | 3.68                 |  |  |  |  |  |
| RBP III Score                  | 36                   |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired    |  |  |  |  |  |
| Total Habitat Score            | 87                   |  |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |  |

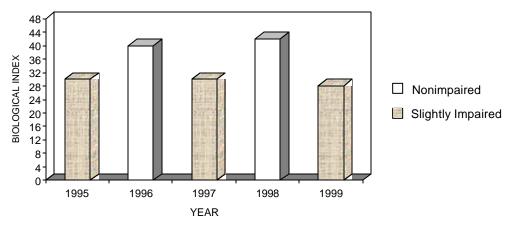


YEAR

Water Quality Index





| Table 26. | Water Quality | Summary Co | ayuta Creek at | Waverly, N.Y. |
|-----------|---------------|------------|----------------|---------------|
|           |               |            |                |               |


|                                     | Parameters Exceeding Standards |          |          |                                             |  |  |  |
|-------------------------------------|--------------------------------|----------|----------|---------------------------------------------|--|--|--|
| Parameter Date Value Standard State |                                |          |          |                                             |  |  |  |
| pН                                  | 11/08/99                       | 8.5      | 6.5-8.5  | N.Y. aquatic life                           |  |  |  |
| TFe                                 | 02/15/00                       | 393 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |
| pH                                  | 05/09/00                       | 8.55     | 6.5-8.5  | N.Y. aquatic life                           |  |  |  |

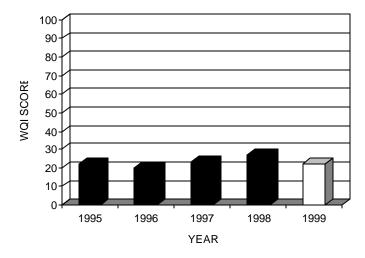
| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |      |    |    |      |
|----------|-----|------|--------------------------------------------------|------|------|------|----|----|------|
| 07/21/99 | 65  | COND | TS                                               | DS   | DNO3 | TNO3 | TP | DP | DPO4 |
|          |     | TCa  | TCl                                              | TSO4 | TPO4 |      |    |    |      |
| 11/08/99 | 70  | COND | TS                                               | DS   | DNO2 | TNO2 | TP | DP | DPO4 |
|          |     | TOC  | TCa                                              | TCl  | TPO4 | TURB |    |    |      |
| 02/15/00 | 49  | DO   | TPO4                                             |      |      |      |    |    |      |
| 05/09/00 | 48  | COND | DPO4                                             | TCa  | TCl  |      |    |    |      |

| Biological and Habitat Summary |                   |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|
| Number of Taxa                 | 16                |  |  |  |  |
| Diversity Index                | 3.25              |  |  |  |  |
| RBP Score                      | 28                |  |  |  |  |
| RBP Condition                  | Slightly Impaired |  |  |  |  |
| Total Habitat Score            | 114               |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |

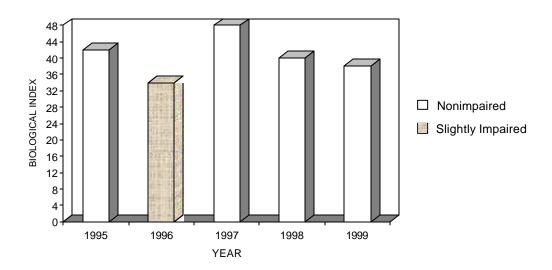







**Biological Index** 

| Table 27. | Water Quality | Summary | Choconut | Creek at | Vestal | Center, N.Y. |
|-----------|---------------|---------|----------|----------|--------|--------------|
|           |               |         |          |          |        |              |


| Parameters Exceeding Standards      |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|--|
| 07/20/99 | 22  |                                                  |  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 18          |  |  |  |  |
| Diversity Index                | 3.61        |  |  |  |  |
| RBP Score                      | 38          |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 101         |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |



Water Quality Index



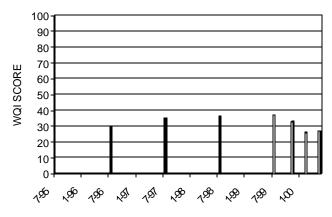
**Biological Index** 

| Parameters Exceeding Standards |          |          |          |                                             |  |  |  |  |
|--------------------------------|----------|----------|----------|---------------------------------------------|--|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                                       |  |  |  |  |
| TFe                            | 07/20/99 | 889 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |  |
| DFe                            | 07/20/99 | 520 µg/l | 300 µg/l | Pa. aquatic life                            |  |  |  |  |
| ALK                            | 02/22/00 | 14 mg/l  | 20 mg/l  | Pa. aquatic life                            |  |  |  |  |

Table 28. Water Quality Summary Little Snake Creek at Brackney, Pa.

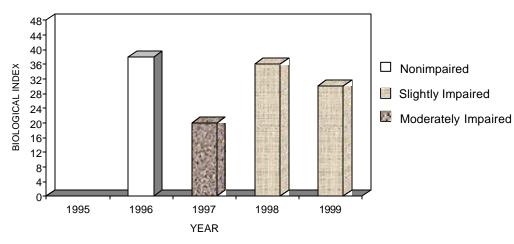
338 µg/l

TFe


05/09/00

| Date     | WQI |     | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |
|----------|-----|-----|--------------------------------------------------|--|--|--|--|--|
| 07/20/99 | 37  | TFe | DFe                                              |  |  |  |  |  |
| 11/08/99 | 33  |     |                                                  |  |  |  |  |  |
| 02/22/00 | 26  | DO  |                                                  |  |  |  |  |  |
| 05/09/00 | 27  | DFe |                                                  |  |  |  |  |  |

300 µg/l


N.Y. health (water source) and aquatic life

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 21                |  |  |  |  |  |
| Diversity Index                | 3.42              |  |  |  |  |  |
| RBP III Score                  | 30                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 105               |  |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |  |



YEAR

Water Quality Index



**Biological Index** 

Seeley Creek was added to the Group 1 streams in the ISWQN. Water quality analysis indicated fair water quality conditions in the stream with no parameters exceeding standards, and only total calcium, dissolved oxygen, and total organic carbon exceeding the  $90^{\text{th}}$  percentile (Table 29). The impaired biological community may have been due to flow-related incidents. During periods of low flow, large amounts of instream substrate were exposed in Seeley Creek. Additionally, rechannelization and removal of the instream habitat may have contributed to impairment at this site, as these activities reduce the habitat quality of the site. Habitat conditions at this site were considered nonsupporting.

New York State Department of Conservation (NYSDEC) listed Seeley Creek as "threatened" in their publication, <u>The 1998 Chemung River Basin</u> <u>Waterbody Inventory and Priority Waterbodies</u> <u>List</u> (NYSDEC, 1998). According to this publication, the stream is threatened by habitat alteration, streambank erosion, and instability of the stream channel. SRBC's findings concur with this statement.

#### Snake Creek (SNAK 2.3)

Snake Creek at Brookdale, Pa., (SNAK 2.3) served as the reference site for New York-Pennsylvania border streams. This site had an excellent biological community and physical habitat, with the lowest WQI score of the Group 2 New York-Pennsylvania streams (Table 30). Snake Creek supported many pollution-intolerant taxa, including *Atherix, Epeorus* (Ephemeroptera: Heptageniidae), *Isonychia*, *Nigronia*, *Leuctra* (Plecoptera: Leuctridae), and *Dolophilodes* (Trichoptera: Philopotamidae).

#### South Creek (SOUT 7.8)

During fiscal year 2000, South Creek at Fassett, Pa., (SOUT 7.8) showed a moderately impaired biological community. During the previous year, a nonimpaired biological community existed at SOUT 7.8. However, for the previous eight years, a slightly to moderately impaired macroinvertebrate population had inhabited this site. Water quality at SOUT 7.8 was fair for a Group 2 New York-Pennsylvania stream, with no parameters exceeding standards or the  $90^{\text{th}}$  percentile (Table 31). Impairment at this site may be due to periodic dying of the streambed or to poor habitat diversity.

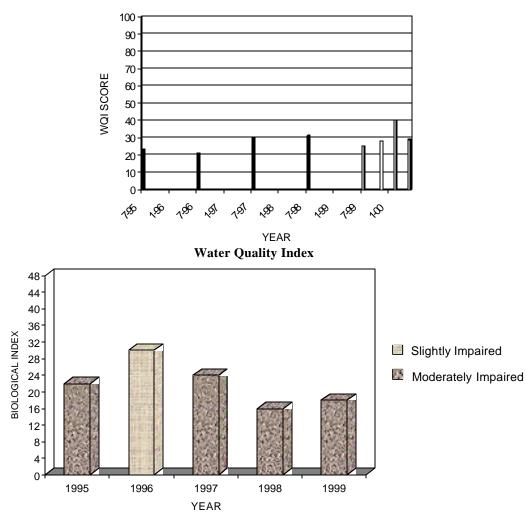
#### Troups Creek (TRUP 4.5)

Troups Creek at Austinburg, Pa., (TRUP 4.5) had a moderately impaired biological community for the second consecutive year during July 1999. This is the third time in five years that Troups Creek has contained a moderately impaired macroinvertebrate population.

Water quality in Troups Creek was somewhat degraded during the sampling period, although better than the previous year. Dissolved oxygen exceeded New York and Pennsylvania standards for aquatic life during May 2000. Additional water quality analysis indicated that dissolved oxygen and total organic carbon exceeded the 90<sup>th</sup> percentile (Table 32).

Troups Creek showed a strong, significant decreasing trend in total sulfate in both concentrations and flow-adjusted concentrations. The stream also showed a significant decreasing trend in total phosphorus and a significant increasing trend in total chloride (Table 19).

#### Trowbridge Creek (TROW 1.8)


Trowbridge Creek at Great Bend, Pa., (TROW 1.8) had a moderately impaired biological community after being designated slightly impaired during fiscal year 1999. Impaired biological conditions at this site may be due to low flow conditions at the time of sampling or to poor habitat conditions. The location of the site also may contribute to the impaired designation of the site. TROW 1.8 is located directly adjacent to a road, which may lead to an influx of pollutants. In the past, chemically treated grass clippings were deposited in the stream, as reported by local residents.

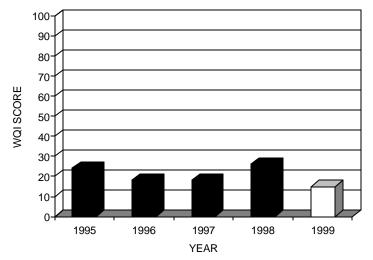
| Table 29. | Water Quality | Summary Seeley | V Creek at Seeley | Creek, N.Y. |
|-----------|---------------|----------------|-------------------|-------------|
|           |               |                |                   |             |

| Parameters Exceeding Standards |                                 |  |  |  |  |  |  |  |
|--------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Parameter                      | neter Date Value Standard State |  |  |  |  |  |  |  |
| None                           |                                 |  |  |  |  |  |  |  |

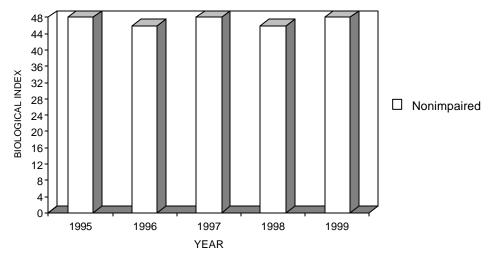
| Date     | WQI |     | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |
|----------|-----|-----|--------------------------------------------------|--|--|--|--|--|
| 07/26/99 | 25  | TCa |                                                  |  |  |  |  |  |
| 11/09/99 | 28  | DO  | TCa                                              |  |  |  |  |  |
| 02/16/00 | 40  | DO  | TOC                                              |  |  |  |  |  |
| 05/10/00 | 29  |     |                                                  |  |  |  |  |  |

| Biological and Habitat Summary |                     |  |  |  |  |  |  |
|--------------------------------|---------------------|--|--|--|--|--|--|
| Number of Taxa                 | 14                  |  |  |  |  |  |  |
| Diversity Index                | 2.38                |  |  |  |  |  |  |
| RBP III Score                  | 18                  |  |  |  |  |  |  |
| RBP III Condition              | Moderately Impaired |  |  |  |  |  |  |
| Total Habitat Score            | 57                  |  |  |  |  |  |  |
| Habitat Condition Category     | Nonsupporting       |  |  |  |  |  |  |




**Biological Index** 

#### Table 30. Water Quality Summary Snake Creek at Brookdale, Pa.


| Parameters Exceeding Standards |                                     |  |  |  |  |  |  |  |
|--------------------------------|-------------------------------------|--|--|--|--|--|--|--|
| Parameter                      | Parameter Date Value Standard State |  |  |  |  |  |  |  |
| None                           |                                     |  |  |  |  |  |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|
| 07/20/99 | 15  |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |           |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|
| Number of Taxa                 | 27        |  |  |  |  |  |
| Diversity Index                | 3.93      |  |  |  |  |  |
| RBP III Score                  | 48        |  |  |  |  |  |
| RBP III Condition              | Reference |  |  |  |  |  |
| Total Habitat Score            | 122       |  |  |  |  |  |
| Habitat Condition Category     | Reference |  |  |  |  |  |



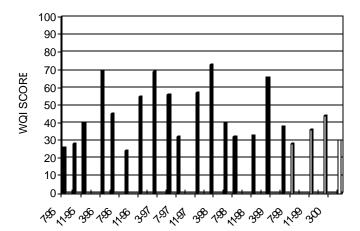
Water Quality Index



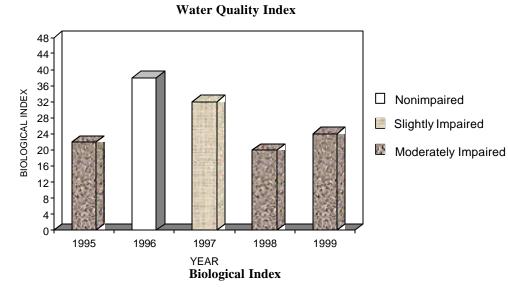
**Biological Index** 

## Table 31. Water Quality Summary South Creek at Fassett, Pa.

| Parameter     Date     Value     Standard     State       None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  |                     | Para               | meters Excee  | eding Stand | lards                      |         |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|---------------------|--------------------|---------------|-------------|----------------------------|---------|---------------------|
| Date       WQI       Parameters Exceeding 90 <sup>m</sup> Percentile         17/26/09       27         Immber of Taka       3.39         Imper of Taka       3.39         Imper of Taka       1.39         Imper of Taka       1.00         Imper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter | Da               | te                  |                    |               |             |                            | Sta     | te                  |
| Divide of Taxa       19         Diversity Index       3.39         RBP III Score       24         RBP III Score       24         Image: state of the state of t                                                                                                                                                                                                         | None      |                  |                     |                    |               |             |                            |         |                     |
| Divide of Taxa       19         Diversity Index       3.39         RBP III Score       24         RBP III Score       24         Image: state of the state of t                                                                                                                                                                                                         |           |                  |                     |                    |               |             |                            |         |                     |
| J7/2699       27         Image: Number of Taxa       19         Diversity Index       3.39         RBP III Condition       Moderately Impaired         Total Habita Score       24         RBP III Condition Category       Partially Supporting         Image: New York of the state of the                                                                                                                                                                                                                                                                               | Date      | WQI              |                     |                    | Parame        | eters Excee | eding 90 <sup>th</sup> Per | centile |                     |
| Image: constrained of the second s                                                             | 07/26/99  |                  |                     |                    |               |             |                            |         |                     |
| Number of Taxa19Diversity Index3.39RBP III Score24RBP III Score24Rational Score<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                     |                    | •             |             |                            |         |                     |
| Number of Taxa19Diversity Index3.39RBP III Score24RBP III Score24Rational Score<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |                     | Bio                | logical and H | abitat Sum  | mary                       |         |                     |
| Diversity Index       3.39         RBP III Score       24         Diversity Index       3.39         RBP III Score       88         Habitat Score       88         Habitat Condition Category       Partially Supporting         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                  | Nur                 |                    | <u></u>       |             | -                          |         |                     |
| RP III Score       24         RDP III Condition       Moderately Impaired         Total Habitat Score       8         Habitat Condition Category       Partially Supporting         Image: condition Category       Image: condition Category         Image: condititititititititititit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                  |                     |                    |               |             |                            |         |                     |
| RP II Condition       Moderately Impaired         habitat Score       88         habitat Score       Partially Supporting         understand       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                  |                     |                    |               |             |                            |         |                     |
| Habitat Condition CategoryPartially SupportingImage: A condition CategoryPartially SupportingImage: A condition CategoryPartially SupportingImage: A condition CategoryImage: A condition Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                  | RB                  | P III Condition    |               | Mode        | erately Impair             | red     |                     |
| Image: constrained of the second of the s                                                             |           |                  |                     |                    |               |             |                            |         |                     |
| Holimatical descent is a serie of the ser                                 |           |                  | Hab                 | vitat Condition Ca | ategory       | Parti       | ally Supportin             | ng      |                     |
| Holimatical descent is a serie of the ser                                 |           |                  |                     |                    |               |             |                            |         |                     |
| Holimatical descent is a serie of the ser                                 |           |                  | 100-                | 1                  |               |             |                            |         |                     |
| understanding of the second se                              |           |                  |                     |                    |               |             |                            |         |                     |
| understanding of the second se                              |           |                  |                     |                    |               |             |                            |         |                     |
| The second secon                              |           |                  |                     | ´                  |               |             |                            |         |                     |
| The second secon                              |           |                  | ло-<br>Ш            | 1                  |               |             |                            |         |                     |
| The second secon                              |           |                  | R 60-               |                    |               |             |                            |         |                     |
| The second secon                              |           |                  | ပို <sub>50</sub> - |                    |               |             |                            |         |                     |
| The second secon                              |           |                  | Ø 40-               |                    |               |             |                            |         |                     |
| Part of the second seco                              |           |                  |                     |                    |               |             |                            |         |                     |
| <sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                     |                    |               |             |                            |         |                     |
| 1995 1996 1997 1998 1999<br>YEAR<br>Water Quality Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                  |                     |                    |               |             |                            |         |                     |
| 1995 1996 1997 1998 1999<br>YEAR<br>Water Quality Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                  | 10-                 |                    |               |             |                            |         |                     |
| FER<br>Water Quality Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                  | 0-                  |                    |               |             |                            |         |                     |
| Water Quality Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                  |                     | 1995 1             |               |             | 998 199                    | 99      |                     |
| 48<br>44<br>40<br>36<br>32<br>28<br>24<br>20<br>16<br>40<br>16<br>10<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                     |                    | YE.           | AR          |                            |         |                     |
| 48<br>44<br>40<br>36<br>32<br>28<br>24<br>20<br>16<br>40<br>16<br>10<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  |                     |                    | Water Qua     | lity Index  | ζ.                         |         |                     |
| Adding and a series of the ser                              |           |                  |                     |                    |               | v           |                            |         |                     |
| Adding and a series of the ser                              |           |                  |                     |                    |               |             |                            |         |                     |
| Adding and a series of the ser                              |           | <u>م</u> ۲       |                     |                    |               |             |                            | _       |                     |
| 40<br>36<br>32<br>28<br>24<br>20<br>16<br>12<br>8<br>4<br>0<br>1995 1996 1997 1998 1999<br>1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                     |                    |               |             |                            |         |                     |
| y 36-<br>32-<br>28-<br>24-<br>20-<br>16-<br>12-<br>8-<br>4-<br>0-<br>1995 1996 1997 1998 1999 □ □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 0000 □ 000 |           |                  |                     |                    |               |             |                            |         |                     |
| 32-<br>28-<br>24-<br>20-<br>16-<br>12-<br>8-<br>4-<br>1995       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                  |                     |                    |               |             |                            |         |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | × <sup>36-</sup> |                     |                    |               |             |                            |         |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | B 32-            |                     |                    |               |             |                            | ΠN      | onimpaired          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | <sup>1</sup> 28- | $\square$           |                    |               |             |                            |         |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | <u>ට</u> 24-     | 1                   |                    |               |             |                            |         |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ğ 20-            |                     | 1                  |               |             | 13.24                      | ₩ N     | loderately Impaired |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | · 16-            | 200 10              | 2.4.1              | T. B. W.      |             | 2.16                       |         |                     |
| 8<br>4<br>-<br>0<br>1995<br>1996<br>1997<br>1998<br>1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | _                | 19 6.1              | 11 61111           | The second    |             | 1 miles                    |         |                     |
| 4<br>0<br>1995 1996 1997 1998 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                  | 0.7 5               | a = 30             |               |             |                            |         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  | 11 4 A              |                    | 4.53.6        |             | 1. S. S. S.                |         |                     |
| 1995 1996 1997 1998 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 4 1              |                     | ┕┯╼┥╴╵╱╼┯          |               |             |                            |         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  | 1995                | 1996               | 1997          | 1998        | 1999                       |         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                  |                     |                    |               |             |                            |         |                     |


**Biological Index** 

| Table 32.  | Water Quality | Summary Tro  | oups Creek at Au                  | stinburg, Pa.                          |
|------------|---------------|--------------|-----------------------------------|----------------------------------------|
| 1 0000 020 | , and guanty  | Summer y 110 | <i>inps ciccic ai</i> 11 <i>i</i> | <i>Strite in S</i> , <u>-</u> <i>w</i> |


|                                     | Parameters Exceeding Standards |           |          |                   |  |  |  |  |  |
|-------------------------------------|--------------------------------|-----------|----------|-------------------|--|--|--|--|--|
| Parameter Date Value Standard State |                                |           |          |                   |  |  |  |  |  |
| DO                                  | 05/10/00                       | 3.83 mg/l | 4.0 mg/l | N.Y. aquatic life |  |  |  |  |  |
| DO                                  | 05/10/00                       | 3.83 mg/l | 4.0 mg/l | Pa. aquatic life  |  |  |  |  |  |

| Date      | WQI |    | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|-----------|-----|----|--------------------------------------------------|--|--|--|--|--|--|
| 07/27/99  | 28  |    |                                                  |  |  |  |  |  |  |
| 11/09/998 | 36  |    |                                                  |  |  |  |  |  |  |
| 02/16/00  | 44  | DO |                                                  |  |  |  |  |  |  |
| 05/10/00  | 30  | DO | TOC                                              |  |  |  |  |  |  |

| Biological and Habitat Summary |                     |  |  |  |  |  |
|--------------------------------|---------------------|--|--|--|--|--|
| Number of Taxa                 | 22                  |  |  |  |  |  |
| Diversity Index                | 3.18                |  |  |  |  |  |
| RBP Score                      | 24                  |  |  |  |  |  |
| RBP Condition                  | Moderately Impaired |  |  |  |  |  |
| Total Habitat Score            | 101                 |  |  |  |  |  |
| Habitat Condition Category     | Supporting          |  |  |  |  |  |



YEAR



62

Along with Snake Creek (SNAK 2.3), TROW 1.8 had the lowest WQI score (15) of any New York-Pennsylvania border stream (Table 33). Dissolved oxygen and alkalinity were somewhat depressed during the sampling period, but did not exceed standards or the 90<sup>th</sup> percentile.

#### Wappasening Creek (WAPP 2.6)

A slightly impaired biological community was present at Wappasening Creek at Nichols, N.Y., (WAPP 2.6) during fiscal year 2000. WAPP 2.6 had a nonimpaired biological community during the previous year. Water quality conditions at this site were comparable to the reference site, with no parameters exceeding standards of the 90<sup>th</sup> percentile (Table 34).

#### Pennsylvania-Maryland Streams

#### Big Branch Deer Creek (BBDC 4.1)

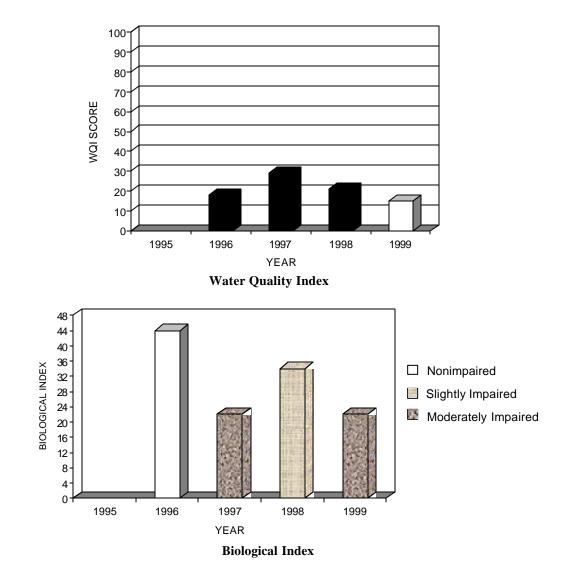
Big Branch Deer Creek at Fawn Grove, Pa., (BBDC 4.1) served as the reference site for the Pennsylvania-Maryland border streams during August 1999. This site had the best combination of biological community and physical habitat of the Pennsylvania - Maryland streams. A large number of organic pollution intolerant taxa inhabited this site, including Antocha (Diptera: Tipulidae), Epeorus, Stenonema (Ephemeroptera: Heptageniidae), Isonychia, Nigronia, Leuctra, Acroneuria, Agnetina (Plecoptera: Perlidae). Eccoptura (Plecoptera: Perlidae), Glossosoma (Trichoptera: Glossosomatidae), Dolophilodes, and *Rhyacophila* (Trichoptera: Rhyacophilidae). Overall water quality was good in Big Branch Deer Creek, with no parameters exceeding standards or the 90<sup>th</sup> percentile (Table 35).

#### Conowingo Creek (CNWG 4.4)

Conowingo Creek at Pleasant Grove, Pa., (CNWG 4.4) had a moderately impaired community after having slightly impaired biological conditions for the three previous years. Habitat at this site was considered excellent. Although no parameters exceeded state standards, nitrate concentrations were elevated, as they are at many sites in this region. Additional water quality analysis indicated that solids, aluminum, nitrates, and magnesium were elevated and dissolved oxygen was reduced (Table 36). As agriculture is the area's prevalent land use, it appears that the stream was enriched by agricultural runoff.

Conowingo Creek had a variety of upward and downward trends. Strong significant increasing trends occurred for total nitrogen and total chloride in both concentrations and flowadjusted concentrations. Strong, significant decreasing trends were found for total ron, total aluminum, and WQI for both concentrations and flow-adjusted concentrations and significant decreasing trends occurred for both concentrations and flow-adjusted concentrations of total phosphorus (Table 19).

#### Deer Creek (DEER 44.2)


Deer Creek at Gorsuch Mills. Md. (DEER 44.2) had a slightly impaired macroinvertebrate community for the second consecutive year, after having a nonimpaired community for two years. Habitat conditions at the site were considered partially supporting, and sampling site is located adjacent to the agricultural activities, which may affect the biological community at DEER 44.2. Deer Creek had the lowest average WQI score (25.3) and the lowest individual WQI score (21) of Group 1 streams in this region. Water quality at this site was good (Table 37), although nitrate levels were somewhat elevated, as they were in most streams in this area. Dissolved oxygen also exceeded the 90<sup>th</sup> percentile during March 2000. Deer Creek harbored a diverse macroinvertebrate community, including pollution-intolerant taxa such as (Ephemeroptera: Atherix. Serratella Ephemerellidae), Isonychia, Nigronia, Leuctra, and Acroneuria.

# Table 33. Water Quality Summary Trowbridge Creek at Great Bend, Pa.

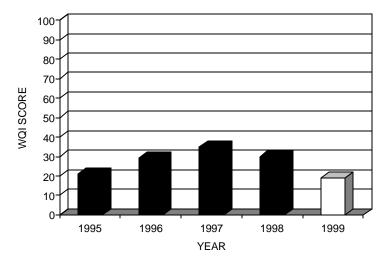
| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|--|
| 07/19/99 | 15  |                                                  |  |  |  |  |  |  |  |

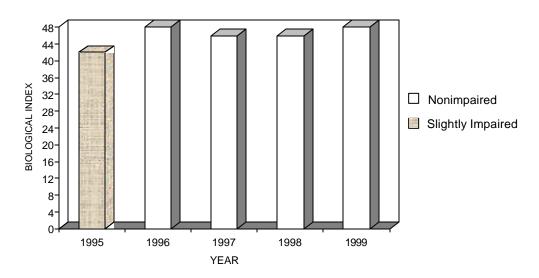
| Biological and Habitat Summary |                      |  |  |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|--|--|
| Number of Taxa                 | 18                   |  |  |  |  |  |  |  |
| Diversity Index                | 3.05                 |  |  |  |  |  |  |  |
| RBP III Score                  | 22                   |  |  |  |  |  |  |  |
| RBP III Condition              | Moderately Impaired  |  |  |  |  |  |  |  |
| Total Habitat Score            | 81                   |  |  |  |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |  |  |  |



| Table 34. Water Quality Summary Wappasening Creek at Nichols, N. | Table 34. | Water Quality | Summary | <i>Wappasening</i> | Creek at Nichols, N.Y |
|------------------------------------------------------------------|-----------|---------------|---------|--------------------|-----------------------|
|------------------------------------------------------------------|-----------|---------------|---------|--------------------|-----------------------|


|                  |     |                                       | Param                  | neters Exce | eding Star  | ndards                    |          |                |
|------------------|-----|---------------------------------------|------------------------|-------------|-------------|---------------------------|----------|----------------|
| Parameter        |     | Date                                  | Value                  |             | andard      |                           |          | State          |
| None             |     |                                       |                        |             |             |                           |          |                |
|                  |     |                                       |                        |             |             |                           |          |                |
| Date             | WQI |                                       |                        | Param       | neters Exce | eding 90 <sup>th</sup> Pe | rcentile |                |
| 07/21/99         | 19  |                                       |                        |             |             |                           |          |                |
|                  |     |                                       |                        |             |             |                           |          |                |
|                  |     |                                       |                        | gical and I | Habitat Su  |                           |          |                |
|                  |     |                                       | mber of Taxa           |             |             | 19                        |          |                |
|                  |     |                                       | versity Index          |             |             | 3.52                      |          |                |
|                  |     |                                       | P Score<br>P Condition |             | C1          | 36<br>ightly Impaire      | d        |                |
|                  |     |                                       | tal Habitat Score      |             | 5           | 102                       | eu       |                |
|                  |     |                                       | bitat Condition Cat    | egory       |             | Supporting                |          |                |
|                  |     |                                       |                        |             |             | Supporting                |          |                |
|                  |     | 40                                    | <u>م</u>               |             |             |                           |          | 1              |
|                  |     | 10                                    |                        |             |             |                           |          |                |
|                  |     | 9                                     | 0                      |             |             |                           |          |                |
|                  |     | 8                                     | 0-                     |             |             |                           |          |                |
|                  |     | 7                                     | o-                     |             |             |                           |          |                |
|                  |     |                                       | o-                     |             |             |                           |          |                |
|                  |     | ō š                                   |                        |             |             |                           |          |                |
|                  |     | 5 م<br>ا                              | 0                      |             |             |                           |          |                |
|                  |     | MQI SCORE                             | 0                      |             |             |                           |          |                |
|                  |     | 3                                     | 0                      |             |             |                           |          |                |
|                  |     | 2                                     | 0                      |             |             |                           |          |                |
|                  |     |                                       | o                      |             |             |                           |          |                |
|                  |     |                                       |                        |             |             |                           |          | ļ              |
|                  |     |                                       | 1995                   | 1996        | 1997        | 1998                      | 1999     |                |
|                  |     |                                       | 1000                   | 1000        | YEAR        | 1000                      | 1000     |                |
|                  |     |                                       |                        |             |             |                           |          |                |
|                  |     |                                       | ,                      | Water Qu    | ality Inde  | ex                        |          |                |
|                  | _   |                                       |                        |             |             |                           |          |                |
|                  | 48  |                                       |                        |             |             |                           |          |                |
|                  | 44- |                                       |                        |             |             |                           |          |                |
|                  | 40- |                                       |                        |             |             |                           |          |                |
| ×                | 36- |                                       |                        | 100         |             |                           |          |                |
| BIOLOGICAL INDEX | 32- |                                       |                        | 11.1        |             |                           |          | nimpoirod      |
| 4                | 28- |                                       |                        | - E         |             |                           |          | onimpaired     |
|                  | 24- | · · · · · · · · · · · · · · · · · · · |                        |             |             |                           | 📃 Sli    | ghtly Impaired |
| Č                | 20- |                                       |                        |             |             |                           |          |                |
|                  |     | 2000                                  |                        | 112         |             | 245.7                     |          |                |
|                  | 12- | 10 40121                              |                        | al tak      |             | 1 With Table              |          |                |
|                  | 8-  |                                       |                        |             |             |                           |          |                |
|                  | 4-  |                                       |                        |             |             |                           | ]        |                |
|                  | 0   | 1005                                  | 1996 1                 | 997         | 1998        | 1999                      |          |                |
|                  |     | 1995                                  |                        |             | 1990        | 1999                      |          |                |
|                  |     |                                       | Y                      | EAR         | ol Inda     |                           |          |                |
|                  |     |                                       |                        | BIOLOGIC    | al Index    |                           |          |                |
|                  |     |                                       |                        |             |             |                           |          |                |

|  | Table 35. | Water Quality Summary | Big Branch Deer | Creek at Fawn Grove, Pa. |
|--|-----------|-----------------------|-----------------|--------------------------|
|--|-----------|-----------------------|-----------------|--------------------------|


| Parameters Exceeding Standards      |      |   |   |   |  |  |  |  |  |  |
|-------------------------------------|------|---|---|---|--|--|--|--|--|--|
| Parameter Date Value Standard State |      |   |   |   |  |  |  |  |  |  |
| None                                | None |   |   |   |  |  |  |  |  |  |
|                                     | 1    | 1 | 1 | 1 |  |  |  |  |  |  |

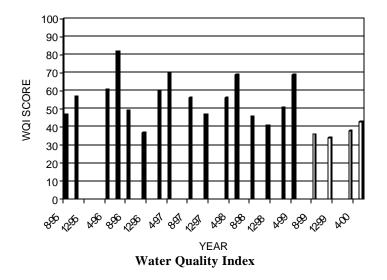
| Date     | WQI |  | Param | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|-----|--|-------|--------------------------------------------------|--|--|--|--|--|--|--|
| 08/03/99 | 19  |  |       |                                                  |  |  |  |  |  |  |  |

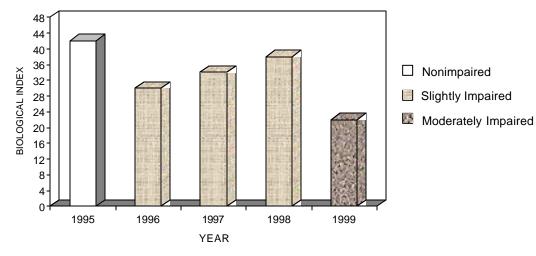
| Biological and Habitat Summary |           |  |  |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|--|--|
| Number of Taxa                 | 25        |  |  |  |  |  |  |  |
| Diversity Index                | 3.86      |  |  |  |  |  |  |  |
| RBP Score                      | 48        |  |  |  |  |  |  |  |
| RBP Condition                  | Reference |  |  |  |  |  |  |  |
| Total Habitat Score            | 121       |  |  |  |  |  |  |  |
| Habitat Condition Category     | Reference |  |  |  |  |  |  |  |



Water Quality Index




**Biological Index** 


| Table 36. | Water Quality | Summarv | Conowingo | Creek at | Pleasant | Grove. Pa. |
|-----------|---------------|---------|-----------|----------|----------|------------|
|           |               |         |           |          |          |            |

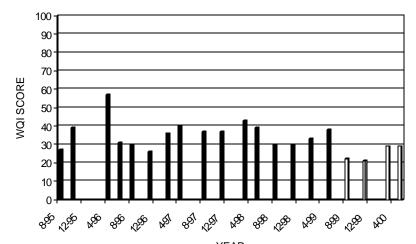
| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |      |     |  |  |  |  |
|----------|-----|------|--------------------------------------------------|------|------|------|-----|--|--|--|--|
| 08/04/99 | 36  | TNO3 | TAL                                              |      |      |      |     |  |  |  |  |
| 11/12/99 | 34  | DNO3 | TNO3                                             |      |      |      |     |  |  |  |  |
| 03/08/00 | 38  | DO   | DNO3                                             | TNO3 |      |      |     |  |  |  |  |
| 05/03/00 | 43  | DO   | TS                                               | DS   | DNO3 | TNO3 | TMg |  |  |  |  |

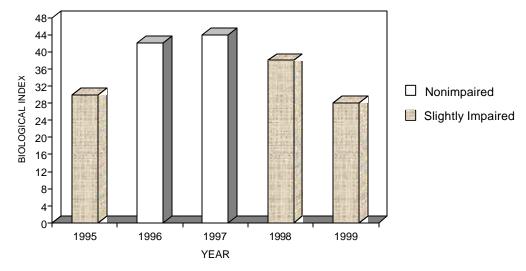
| Biological and Habitat Summary |                     |  |  |  |  |
|--------------------------------|---------------------|--|--|--|--|
| Number of Taxa                 | 16                  |  |  |  |  |
| Diversity Index                | 3.19                |  |  |  |  |
| RBP III Score                  | 22                  |  |  |  |  |
| RBP III Condition              | Moderately Impaired |  |  |  |  |
| Total Habitat Score            | 121                 |  |  |  |  |
| Habitat Condition Category     | Excellent           |  |  |  |  |






**Biological Index** 

| Table 37. | Water Ouality Su | ımmary Deer Creek a | t Gorsuch Mills, Md. |
|-----------|------------------|---------------------|----------------------|
|           |                  |                     |                      |


| Parameters Exceeding Standards |      |       |          |       |  |  |
|--------------------------------|------|-------|----------|-------|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |
| None                           |      |       |          |       |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|
| 08/03/99 | 22  |                                                  |  |  |  |  |  |  |
| 11/11/99 | 21  |                                                  |  |  |  |  |  |  |
| 03/08/00 | 29  | DO                                               |  |  |  |  |  |  |
| 05/02/00 | 29  |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |                      |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|
| Number of Taxa 21              |                      |  |  |  |  |
| Diversity Index                | 3.8                  |  |  |  |  |
| RBP Score                      | 28                   |  |  |  |  |
| RBP Condition                  | Slightly Impaired    |  |  |  |  |
| Total Habitat Score            | 86                   |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |



YEAR Water Quality Index



**Biological Index** 

Deer Creek showed a mixture of increasing and decreasing trends of the period 1986 through 2000. Strong, significant upward trends were found for total chloride concentrations and flowadjusted concentrations. Significant increasing trends also occurred in total nitrogen flowadjusted concentrations of total nitrogen and total sulfate concentrations. Strong, significant decreasing trends occurred in both total phosphorus and total iron concentrations and flow-adjusted concentrations and total ammonia concentrations. Significant decreasing trends also were found in total manganese concentrations and flow-adjusted WQI (Table 19).

#### Ebaughs Creek (EBAU 1.5)

For the eleventh year, Ebaughs Creek at Stewartstown, Pa., (EBAU 1.5) had a slightly to moderately impaired biological community. Physical habitat at this site was considered partially supporting during the 2000 fiscal year, and the biological community was designated moderately impaired.

Although no parameters exceeded water quality standards, Ebaughs Creek had elevated concentrations of total and dissolved nitrates, total and dissolved ammonia, dissolved phosphorus, and dissolved orthophosphates (Table 38). The relatively high WQI, low RBP III scores, and the chemical analysis suggested that wastewater discharges might have affected the water quality and the biological community at this site.

Ebaughs Creek had a mixture of upward and downward water quality trends. Strong. significant increasing trends occurred in both total chloride concentrations and flow-adjusted concentrations. A significant increasing trend occurred in total solids concentrations. Strong significant decreasing trends were found for total iron concentrations and FAC and in both total ammonia and total phosphorus concentrations. A flow-adjusted total phosphorus (Table 19).

# Falling Branch Deer Creek (FBDC 4.1)

The biological community of Falling Branch Deer Creek at Fawn Grove, Pa., (FBDC 4.1) was designated moderately impaired, a decrease from slightly impaired the previous year. The impairment may have been due to poor habitat, low flow conditions, runoff from cropland adjacent to the site, and the large amount of agricultural activity in the small watershed.

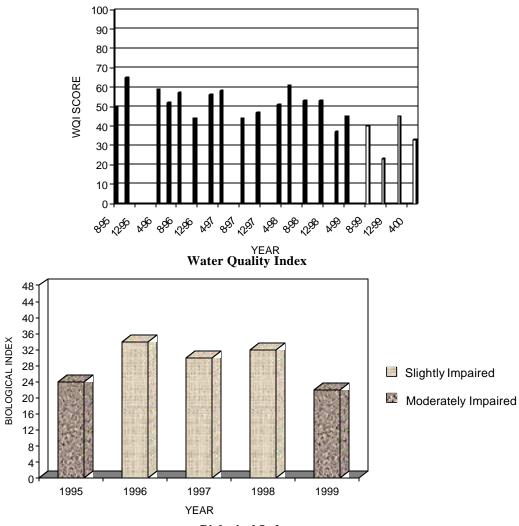
Overall, water quality appeared to be good, with no parameters exceeding standards or the  $90^{th}$  percentile (Table 39).

# Long Arm Creek (LNGA 2.5)

For the fifth consecutive year, Long Arm Creek at Bandanna, Pa., (LNGA 2.5) had a slightly impaired biological community. LNGA 2.5 was located adjacent to agricultural activities, which may have been the source of impairment at this site. Livestock in the stream reduced the habitat quality in Long Arm Creek, which may have affected the biological community. However, the situation is expected to improve as an organic farm, with fewer livestock and reduced access to the stream, has replaced the previous operation.

During the 2000 sampling season, Long Arm Creek was elevated to a Group 1 stream. LNGA2.5 showed elevated nitrogen values, as did most of the streams in this region. Overall, the water quality in this stream was fair for a Pennsylvania-Maryland Group 1 stream (Table 40). Although no water quality standards were exceeded, total aluminum, dissolved oxygen, dissolved phosphorus, dissolved orthophosphate, and turbidity exceeded the 90<sup>th</sup> percentile at this site.

# Octoraro Creek (OCTO 6.6)


Octoraro Creek at Rising Sun, Md., (OCTO 6.6) had a slightly impaired biological community during the 1999 sampling season. The habitat at this site was excellent. No parameters exceeded water quality standards, and WQI scores were good for Group 1 streams in this region, although dissolved oxygen was reduced and solids were elevated (Table 41). OCTO 6.6 also showed elevated nitrate values. The slightly impaired biological community may have been due to

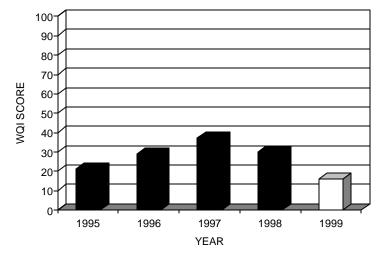
# Table 38. Water Quality Summary Ebaughs Creek at Stewartstown, Pa.

| Parameters Exceeding Standards |                           |  |  |  |  |  |
|--------------------------------|---------------------------|--|--|--|--|--|
| Parameter                      | Date Value Standard State |  |  |  |  |  |
| None                           |                           |  |  |  |  |  |

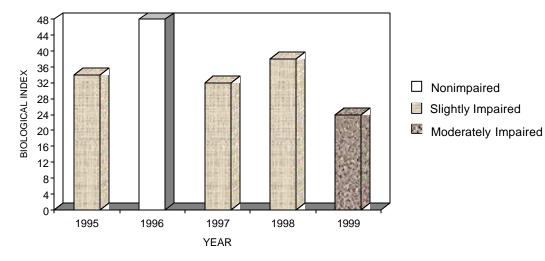
| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |      |    |      |  |  |  |
|----------|-----|--------------------------------------------------|------|----|------|--|--|--|
| 08/03/99 | 40  | DNO3                                             | TNO3 | DP | DPO4 |  |  |  |
| 11/11/99 | 23  |                                                  |      |    |      |  |  |  |
| 02/08/00 | 45  | DNH3                                             | TNH3 |    |      |  |  |  |
| 05/02/00 | 33  |                                                  |      |    |      |  |  |  |

| Biological and Habitat Summary |                      |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|
| Number of Taxa                 | 18                   |  |  |  |  |
| Diversity Index                | 2.65                 |  |  |  |  |
| RBP Score                      | 22                   |  |  |  |  |
| RBP Condition                  | Moderately Impaired  |  |  |  |  |
| Total Habitat Score            | 90                   |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |




**Biological Index** 

| Table 39. | Water Quality Summary | Falling Branch Deer | Creek at Fawn Grove, Pa. |
|-----------|-----------------------|---------------------|--------------------------|
|           |                       |                     |                          |


| Parameters Exceeding Standards |                           |  |  |  |  |  |
|--------------------------------|---------------------------|--|--|--|--|--|
| Parameter                      | Date Value Standard State |  |  |  |  |  |
| None                           |                           |  |  |  |  |  |

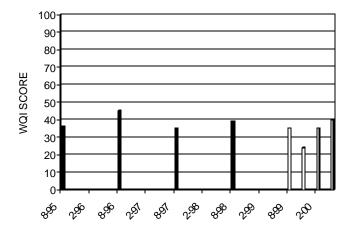
| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|--|
| 08/03/99 | 16  |                                                  |  |  |  |  |  |  |  |

| Biological and Habitat Summary |                      |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|
| Number of Taxa                 | 22                   |  |  |  |  |
| Diversity Index                | 3.39                 |  |  |  |  |
| RBP Score                      | 24                   |  |  |  |  |
| RBP Condition                  | Moderately Impaired  |  |  |  |  |
| Total Habitat Score            | 87                   |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |



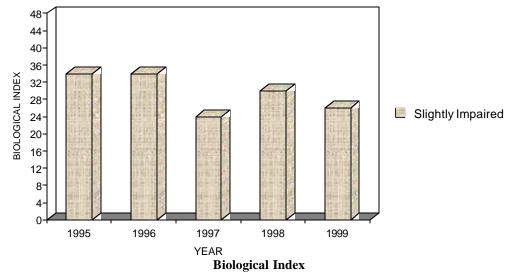
Water Quality Index




**Biological Index** 

| Table 40. Water Qual | ty Summary | Long Arm | Creek at | Bandanna, I | Pa. |
|----------------------|------------|----------|----------|-------------|-----|
|----------------------|------------|----------|----------|-------------|-----|

| Parameters Exceeding Standards |      |       |          |       |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |
| None                           |      |       |          |       |  |  |  |

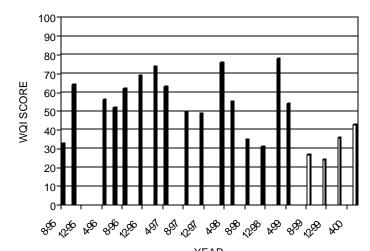

| Date     | WQI | Parameters Exceeding 90 <sup>™</sup> Percentile |      |  |  |  |  |  |
|----------|-----|-------------------------------------------------|------|--|--|--|--|--|
| 08/02/99 | 35  | TAL                                             |      |  |  |  |  |  |
| 11/11/99 | 24  |                                                 |      |  |  |  |  |  |
| 02/08/00 | 35  | DP                                              | DPO4 |  |  |  |  |  |
| 05/02/00 | 40  | DO                                              | TURB |  |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 19                |  |  |  |  |  |
| Diversity Index                | 3.53              |  |  |  |  |  |
| RBP III Score                  | 26                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 65                |  |  |  |  |  |
| Habitat Condition Category     | Nonsupporting     |  |  |  |  |  |

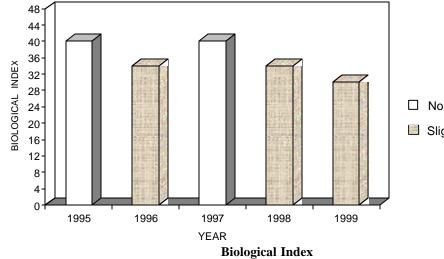


YEAR

Water Quality Index




| Table 41. Wate | r Quality Summar | y Octoraro Creek a | t Rising Sun, Md. |
|----------------|------------------|--------------------|-------------------|
|----------------|------------------|--------------------|-------------------|


| Parameters Exceeding Standards |      |       |          |       |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |
| None                           |      |       |          |       |  |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |    |    |  |  |  |  |
|----------|-----|--------------------------------------------------|----|----|--|--|--|--|
| 08/04/99 | 27  |                                                  |    |    |  |  |  |  |
| 11/12/99 | 24  |                                                  |    |    |  |  |  |  |
| 02/09/00 | 36  |                                                  |    |    |  |  |  |  |
| 05/03/00 | 43  | DO                                               | TS | DS |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 19                |  |  |  |  |  |
| Diversity Index                | 3.62              |  |  |  |  |  |
| RBP III Score                  | 30                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 117               |  |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |  |



YEAR Water Quality Index



□ Nonimpaired

E Slightly Impaired

agricultural activities in the watershed or to the impoundment at Octoraro Lake.

Several increasing and decreasing trends were found at OCTO 6.6. Strong, significant increasing trends occurred for total chloride concentrations and flow-adjusted concentrations. A significant increasing trend also was found for total nitrogen concentrations. Strong, significant decreasing trends were found in total ammonia concentrations and WQI and in both the total phosphorus concentrations and flow-adjusted concentrations (Table 19).

#### Scott Creek (SCTT 3.0)

For the eleventh consecutive year, Scott Creek at Delta, Pa., (SCTT 3.0) had a moderately to severely impaired biological community. During fiscal year 2000, Scott Creek had a severely impaired macroinvertebrate community, with the lowest taxonomic richness (4), lowest diversity index (0.90), highest Hilsenhoff Biotic Index (7.31), lowest EPT index (0), and the highest percent dominant taxa (83 percent) of all streams in the region. Habitat at this site was also nonsupporting.

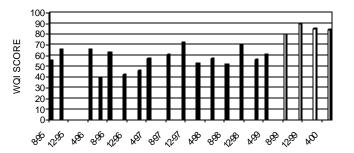
In January 1998, a fuel spill occurred on Scott Creek in Cardiff, Md. Four to five thousand gallons of home heating fuel spilled into Scott Creek when an attempt was made to steal the fuel. The spill also resulted in a fish kill. Although, the fuel spill probably adversely affected the aquatic inhabitants of the stream, Scott Creek has been impaired for many years.

Dissolved oxygen, total iron, dissolved iron, and total manganese exceeded Pennsylvania state standards during August 1999. Dissolved oxygen, pH, total iron, dissolved iron, and total manganese exceeding standards during November 1999. Total and dissolved iron exceeded standards during February 2000, and dissolved iron exceeded standards during the May 2000 sampling period. Additional water quality analysis indicated that Scott Creek had elevated ammonia, magnesium, chloride, phosphorus, orthophosphates, nitrites, iron, manganese, total organic carbon, and solids, and reduced dissolved oxygen (Table 42). This site also had the highest average WQI score (84.5) and highest individual WQI (89) of the streams in this region. Although a treatment plant has been constructed to serve the area and reduce the impacts of sewage on the stream, raw sewage from the Cardiff-Delta area may continue to degrade water quality and the biological community of Scott Creek. SCTT 3.0 is located upstream of the wastewater treatment plant for Cardiff and Delta.

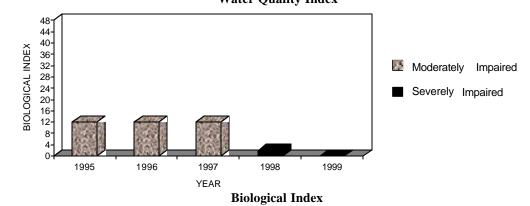
Scott Creek had a mixture of increasing and decreasing trends during fiscal year 1999. Using concentration values, total chloride showed a increasing while significant trend, total phosphorus, total sulfate, and WQI showed strong, significant decreasing trends. Total iron and total manganese showed a significant decreasing trend (Table 19). When concentrations were flow-adjusted, total chloride showed a significant increasing trend, total solids showed a significant increasing trend, and total sulfate showed a strong, significant decreasing trend (Table 19).

#### South Branch Conewago Creek (SBCC 20.4)

South Branch Conewago Creek near Bandanna, Pa., (SBCC 20.4) contained a slightly impaired biological community for the third consecutive year, after having served as the Pennsylvania-Maryland reference site for several years. However, several pollution-intolerant taxa inhabited SBCC 20.4, including *Nigronia*, *Leuctra*, *Peltoperla* (Plecoptera: Peltoperlidae), *Acroneuria*, and *Dolophilodes*.


SBCC 20.4 had a low WQI score, and no parameters exceeded standards or the 90<sup>th</sup> percentile at South Branch Conewago Creek (Table 43). Low flow conditions at the time of sampling may have affected the biological community and produced a slightly impaired designation.

|           | Parameters Exceeding Standards |             |            |                  |  |  |  |  |  |  |
|-----------|--------------------------------|-------------|------------|------------------|--|--|--|--|--|--|
| Parameter | Date                           | Value       | Standard   | State            |  |  |  |  |  |  |
| DO        | 08/04/99                       | 2.88 mg/l   | 4.0 mg/l   | Pa. aquatic life |  |  |  |  |  |  |
| TFe       | 08/04/99                       | 14,200 µg/l | 1,500 µg/l | Pa. aquatic life |  |  |  |  |  |  |
| DFe       | 08/04/99                       | 5,900 μg/l  | 300 µg/l   | Pa. aquatic life |  |  |  |  |  |  |
| TMn       | 08/04/99                       | 2,290 µg/l  | 1,000 µg/l | Pa. water supply |  |  |  |  |  |  |
| pН        | 11/11/99                       | 6.25        | 6.5 - 8.5  | Md. aquatic life |  |  |  |  |  |  |
| DO        | 11/11/99                       | 3.36 mg/l   | 4.9 mg/l   | Pa. aquatic life |  |  |  |  |  |  |
| TFe       | 11/11/99                       | 18,200 µg/l | 1,500 µg/l | Pa. aquatic life |  |  |  |  |  |  |
| DFe       | 11/11/99                       | 16,500 µg/l | 300 µg/l   | Pa. aquatic life |  |  |  |  |  |  |
| TMn       | 11/11/99                       | 1,930 µg/l  | 1,000 µg/l | Pa. water supply |  |  |  |  |  |  |
| TFe       | 02/08/00                       | 1,830 µg/l  | 1,500 µg/l | Pa. aquatic life |  |  |  |  |  |  |
| DFe       | 02/08/00                       | 1,240 µg/l  | 300 µg/l   | Pa. aquatic life |  |  |  |  |  |  |
| DFe       | 05/02/00                       | 667 µg/l    | 300 µg/l   | Pa. aquatic life |  |  |  |  |  |  |


Table 42. Water Quality Summary Scott Creek at Delta, Pa.

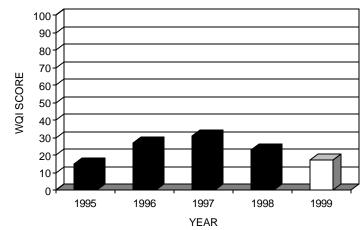
| Date     | WQI |      | Parameters Exceeding 90 <sup>™</sup> Percentile |      |      |      |      |      |      |      |
|----------|-----|------|-------------------------------------------------|------|------|------|------|------|------|------|
| 08/04/99 | 80  | DO   | COND                                            | TNH3 | DNH3 | TP   | TOC  | TMg  | TCl  | TFe  |
|          |     | DFe  | TMn                                             | DMn  | TPO4 | TURB |      |      |      |      |
| 11/11/99 | 89  | DO   | COND                                            | TS   | DS   | DNH3 | TNH3 | DNO2 | TNO2 | TP   |
|          |     | DP   | DPO4                                            | TOC  | TCa  | TMg  | TCl  | TFe  | DFe  | TMn  |
|          |     | DMn  | TPO4                                            | TURB |      |      |      |      |      |      |
| 02/08/00 | 85  | COND | TS                                              | DS   | DNH3 | TNH3 | DNO2 | TNO2 | DPO4 | TOC  |
|          |     | TCa  | TMg                                             | TCl  | TFe  | TMn  | DMn  | TPO4 | TURB |      |
| 05/02/00 | 84  | DO   | TS                                              | DS   | COND | DNH3 | TNH3 | DNO2 | TNO2 | TP   |
|          |     | DP   | TOC                                             | TCl  | TSO4 | TFe  | DFe  | TMn  | DMn  | TPO4 |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 4                 |  |  |  |  |  |
| Diversity Index                | 0.90              |  |  |  |  |  |
| RBP III Score                  | 0                 |  |  |  |  |  |
| RBP III Condition              | Severely Impaired |  |  |  |  |  |
| Total Habitat Score            | 71                |  |  |  |  |  |
| Habitat Condition Category     | Nonsupporting     |  |  |  |  |  |

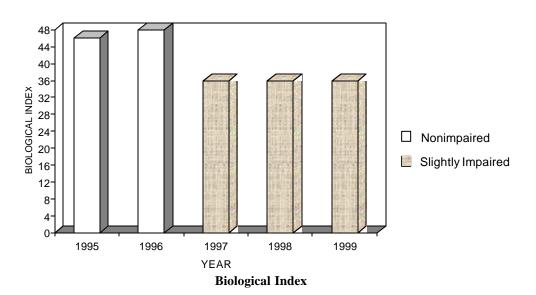


YEAR




Water Quality Index

# Table 43. Water Quality Summary South Branch Conewago Creek at Bandanna, Pa.


| Parameters Exceeding Standards |      |       |          |       |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |
| None                           |      |       |          |       |  |  |  |

| Date     | WQI | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|-----|--------------------------------------------------|--|--|--|--|--|--|--|
| 08/02/99 | 17  |                                                  |  |  |  |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|--|
| Number of Taxa                 | 21                |  |  |  |  |  |  |
| Diversity Index                | 3.66              |  |  |  |  |  |  |
| RBP III Score                  | 36                |  |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |  |
| Total Habitat Score            | 115               |  |  |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |  |  |



Water Quality Index



# **River Sites**

# Chemung River (CHEM 12.0)

A nonimpaired biological community existed in the Chemung River at Chemung, N.Y., (CHEM 12.0). During fiscal year 1999, a slightly impaired biological community was found at this site. The physical habitat was considered excellent.

Total iron and pH exceeded standards during the 1999-2000 sampling season. Overall, water quality was poor. Analysis indicated that dissolved oxygen was depressed, while solids, calcium, magnesium, chloride, phosphorus, nitrites, and nitrates were elevated at CHEM 12.0 (Table 44). This site also had the highest overall WQI score (66) and the highest individual WQI score (87) of the river sites.

Total chloride concentrations and FAC showed strong, significant increasing trends. All other parameters decreased over the period involved. Strong, significant decreasing trends were found for concentrations and flow-adjusted concentrations of total ammonia, total sulfate, and total iron. Significant decreasing trends also occurred in total nitrogen concentrations and both the total manganese concentrations and flow-adjusted concentrations (Table 19).

# Cowanesque River (COWN 2.2)

Moderately impaired biological conditions existed on the Cowanesque River downstream of the Cowanesque Reservoir at Lawrenceville, Pa., (COWN 2.2). Moderately to severely impaired conditions have existed at this site for the past eight years of sampling. In the past, increased phytoplankton production in the Cowanesque Reservoir may have caused a shift in the macroinvertebrate community, resulting in a biological population dominated by filter-feeding organisms. Additionally, the bottom discharge dam depressed oxygen levels in the Cowanesque River downstream of the outflow. Impaired conditions also may be affected by partially supporting habitat conditions at this site. The site was heavily dominated by pollution-tolerant aquatic sowbugs (Asellidae). This site had the fewest number of taxa (10), the lowest diversity index (2.35), the highest Hilsenhoff Biotic Index (6.86), the lowest EPT index (4), and the lowest overall RBP III score (10) of the sites in this category.

However, the water quality at COWN 2.2 appeared to have improved from previous sampling periods. No parameters exceeded state standards, although total manganese, nitrites, total organic carbon, total iron, total manganese, turbidity, and dissolved oxygen exceeded the 90<sup>th</sup> percentile during November 1999 (Table 45).

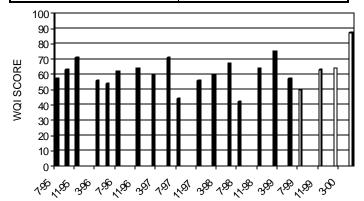
A strong, significant increasing trend was found for total manganese concentrations. Strong, significant decreasing trends occurred for total sulfate concentrations and FACs and total ammonia flow-adjusted concentrations and a significant downward trend was found for total nitrogen concentrations (Table 19).

# Cowanesque River (COWN 1.0)

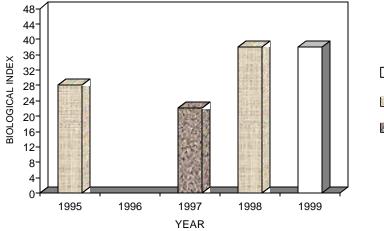
A new site was added on the Cowanesque River near the mouth of the stream (COWN 1.0) during the 1999-2000 sampling season to determine the extent of impairment in the river. A slightly impaired biological community existed at COWN 1.0 during this time period. Habitat conditions were considered supporting.

Although no parameters exceeded state standards at this site, a number of parameters exceeded the 90<sup>th</sup> percentile: dissolved oxygen, nitrites, total organic carbon, total iron, total manganese, and turbidity (Table 46).

# Susquehanna River at Windsor, N.Y. (SUSQ 365.0)


Susquehanna River at Windsor, N.Y., (SUSQ 365.0) served as the reference site for the river stations during fiscal year 2000. SUSQ 365.0 contained several organic pollution-intolerant taxa, including *Atherix*, *Serratella*, *Stenonema*, *Isonychia*, *Ephoron* (Ephemeroptera: Polymitarcyidae), *Acroneuria*, and *Paragnetina* (Plecoptera: Perlidae).

|           | Parameters Exceeding Standards |           |            |                                             |  |  |  |  |  |  |  |
|-----------|--------------------------------|-----------|------------|---------------------------------------------|--|--|--|--|--|--|--|
| Parameter | Date                           | Value     | State      |                                             |  |  |  |  |  |  |  |
| pН        | 07/21/99                       | 8.9       | 6.5-8.5    | N.Y. aquatic life                           |  |  |  |  |  |  |  |
| TFe       | 02/16/00                       | 321 µg/l  | 300 µg/l   | N.Y. health (water source) and aquatic life |  |  |  |  |  |  |  |
| TFe       | 05/10/00                       | 7120 µg/l | 300 µg/l   | N.Y. health (water source) and aquatic life |  |  |  |  |  |  |  |
| TFe       | 05/10/00                       | 7120 µg/l | 1,500 µg/l | Pa. aquatic life                            |  |  |  |  |  |  |  |


| Table 44. | Water Ouality | Summarv | Chemung | River at | Chemung, N.Y. |
|-----------|---------------|---------|---------|----------|---------------|
|           |               |         |         |          |               |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |     |      |      |    |     |  |  |
|----------|-----|------|--------------------------------------------------|------|-----|------|------|----|-----|--|--|
| 07/21/99 | 50  | TOC  | TMg                                              | TURB |     |      |      |    |     |  |  |
| 11/09/99 | 63  | COND | TS                                               | DS   | TP  | TCa  | TMg  |    |     |  |  |
| 02/16/00 | 64  | DO   | COND                                             | TS   | DS  | DNO3 | TNO3 | DP | TCa |  |  |
|          |     | TMg  | TCl                                              |      |     |      |      |    |     |  |  |
| 05/10/00 | 87  | DO   | COND                                             | TS   | DS  | DNO2 | TNO2 | TP | DP  |  |  |
|          |     | TOC  | TCa                                              | TMg  | TFe | TAI  | TURB |    |     |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|--|
| Number of Taxa                 | 18          |  |  |  |  |  |  |
| Diversity Index                | 3.56        |  |  |  |  |  |  |
| RBP Score                      | 38          |  |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |  |
| Total Habitat Score            | 118         |  |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |  |

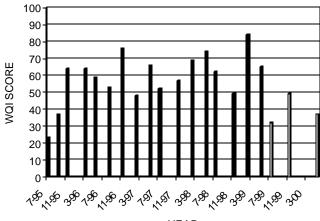


YEAR Water Quality Index



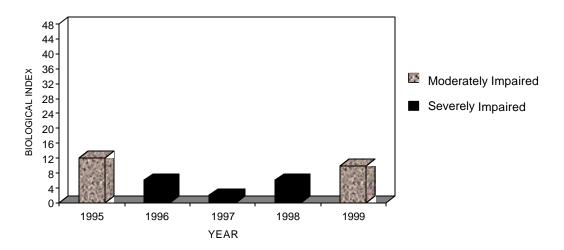


- Slightly Impaired
- Moderately Impaired


**Biological Index** 

| Table 45. | Water Ouality | Summary Cowa | nesque River (C | <i>COWN 2.2) at</i> | Lawrenceville, Pa. |
|-----------|---------------|--------------|-----------------|---------------------|--------------------|
|           |               |              |                 |                     |                    |

|                                     | Parameters Exceeding Standards |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--------------------------------|--|--|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |                                |  |  |  |  |  |  |  |  |  |  |
| None                                |                                |  |  |  |  |  |  |  |  |  |  |


| Date     | WQI |     | Parameters Exceeding 90 <sup>th</sup> Percentile |      |     |     |     |      |  |
|----------|-----|-----|--------------------------------------------------|------|-----|-----|-----|------|--|
| 07/27/99 | 32  | TMn |                                                  |      |     |     |     |      |  |
| 11/09/99 | 49  | DO  | DNO2                                             | TNO2 | TOC | TFe | TMn | TURB |  |
| 05/10/00 | 37  |     |                                                  |      |     |     |     |      |  |

| Biological and Habitat Summary |                      |  |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|--|
| Number of Taxa                 | 10                   |  |  |  |  |  |  |
| Diversity Index                | 2.35                 |  |  |  |  |  |  |
| RBP Score                      | 10                   |  |  |  |  |  |  |
| RBP Condition                  | Moderately Impaired  |  |  |  |  |  |  |
| Total Habitat Score            | 74                   |  |  |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |  |  |



YEAR

Water Quality Index



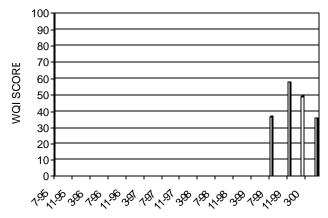
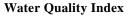
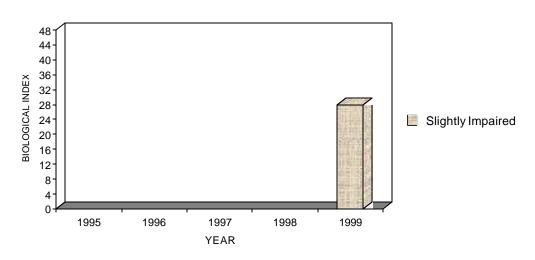

**Biological Index** 

 Table 46.
 Water Quality Summary Cowanesque River (COWN 1.0) at Lawrenceville, Pa.


|                                     | Parameters Exceeding Standards |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--------------------------------|--|--|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |                                |  |  |  |  |  |  |  |  |  |  |
| None                                |                                |  |  |  |  |  |  |  |  |  |  |


| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |     |     |      |  |  |
|----------|-----|------|--------------------------------------------------|------|------|-----|-----|------|--|--|
| 07/27/99 | 37  | DNH3 | TNO3                                             | DNO2 | TNO2 |     |     |      |  |  |
| 11/09/99 | 58  | DO   | DNO2                                             | TNO2 | TOC  | TFe | TMn | TURB |  |  |
| 02/16/00 | 49  | DO   | TOC                                              |      |      |     |     |      |  |  |
| 05/10/00 | 36  | TOC  |                                                  |      |      |     |     |      |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 19                |  |  |  |  |  |
| Diversity Index                | 3.34              |  |  |  |  |  |
| RBP Score                      | 28                |  |  |  |  |  |
| RBP Condition                  | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 97                |  |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |  |



YEAR





**Biological Index** 

Water quality data showed that total iron exceeded the New York state standard during February and May 2000. Overall water quality conditions were fair at SUSQ 365. However, dissolved oxygen was slightly reduced, while nitrates, calcium, and dissolved ammonia concentrations were elevated (Table 47) at this site.

Several strong, significant decreasing trends occurred at SUSQ 365.0. These downward trends included both the concentrations and flowadjusted concentrations of total ammonia and total iron. Strong, significant decreasing trends also occurred for concentrations of total nitrogen and phosphorus, and flow-adjusted total concentrations of total sulfate and total aluminum. A significant decreasing trend also was found in flow-adjusted concentrations of total phosphorus. One strong, significant increasing trend also occurred at this site in total chloride concentrations (Table 19).

#### Susquehanna River at Kirkwood, N.Y. (SUSQ 340.0)

Nonimpaired conditions existed at Susquehanna River at Kirkwood, N.Y., (SUSQ 340.0) for the second consecutive year. Habitat conditions also were considered excellent.

Total iron exceeded standards during February 2000. Additional water quality analysis indicated that nitrates were elevated during May 2000, and turbidity was high during February 2000, while dissolved oxygen was depressed during July 1999 and February 2000 (Table 48).

Strong, significant downward trends occurred at SUSQ 340.0 for several parameters, including the concentrations and flow-adjusted concentrations of total ammonia, total nitrogen, total phosphorus, and total iron. The WQI and flowadjusted concentrations of total sulfate also showed a significant downward trend. However, both concentrations and flow-adjusted concentrations of total chloride showed a strong, significant increasing trend for the time period (Table 19).

# <u>Susquehanna River at Sayre, Pa.</u> (SUSQ 289.1)

The Susquehanna River at Sayre, Pa., (SUSQ 289.1) was nonimpaired during fiscal year 2000, after serving as the reference site for the river stations the previous year. Several pollution-intolerant taxa inhabited this site, including *Atherix, Serratella, Stenonema, Isonychia, Ephoron*, and *Agnetina*.

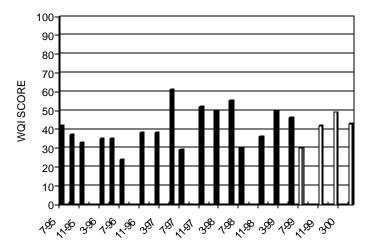
Total iron exceeded standards during February 2000, and additional water quality analysis indicated that ammonia, nitrites, and nitrates were elevated at this site, while dissolved oxygen was reduced (Table 49).

Strong, significant decreasing trends were found for several parameters at SUSQ 289.1, including both concentrations and flow-adjusted concentrations of total ammonia, total nitrogen, total phosphorus, total sulfate, and total iron, and flow-adjusted concentrations of total aluminum. Significant decreasing trends occurred for concentrations of total aluminum and WQI. Also, strong, significant increasing trends occurred for total chloride concentrations and flow-adjusted concentrations (Table 19).

# Susquehanna River at Marietta, Pa. (SUSQ 44.5)

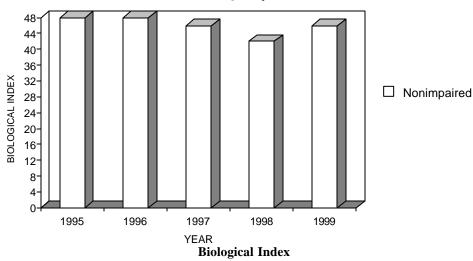
The Susquehanna River at Marietta, Pa., (SUSQ 44.5) had a nonimpaired biological community during fiscal year 2000. Habitat at this site was considered supporting; however, the substrate at SUSQ 44.5 is largely bedrock with little riffle habitat.

No water quality parameters exceeded state standards during this sampling period. However, water quality analysis indicated that solids, nitrites, calcium, and sulfate were elevated at this station (Table 50).


Only decreasing trends were found at this site. Significant downward trends occurred for total phosphorus concentrations and total ammonia flow-adjusted concentrations. Strong, significant decreasing trends were found for total sulfate

| Parameters Exceeding Standards      |          |          |          |                                             |  |  |  |
|-------------------------------------|----------|----------|----------|---------------------------------------------|--|--|--|
| Parameter Date Value Standard State |          |          |          |                                             |  |  |  |
| TFe                                 | 02/15/00 | 351 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |
| TFe                                 | 05/09/00 | 317 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |  |

| Table 47. | Water Quality | Summary | Susquehanna | River at | Windsor, N.Y. |
|-----------|---------------|---------|-------------|----------|---------------|
|-----------|---------------|---------|-------------|----------|---------------|

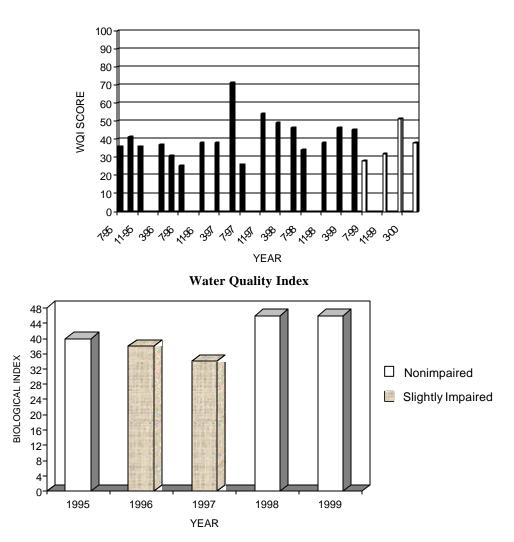

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |     |  |  |  |  |  |
|----------|-----|------|--------------------------------------------------|-----|--|--|--|--|--|
| 07/19/99 | 30  | DO   |                                                  |     |  |  |  |  |  |
| 11/08/99 | 42  | DNH3 |                                                  |     |  |  |  |  |  |
| 02/15/00 | 49  | DO   |                                                  |     |  |  |  |  |  |
| 05/09/00 | 43  | DNO3 | TNO3                                             | TCa |  |  |  |  |  |

| Biological and Habitat Summary |           |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|
| Number of Taxa                 | 25        |  |  |  |  |  |
| Diversity Index                | 3.95      |  |  |  |  |  |
| RBP Score                      | 46        |  |  |  |  |  |
| RBP Condition                  | Reference |  |  |  |  |  |
| Total Habitat Score            | 122       |  |  |  |  |  |
| Habitat Condition Category     | Reference |  |  |  |  |  |



YEAR

Water Quality Index



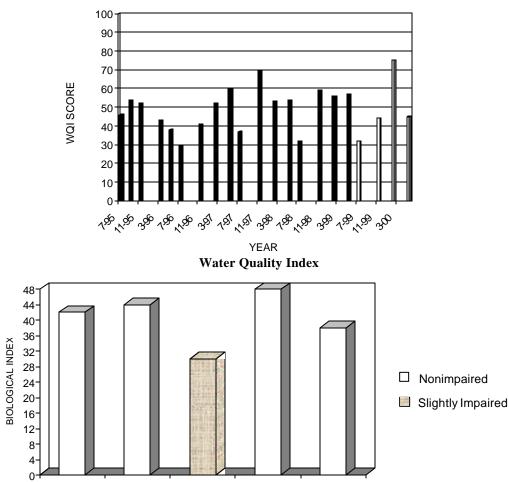

| Table 48. | Water Quality Summary | Susquehanna Rive | er at Kirkwood, N.Y. |
|-----------|-----------------------|------------------|----------------------|
|-----------|-----------------------|------------------|----------------------|

| Parameters Exceeding Standards      |          |          |          |                                             |  |  |
|-------------------------------------|----------|----------|----------|---------------------------------------------|--|--|
| Parameter Date Value Standard State |          |          |          |                                             |  |  |
| TFe                                 | 02/15/00 | 570 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|-----|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/19/99 | 28  | DO   |                                                  |  |  |  |  |  |  |
| 11/08/99 | 32  |      |                                                  |  |  |  |  |  |  |
| 02/15/00 | 51  | DO   | TURB                                             |  |  |  |  |  |  |
| 05/09/00 | 38  | DNO3 | TNO3                                             |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 21          |  |  |  |  |  |
| Diversity Index                | 4.05        |  |  |  |  |  |
| RBP Score                      | 46          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 113         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |




**Biological Index** 

| Table 49. V | Water Quality | Summary | Susquehanna | River at | Sayre, Pa. |
|-------------|---------------|---------|-------------|----------|------------|
|-------------|---------------|---------|-------------|----------|------------|

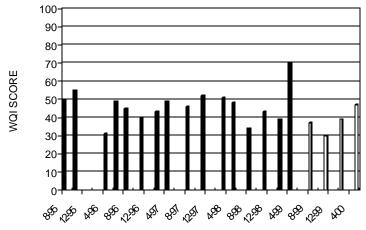
| Parameters Exceeding Standards      |          |          |          |                                             |  |  |
|-------------------------------------|----------|----------|----------|---------------------------------------------|--|--|
| Parameter Date Value Standard State |          |          |          |                                             |  |  |
| TFe                                 | 02/15/00 | 703 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |      |    |      |     |
|----------|-----|------|--------------------------------------------------|------|------|------|----|------|-----|
| 07/21/99 | 32  |      |                                                  |      |      |      |    |      |     |
| 11/08/99 | 44  | DNO2 | TNO2                                             | TOC  |      |      |    |      |     |
| 02/15/00 | 75  | DO   | DNH3                                             | TNH3 | DNO3 | TNO3 | TP | DPO4 | TFe |
|          |     | TAI  | TPO4                                             |      |      |      |    |      |     |
| 05/09/00 | 45  | DNO2 | DNO3                                             | TNO3 | TCa  |      |    |      |     |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 18          |  |  |  |  |  |
| Diversity Index                | 3.41        |  |  |  |  |  |
| RBP Score                      | 38          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 117         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |

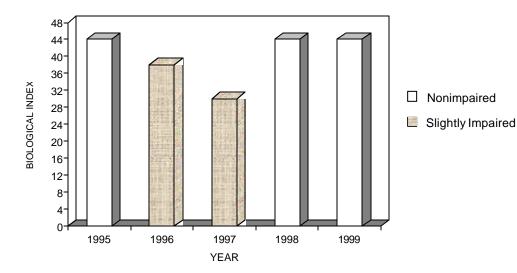


**Biological Index** 


YEAR

| Table 50. | Water Quality Summary | Susquehanna Riv | er at Marietta, Pa. |
|-----------|-----------------------|-----------------|---------------------|
|-----------|-----------------------|-----------------|---------------------|

| Parameters Exceeding Standards |      |       |          |       |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |
| None                           |      |       |          |       |  |  |  |


| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |      |      |      |  |
|----------|-----|------|--------------------------------------------------|------|------|------|------|------|--|
| 08/05/99 | 37  | COND | TS                                               | DS   | DNO2 | TNO2 | TCa  | TSO4 |  |
| 11/10/99 | 30  | TSO4 |                                                  |      |      |      |      |      |  |
| 02/10/00 | 39  | DPO4 | TCa                                              | TSO4 |      |      |      |      |  |
| 05/11/00 | 47  | TS   | DP                                               | DPO4 | TCa  | TSO4 | TPO4 |      |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 20          |  |  |  |  |  |
| Diversity Index                | 3.27        |  |  |  |  |  |
| RBP Score                      | 44          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 109         |  |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |  |



YEAR

Water Quality Index



**Biological Index** 

FACs, total aluminum concentrations, and for both concentrations and flow-adjusted concentrations of total iron, total manganese, and WQI (Table 19).

#### <u>Susquehanna River at Conowingo, Md.</u> (SUSQ 10.0)

No macroinvertebrate sampling was performed in the Susquehanna River at Conowingo, Md., (SUSQ 10.0) due to deep waters and a lack of riffle habitat. Water quality did not exceed standards at SUSQ 10.0; however, several parameters exceeded the 90<sup>th</sup> percentile including solids, nitrites, total aluminum, and sulfate (Table 51). Even though some parameters were elevated, this site had the lowest individual WQI score (28) and the lowest average WQI score (36) of all river sites.

At SUSQ 10.0, only downward trends were observed. Significant decreasing trends were found for flow-adjusted concentrations of total nitrogen and total aluminum. Strong, significant downward trends occurred in total sulfate and total manganese concentrations and in both concentrations and flow-adjusted concentrations of total phosphorus, total iron and WQI (Table 19).

# <u> Tioga River (TIOG 10.8)</u>

The Tioga River at Lindley, N.Y., (TIOG 10.8) had a nonimpaired biological community during July 1999, and habitat conditions were considered excellent. Total iron exceeded water quality standards during February 2000. Additional water quality analysis indicated that sulfate and manganese were elevated, while dissolved oxygen was reduced (Table 52).

Poor water quality at this site may have been due to acid mine drainage in the headwaters of the Tioga River. The Tioga-Hammond Reservoir, located upstream of TIOG 10.8, alleviated some of the effects of acid mine drainage by buffering the outflow of Tioga Lake with alkaline waters stored in Hammond Lake. However, the effects of the acid mine drainage may still be observed downstream. Poor quality water from the Cowanesque River also may affect the Tioga River downstream of their confluence.

Strong, significant decreasing trends were found for concentrations and FACs of total ammonia, total sulfate, and total manganese, and for concentrations of total solids and total nitrogen. A significant decreasing trend occurred in total nitrogen flow-adjusted concentrations, while a significant increasing trend occurred in flow-adjusted concentrations of total aluminum (Table 19).

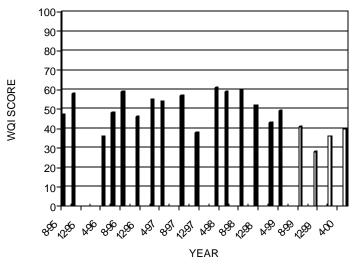
# Group 3 Sites

# Babcock Run (BABC)

During the 2000 sampling season, the macroinvertebrate community of Babcock Run near Cadis, Pa., was designated moderately impaired. However, the dominant family was the pollution-intolerant mayfly, *Paraleptophlebia* (Ephemeroptera: Paraleptophlebiidae). Physical habitat conditions were designated excellent, and all field chemistry parameters were normal.

# Bill Hess Creek (BILL)

The biological community of Bill Hess Creek near Nelson, Pa., was designated slightly impaired during May 2000, with an excellent physical habitat. All field chemistry parameters were within acceptable limits, although conductivity was somewhat elevated.


# Bird Creek (BIRD)

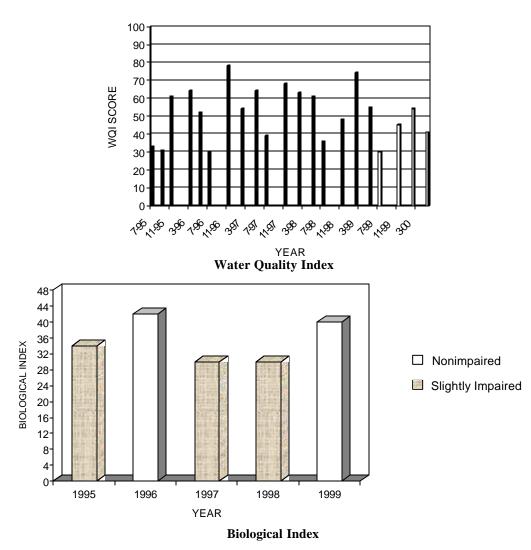
Bird Creek near Webb Mills, N.Y., was designated moderately impaired, due to a low EPT index and a low taxonomic similarity to the reference site, with an excellent habitat. The stream did have several pollution intolerant taxa, including *Ameletus* (Ephemeroptera: Ameletidae), *Epeorus, Paraleptophlebia, Alloperla* (Plecoptera: Chloroperlidae), *Leuctra,* and *Amphinemura* (Plecoptera: Nemouridae). All field chemistry parameters fell within acceptable ranges.

| Table 51. | Water Quality | Summary | Susquehanna | River a | at Conowingo, | Md. |
|-----------|---------------|---------|-------------|---------|---------------|-----|
|-----------|---------------|---------|-------------|---------|---------------|-----|

| Parameters Exceeding Standards |      |       |          |       |  |  |
|--------------------------------|------|-------|----------|-------|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |
| None                           |      |       |          |       |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |    |      |      |     |      |  |
|----------|-----|------|--------------------------------------------------|----|------|------|-----|------|--|
| 08/05/99 | 41  | COND | TS                                               | DS | DNO2 | TNO2 | TCa | TSO4 |  |
| 11/12/99 | 28  |      |                                                  |    |      |      |     |      |  |
| 02/08/00 | 36  |      |                                                  |    |      |      |     |      |  |
| 05/03/00 | 40  | TAI  | TURB                                             |    |      |      |     |      |  |




Water Quality Index

| Table 52. | Water Ou | ality Summary | <sup>,</sup> Tioga River | at Lindley, N.Y. |
|-----------|----------|---------------|--------------------------|------------------|
|           |          |               |                          |                  |

| Parameters Exceeding Standards |          |          |          |                                             |  |  |
|--------------------------------|----------|----------|----------|---------------------------------------------|--|--|
| Parameter                      | Date     | Value    | Standard | State                                       |  |  |
| TFe                            | 02/16/00 | 448 µg/l | 300 µg/l | N.Y. health (water source) and aquatic life |  |  |

| Date     | WQI |      | Parameters Exceeding 90 <sup>th</sup> Percentile |     |     |  |  |  |  |
|----------|-----|------|--------------------------------------------------|-----|-----|--|--|--|--|
| 07/26/99 | 30  | TSO4 |                                                  |     |     |  |  |  |  |
| 11/09/99 | 45  | DO   | TSO4                                             | TMN | DMn |  |  |  |  |
| 02/16/00 | 54  | DO   | TSO4                                             | TMn | DMn |  |  |  |  |
| 05/10/00 | 41  | TMn  | DMn                                              |     |     |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 20          |  |  |  |  |  |
| Diversity Index                | 3.38        |  |  |  |  |  |
| RBP III Score                  | 40          |  |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 123         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |



#### **Biscuit Hollow (BISC)**

Slightly impaired biological conditions existed at Biscuit Hollow near Austinburg, Pa., during this survey. Impairment was due largely to the dominance of one taxon, the pollutionintolerant mayfly *Epeorus*. The physical habitat at this site was considered supporting, with poor velocity/depth diversity and a poor riparian zone. Field chemistry parameters were within normal ranges.

# Briggs Hollow Run (BRIG)

Briggs Hollow Run near Nichols, N.Y., was designated moderately impaired during the 2000 sampling season. It had the lowest overall diversity (10 taxa), the lowest Shannon Diversity Index (1.48), and the highest Percent Dominant Taxa (75 percent) of all sampling sites. However, the lowest Hilsenhoff Biotic Index score (0.41) also was found at this site due to the large number of *Epeorus* that dominated the sample. The physical habitat was designated supporting with poor riparian conditions and a heavily altered channel. All field chemistry parameters were within acceptable limits.

# Bulkley Brook (BULK)

Bulkley Brook near Knoxville, Pa., had a nonimpaired biological community and excellent habitat conditions during the 1999-2000 sampling season. Several pollution intolerant taxa existed at Bulkley Brook, including Hexatoma (Diptera: Tipulidae). Epeorus. Stenonema. Nigronia, Ophiogomphus, Alloperla, Leuctra, Amphinemura, Acroneuria, and Diplectrona (Trichoptera: Hydropsychidae). Field chemistry indicated that all parameters were within acceptable limits.

# Camp Brook (CAMP)

Camp Brook near Osceola, Pa., had a slightly impaired biological community during the 2000 sampling season. The stream was dominated by the organic pollution intolerant stonefly, *Alloperla*. The physical habitat of the stream was designated supporting with poor riparian conditions. All field chemistry parameters were normal.

# Cook Hollow (COOK)

Cook Hollow near Austinburg, Pa., served as the reference site for the Group 3 streams during this survey, as it had the best combination of biological and habitat conditions. A number of pollution intolerant taxa existed at this site, including Ephemerella (Ephemeroptera: Stenonema, Ephemerellidae), Epeorus, Paraleptophlebia, Alloperla, Leuctra, Amphinemura. Acroneuria. Diplectrona. Dolophilodes, and Rhyacophila. This site on Cook Hollow also had the highest Shannon Diversity Index (3.83) and the lowest Percent Dominant Taxa (14.3 percent) of the sampling sites. Field chemistry parameters were all within acceptable limits.

# Deep Hollow Brook (DEEP)

The biological community of Deep Hollow Brook near Danville, N.Y., was designated slightly impaired, with an excellent physical habitat. This site had the highest number of taxa (27) of all sampling sites. A beaver dam is located upstream of the sampling site on Deep Hollow Brook, and flows were very high at the time of sampling. Alkalinity was extremely low with a value of 6 mg/l. pH also was somewhat depressed with a value of 6.55.

# Denton Creek (DENT)

Denton Creek near Hickory Grove, Pa., had a moderately impaired biological community during May 2000. This site is located downstream of Hawkins Pond in New York State. The sampling station on Denton Creek had the highest Hilsenhoff Biotic Index (5.58) and the lowest EPT Index (4) of all Group 3 sampling stations. Habitat conditions at Denton Creek were considered excellent. Alkalinity and pH were depressed with values of 8 mg/l and 6.35, respectively. Dissolved oxygen also was low with a value of 3.75 mg/l, probably due to the upstream pond.

#### Dry Brook (DRYB)

Moderately impaired biological conditions existed at Dry Brook at Waverly, N.Y., with an excellent physical habitat. Chironomidae (midges) was the dominant macroinvertebrate family at this site. The stream was completely dry the previous summer and runs directly through residential and commercial areas in the town of Waverly. Field water chemistry parameters were within normal ranges.

# Little Wappasening Creek (LWAP)

The biological community of Little Wappasening Creek near Nichols, N.Y., was designated slightly impaired during the 2000 sampling season. The site had a diverse stonefly community, with representatives of *Alloperla*, *Leuctra*, *Sweltsa* (Perlidae: Chloroperlidae), *Amphinemura*, and *Acroneuria*. The physical habitat was designated supporting with a heavily altered channel and a large amount of streambank erosion. All field chemistry parameters were normal.

# Parks Creek (PARK)

Parks Creek near Litchfield, N.Y., had a slightly impaired biological community during the 2000 sampling season. A number of pollution intolerant taxa existed at the Parks Creek sampling site, including *Ameletus, Epeorus, Stenonema, Paraleptophlebia, Alloperla, Sweltsa, Leuctra,* and *Amphinemura.* The site had a supporting habitat with heavy channel alteration. Just prior to the time of sampling, a heavy storm struck the region and heavily altered the stream channel through very high flows. All field chemistry parameters were within acceptable ranges.

# Prince Hollow Run (PRIN)

The biological community of Prince Hollow Run near Cadis, Pa., was designated slightly impaired with a partially supporting habitat. Staff noted at time of sampling that the substrate appeared to have been substantially disturbed, probably due to very high flows during the previous week. The stream did contain a number of pollution intolerant taxa, including *Ameletus*, *Epeorus*, *Paraleptophlebia*, *Alloperla*, *Leuctra*, *Amphinemura*, and *Acroneuria*. Alkalinity was low, with a value of 20 mg/l.

#### Red House/Beagle Hollow Run (REDH)

Moderately impaired biological conditions existed at Red House/Beagle Hollow Run near Osceola, Pa., during May 2000. An organic pollution intolerant stonefly, *Leuctra*, dominated the sample. Habitat conditions were considered excellent, and all field chemistry parameters were within normal ranges. Red House Run was completely dry during the summer of 1999.

#### <u>Russell Run (RUSS)</u>

The biological community of Russell Run near Windham, Pa., was designated slightly impaired, with a partially supporting habitat. High flows had substantially altered the physical habitat prior to the time of sampling. The EPT Index at this site was somewhat low (7), while the value for Percent Dominant Taxa was high (60.4 percent). However, the dominant taxon at this site was the pollution-intolerant mayfly genus, *Epeorus*. All field chemistry parameters were normal.

#### Sackett Creek (SACK)

The biological condition of Sackett Creek near Nichols, N.Y., was designated slightly impaired, and the physical habitat was partially supporting. It should be noted that the stream had recently experienced very high flows, which may have affected the biological community and the physical habitat. A lot of streambank erosion existed at the site, and stream bank stability was low. All field chemistry parameters were within normal ranges.

# Smith Creek (SMIT)

The biological conditions at Smith Creek near East Lawrence, Pa., were designated slightly impaired, while the stream had excellent habitat conditions. The dominant taxon at the site was the pollution-intolerant stonefly taxa, *Leuctra*. Many other intolerant taxa also existed at this station, including *Ameletus, Ephemerella, Stenonema, Nigronia, Amphinemura, Acroneuria,* and *Diplectrona.* Dissolved oxygen levels in Smith Creek were depressed with a value of 3.79 mg/l. Additionally, a small refuse pile was located upstream of the site.

# Strait Creek (STRA)

A nonimpaired biological community existed at Strait Creek near Nelson, Pa. This site had the highest EPT Index (17) of all sampling sites and had a very diverse mayfly community. The physical habitat was designated supporting with poor riparian conditions, such as eroded streambanks and a small buffer zone. All field chemistry parameters were within normal limits.

#### White Branch Cowanesque River (WBCO)

During May 2000, nonimpaired conditions existed at White Branch Cowanesque River near North Fork, Pa. This site had a number of pollution-intolerant taxa, including *Hexatoma*, *Ameletus, Epeorus, Paraleptophlebia, Alloperla, Leuctra, Amphinemura, Acroneuria,* and *Dolophilodes.* Physical habitat conditions were designated excellent, and field chemistry measurements were within acceptable ranges.

# White Hollow (WHIT)

White Hollow near Wellsburg, N.Y., had a slightly impaired biological community during May 2000. Large numbers of organic pollution intolerant *Epeorus* and *Amphinemura* were found in this sample. The physical habitat was designated excellent, and all water chemistry parameters were normal.

# MANAGEMENT IMPLICATIONS

To establish water quality trends and understand biological conditions, long-term studies of this nature are critical. Unfortunately, short-term monitoring studies are too often the rule, due to time and monetary constraints. However, to effectively manage the resources, elected officials and local interest groups must have a true picture of ecological dynamics and possible problem areas, which can only be obtained through long-term studies such as this one.

Several management implications can be extracted from the chemical water quality, macroinvertebrate community, and physical habitat data collected from sampling areas. A Pearson Product Moment Correlation was performed for each reference category for average WQI score, RBP III score, and physical habitat Statistically significant relationships score. observed (p<0.05) among the chemical characteristics, the biological communities, and physical habitats of the interstate streams are described below. These observations, although based on a small sample size, are presented as possible subject areas for future research and as issues to be considered by aquatic resource managers, elected officials, and local interest groups.

# New York – Pennsylvania Sites

The sites in this reference category have shown and continue to show a large degree of variability in water quality. Overall, there was no significant correlation between RBP III score and water chemistry (WQI score). However, there was a significant (p<0.05) positive correlation between RBP III score and habitat score for the 12 New York-Pennsylvania border sites. During the 1998 sampling season, there also was a significant positive correlation (p<0.05) between habitat score and biological score (Rowles and Sitlinger, 2000). Impairment may have been due to poor physical habitat at many of the New York-Pennsylvania border sites. Bentley Creek and Seeley Creek, in particular, had unstable stream substrates, largely due to removal of instream habitat for rechannelization and the removal of gravel for building and paving materials. Disturbance of instream habitat often reduces the abundance of macroinvertebrates and the species diversity of the area, resulting in an impairment designation.

# Pennsylvania – Maryland Sites

During fiscal year 2000, there was no significant correlation between physical habitat

and biological score or between WQI and biological score for the nine Pennsylvania-Maryland border sites. During the 1999 fiscal year, a significant negative correlation existed between the RBP III score and the WQI (Rowles and Sitlinger, 2000). Since a high WQI score denotes poor water quality, this indicated that a degradation in water quality leads to a degradation in the biological community.

The area surrounding the Pennsylvania-Maryland border sites is largely agricultural. Heavy agricultural activities without proper best management practices often result in streambank erosion and sedimentation, contributing to poor instream habitat quality and to nutrient enrichment. Additionally, nutrient enrichment encourages excessive plant growth, which can depress dissolved oxygen levels during decomposition.

# **River Sites**

For the seven river sites, there was a significant positive correlation between physical habitat and RBP III scores, indicating that, as physical habitat improved, the quality of the macroinvertebrate community increased. There was no significant correlation between WQI score and total biological scores for the river sites. However, during the previous sampling season, a negative correlation existed between WQI score and biological score (Rowles and Sitlinger, 2000).

# Group 3 Streams

Only physical habitat and biological scores were considered in the correlation analysis of Group 3 streams, as extensive water quality information was not collected during this sampling season. There was no significant correlation between physical habitat and biological community for the Group 3 sites. A large number of the Group 3 streams had been completely dry during the summer of 1999, due to a drought that affected most of the Susquehanna River Basin. This dry condition adversely affected the stream biota and probably caused much of the impairment seen throughout these Group 3 sites.

# CONCLUSIONS

Thirteen (26 percent) of the 50 interstate macroinvertebrate sampling sites contained nonimpaired biological communities. Biological conditions at another 21 sites (42 percent) were slightly impaired, while 15 sites (30 percent) were moderately impaired. One site (2 percent). Scott Creek, was designated severely impaired. One site (SUSQ 10.0) was not sampled using RBP III techniques and, thus, was not averaged into the final scores. Twenty-two sites (44 percent) had excellent habitats. Thirteen of the sites (26 percent) had supporting habitats, and 11 sites (22 percent) had partially supporting habitats. Four sites (8 percent) had nonsupporting habitats: Bentley Creek, Seeley Creek, Long Arm Creek, and Scott Creek.

Overall, interstate streams seemed to achieve their designated uses, and only 39 observations (1.5 percent) of water chemistry parameters exceeded state standards. Total iron exceeded standards most frequently. These findings corresponded with those in past reporting periods and indicated that elevated iron concentrations may have been a natural condition of the streams in the basin.

Of the New York-Pennsylvania border streams, the biological communities of two (16.7 percent) of these streams were nonimpaired. Five sites (41.7 percent) in the New York-Pennsylvania reference category were slightly impaired, and five streams (41.7 percent) were moderately impaired. Two sites had excellent (16.7 percent) habitats and five sites (41.7 percent) had supporting habitats. Of the remaining sites, three (25 percent) had partially supporting habitats, and two sites (16.7 percent) had nonsupporting habitats. High metal concentrations, particularly total iron, appeared to be the largest source of water quality degradation in this region. Physical habitat and biological score were positively correlated, meaning that, as habitat improved, the quality of the biological community improved. Rechannelization of the streambed and removal of instream habitat may have resulted in poor conditions for macroinvertebrate colonization in several streams, including Bentley Creek and Seeley Creek.

Nonimpaired biological conditions existed at one (11.1 percent) of the nine Pennsylvania-Maryland interstate streams. Of the remaining eight sites, four sites (44.4 percent) were slightly impaired and three sites (33.3 percent) were moderately impaired, while one site (11.1 percent) was designated severely impaired. Four (44.4 percent) of the Pennsylvania-Maryland border sites had excellent habitats. Three sites (33.3 percent) had partially supporting habitats and two sites (22.2 percent) had nonsupporting habitats. Elevated nutrient levels, possibly due to agricultural runoff, appeared to affect the water quality of the streams in this region. Neither WQI score and RBP III scores nor physical habitat and biological community were significantly correlated for the Pennsylvania-Maryland border sties. Streambank erosion and sedimentation were problems in the instream habitat for this region.

River sites consisted of eight stations located on the Susquehanna River, Chemung River, Cowanesque River, and Tioga River. One station (SUSQ 10.0) was not sampled for macroinvertebrates due to a lack of riffle habitat at the site. The biological communities of six sites (75 percent) were nonimpaired, one site (12.5 percent) was slightly impaired, and one site (12.5 percent) was moderately impaired. Five of the sites (62.5 percent) had excellent habitats. Of the remaining three stations, two sites (25 percent) had supporting habitats. and one site (12.5 percent) had a partially supporting habitat. Physical habitat scores and RBP III scores were significantly correlated for the river stations, indicating that, as physical habitat quality increased, the quality of the macroinvertebrate community increased.

Of the 21 Group 3 sites, the biological communities of four stations (19.0 percent) were designated nonimpaired. Eleven sites (52.4 percent) had slightly impaired biological communities, while six stations (28.6 percent) had moderately impaired conditions. Eleven (52.4 percent) of the 21 stations had excellent habitat conditions, six (28.6 percent) had supporting habitats and four sites (19.0 percent) had partially supporting habitats. There was no significant correlation between physical habitat and biological score during this sampling season.

The Seasonal Kendall nonparametric test for trend was applied to observed concentration and flow-adjusted concentration. Trends were detected (p<0.10) for several parameters at individual stations. For each parameter, an overall weighted value was calculated to indicate the strength of the trend in the Susquehanna River Basin over the period 1986 through 2000. Table 53 provides a summary of detected trends and overall direction.

Significant negative overall trends were found in total ammonia, total phosphorus, total sulfate, total iron, total manganese, and WQI. A significant positive overall trend was found in total chloride. Decreasing trends in total iron were found at many of the river stations. Most trends detected were decreasing, indicating an improvement in water quality. However, increasing trends, including total chlorides, total solids, and total nitrogen, were detected at several sites.

The current and historical data contained in this report provide a database that enables SRBC staff and others to better manage water quality, water quantity, and biological resources of interstate streams in the Susquehanna River Basin. The data can be used by SRBC's member states and local interest groups to gain a better understanding of water quality in upstream and downstream areas outside of their jurisdiction. Information in this report also can serve as a starting point for more detailed assessments and remediation efforts that may be planned on these streams.

| Parameter              |               | Detected | d Trends                         |    |                                             |                                         |
|------------------------|---------------|----------|----------------------------------|----|---------------------------------------------|-----------------------------------------|
|                        | Concentration |          | Flow - Adjusted<br>Concentration |    | Overall Direction of<br>Concentration Trend | Overall Direction of<br>Flow - Adjusted |
|                        | +             | -        | +                                | -  | ]                                           | Concentration Trend                     |
| Total Suspended Solids | 1             | 1        | 1                                | 0  | None                                        | None                                    |
| Total Ammonia          | 0             | 9        | 0                                | 7  | Decreasing                                  | None                                    |
| Total Nitrogen         | 2             | 6        | 2                                | 5  | None                                        | None                                    |
| Total Phosphorus       | 0             | 12       | 0                                | 8  | Decreasing                                  | None                                    |
| Total Chloride         | 10            | 0        | 8                                | 0  | Increasing                                  | Increasing                              |
| Total Sulfate          | 1             | 8        | 0                                | 10 | Decreasing                                  | Decreasing                              |
| Total Iron             | 0             | 11       | 0                                | 9  | Decreasing                                  | Decreasing                              |
| Total Aluminum         | 0             | 3        | 1                                | 4  | None                                        | None                                    |
| Total Manganese        | 0             | 9        | 0                                | 3  | Decreasing                                  | None                                    |
| Water Quality Index    | 0             | 9        | 0                                | 4  | Decreasing                                  | None                                    |

# Table 53. Summary of Overall Direction of Trends

# REFERENCES

- Aroner, E.R. 1994. WQHYDRO—Water Quality/Hydrology/Graphics/Analysis System User's Manual. WQHYDRO Consulting, Portland, Oregon.
- Bauer, K.M., W.D. Glove, and J.D. Flodo. 1984. Methodologies for Determining Trends in Water Quality Data. Industrial Research Laboratories, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.
- Bollinger, S.W. 1991. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #4, Water Year 1990. Susquehanna River Basin Commission (Publication No. 140), Harrisburg, Pennsylvania.
- ——. 1992. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #5, October 1, 1990-June 30, 1991. Susquehanna River Basin Commission (Publication No. 146), Harrisburg, Pennsylvania.
- ——. 1993. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #6, July 1, 1991-June 30, 1992. Susquehanna River Basin Commission (Publication No. 151), Harrisburg, Pennsylvania.
- ——. 1994. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #7, July 1, 1992-June 30, 1993. Susquehanna River Basin Commission (Publication No. 160), Harrisburg, Pennsylvania.
- ——. 1995. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #8, July 1, 1993-June 30, 1994. Susquehanna River Basin Commission (Publication No. 165), Harrisburg, Pennsylvania.
- Bollinger, S.W. and D.L. Sitlinger. 1996. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #9, July 1, 1994-June 30, 1995. Susquehanna River Basin Commission (Publication No. 173), Harrisburg, Pennsylvania.
- ——. 1997. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #10, July 1, 1995-June 30, 1996. Susquehanna River Basin Commission (Publication No. 185), Harrisburg, Pennsylvania.
- Edwards, R.E. 1995. Trends in Nitrogen, Phosphorus, and Suspended Sediment in the Susquehanna River Basin, 1974-1993. Susquehanna River Basin Commission (Publication No. 163), Harrisburg, Pennsylvania.
- Hirsch, R.M., R.B. Alexander, and R.A. Smith. 1991. Selection of Methods for the Detection and Estimation of Trends in Water Quality. *Water Resources Research* 27(5): 803-813.
- Kovach, W.I. 1993. A Multivariate Statistical Package for IBM-PC's, Version 2.1. Kovach Computing Services, Pentraeth, Wales, U.K., 55 pp.
- Maryland Department of the Environment. 1993. Water Quality Regulations for Designated Uses, COMAR 26.08.02. Annapolis, Maryland.

- McMorran, C.P. 1988. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report for 1986 and 1987 Water Years. Susquehanna River Basin Commission (Publication No. 118), Harrisburg, Pennsylvania.
- McMorran, C.P. and S.W. Bollinger. 1989. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #2, 1988 Water Year. Susquehanna River Basin Commission (Publication No. 122), Harrisburg, Pennsylvania.
- 1990. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #3, 1989 Water Year. Susquehanna River Basin Commission (Publication No. 131), Harrisburg, Pennsylvania.
- Merrit, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America (3<sup>rd</sup> ed.). Kendall/Hunt Publishing Company, Dubuque, Iowa, 862 pp.
- New York State Department of Environmental Conservation. 1998. The 1998 Chemung River Basin Waterbody Inventory and Priority Waterbodies List. Division of Water, Albany, New York.
- ——. 1992. Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705. Division of Water, Albany, New York.
- Ohio River Valley Water Sanitation Commission. 1990. Water Quality Trends Ohio River and Its Tributaries. Water Quality Assessment Program, Cincinnati, Ohio.
- Omernik, J.M. 1987. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geograph. 77(1):118-125.
- Peckarsky, B.L., P.R. Fraissinet, M.J. Penton, and D.J. Conklin, Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York.
- Pennsylvania Department of Environmental Resources. 1989. Water Quality Standards of the Department's Rules and Regulations, 25 Pa. Code, Chapter 93.3-5. Division of Water Quality, Harrisburg, Pennsylvania.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. Environmental Protection Agency, Office of Water, Document No. EPA/444/4-89-001, Washington, D.C.
- Rowles, J.L. and D.L. Sitlinger. 1998. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #11, July 1, 1996-June 30, 1997. Susquehanna River Basin Commission (Publication No. 196), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 1999. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #12, July 1, 1997-June 30, 1998. Susquehanna River Basin Commission (Publication No. 205), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 2000. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #13, July 1, 1998-June 30, 1999. Susquehanna River Basin Commission (Publication No. 211), Harrisburg, Pennsylvania.

- Smith, R.A., R.M. Hirsch, and J.R. Slack. 1982. A Study of Trends in Total Phosphorus Measurements at Stations in the NASQAN Network. U.S. Geological Survey, Water Supply Paper 2254.
- Traver, C.L. 1998. Water Quality and Biological Assessment of the Chemung Subbasin. Susquehanna River Basin Commission (Publication No. 198), Harrisburg, Pennsylvania.
- U.S. Environmental Protection Agency. 1990. Freshwater Macroinvertebrate Species List Including Tolerance Values and Functional Feeding Group Designations for Use in Rapid Bioassessment Protocols. Assessment and Watershed Protection Division, Report No. 11075.05, Washington, D.C.

# Appendix A

# WATER QUALITY DATA FOR INTERSTATE STREAMS CROSSING THE NEW YORK-PENNSYLVANIA AND PENNSYLVANIA-MARYLAND BORDERS

| Parameter                 | Units    | APAL 6.9 | BNTY 0.9 | BNTY 0.9 | BNTY 0.9 | BNTY 0.9 | CASC 1.6 | CASC 1.6 | CASC 1.6 |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date                      | yyyymmhh | 19990720 | 19990726 | 19991109 | 20000216 | 20000510 | 19990719 | 19991108 | 20000215 |
| Time                      | hhmm     | 1330     | 1100     | 0830     | 0945     | 0905     | 1330     | 1025     | 1030     |
| Discharge                 | cfs      | 0.697    | 0.971    | 7.040    | 17.620   | 3.795    | 0.209    | 4.269    | 19.920   |
| Temperature               | degree C | 24.7     | 21.1     | 8.2      | 0.8      | 15.6     | 20.7     | 4.6      | 0.4      |
| Conductance               | umhos/cm | 132      | 320      | 208      | 139      | 138      | 93       | 55       | 43       |
| Dissolved Oxygen          | mg/l     | 5.87     | 6.31     | 6.46     | 7.56     | 4.32     | 5.62     | 7.02     | 7.04     |
| рН                        |          | 7.65     | 8.35     | 7.80     | 7.05     | 7.15     | 7.10     | 6.75     | 5.90     |
| Alkalinity                | mg/l     | 34       | 98       | 96       | 32       | 60       | 28       | 20       | 4        |
| Acidity                   | mg/l     | 2        | 0        | 6        | 6        | 4        | 4        | 4        | 4        |
| Solids, Total             | mg/l     | 68       | 116      | 128      | 110      | 130      | 88       | 16       | 44       |
| Solids, Dissolved         | mg/l     | 50       | 116      | 122      | 104      | 110      | 46       | 16       | 30       |
| Ammonia, Total            | mg/l     | < 0.02   | 0.06     | < 0.02   | < 0.02   | < 0.02   | 0.02     | 0.17     | < 0.02   |
| Ammonia, Dissolved        | mg/l     | < 0.02   | 0.06     | < 0.02   | < 0.02   | < 0.02   | 0.02     | < 0.02   | < 0.02   |
| Nitrite, Total            | mg/l     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | 0.01     | < 0.01   | < 0.01   | < 0.01   |
| Nitrite, Dissolved        | mg/l     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Nitrate, Total            | mg/l     | 0.11     | < 0.04   | 0.52     | 0.56     | 0.09     | 0.04     | 0.21     | 0.29     |
| Nitrate, Dissolved        | mg/l     | 0.11     | < 0.04   | 0.52     | 0.56     | 0.09     | 0.04     | 0.21     | 0.29     |
| Phosphorus, Total         | mg/l     | 0.04     | 0.02     | 0.03     | 0.10     | 0.03     | 0.03     | 0.05     | 0.12     |
| Phosphorus, Dissolved     | mg/l     | 0.020    | 0.006    | 0.027    | 0.086    | 0.014    | 0.022    | 0.035    | 0.062    |
| Orthophosphate, Total     | mg/l     | 0.015    | 0.008    | 0.013    | 0.040    | 0.015    | < 0.010  | 0.015    | 0.025    |
| Orthophosphate, Dissolved | mg/l     | 0.007    | 0.005    | 0.006    | 0.020    | 0.013    | < 0.010  | 0.015    | 0.014    |
| Organic Carbon, Total     | mg/l     | 2.9      | 2.1      | 2.0      | 2.7      | 3.9      | 2.5      | 2.6      | 2.8      |
| Calcium                   | mg/l     | 11.20    | 35.00    | 27.70    | 15.50    | 16.90    | 9.07     | 5.90     | 3.55     |
| Magnesium                 | mg/l     | 3.15     | 6.18     | 5.17     | 3.54     | 3.48     | 2.63     | 1.65     | 1.40     |
| Chloride                  | mg/l     | 9        | 21       | 14       | 13       | 6        | 3        | 2        | 5        |
| Sulfate                   | mg/l     | <20      | <20      | 21       | <20      | <20      | <20      | <20      | <20      |
| Turbidity                 | ntu      | 5.68     | <1.00    | 1.84     | 5.04     | 8.54     | 2.56     | 1.83     | 6.48     |
| Iron, Total               | µg/l     | 596      | <20      | <20      | 374      | 507      | 460      | 250      | 578      |
| Iron, Dissolved           | µg/l     | 105      | <20      | <20      | 50       | 66       | 115      | 130      | 437      |
| Manganese, Total          | µg/l     | 212      | <10      | <10      | <10      | <10      | 247      | 75       | 48       |
| Manganese, Dissolved      | µg/l     | 138      | <10      | <10      | <10      | <10      | 128      | 67       | 45       |
| Aluminum, Total           | µg/l     | <200     | <200     | <200     | 360      | 592      | <200     | <200     | 529      |
| Aluminum, Dissolved       | µg/l     | <200     | <200     | <200     | <200     | <200     | <200     | <200     | 394      |

Table A1.Water Quality Data for New York-Pennsylvania Border Streams.

| Parameter                 | Units    | CASC 1.6 | CAYT 1.7 | CAYT 1.7 | CAYT 1.7 | CAYT 1.7 | CHEM 12.0 | CHEM 12.0 | CHEM 12.0 |
|---------------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
| Date                      | yyyymmdd | 20000509 | 19990721 | 19991108 | 20000215 | 20000509 | 19990721  | 19991109  | 20000216  |
| Time                      | hhmm     | 1045     | 1200     | 1525     | 1500     | 1510     | 1300      | 0735      | 0830      |
| Discharge                 | cfs      | 2.034    | 13.406   | 134.230  | 139.710  | 17.371   | 180.000   | 386.000   | 2,760.000 |
| Temperature               | degree C | 15.6     | 21.6     | 6.3      | 0.8      | 20.1     | 25.2      | 6.8       | 1.0       |
| Conductance               | umhos/cm | 57       | 597      | 432      | 224      | 282      | 475       | 420       | 422       |
| Dissolved Oxygen          | mg/l     | 5.09     | 7.53     | 8.65     | 7.62     | 4.95     | 5.82      | 6.78      | 7.48      |
| pH                        |          | 6.65     | 8.30     | 8.50     | 7.00     | 8.55     | 8.90      | 8.20      | 7.75      |
| Alkalinity                | mg/l     | 14       | 124      | 136      | 42       | 98       | 106       | 92        | 68        |
| Acidity                   | mg/l     | 4        | 0        | 0        | 6        | 0        | 0         | 2         | 2         |
| Solids, Total             | mg/l     | 38       | 366      | 300      | 150      | 184      | 268       | 300       | 270       |
| Solids, Dissolved         | mg/l     | 26       | 366      | 290      | 138      | 184      | 264       | 300       | 260       |
| Ammonia, Total            | mg/l     | < 0.02   | 0.04     | < 0.02   | < 0.02   | < 0.02   | 0.02      | < 0.02    | < 0.02    |
| Ammonia, Dissolved        | mg/l     | < 0.02   | 0.04     | < 0.02   | < 0.02   | < 0.02   | < 0.02    | < 0.02    | < 0.02    |
| Nitrite, Total            | mg/l     | < 0.01   | < 0.01   | 0.02     | < 0.01   | < 0.01   | < 0.01    | 0.01      | 0.01      |
| Nitrite, Dissolved        | mg/l     | < 0.01   | < 0.01   | 0.02     | < 0.01   | < 0.01   | < 0.01    | 0.01      | < 0.01    |
| Nitrate, Total            | mg/l     | < 0.04   | 2.59     | 0.41     | 0.50     | 0.45     | < 0.04    | 0.46      | 0.90      |
| Nitrate, Dissolved        | mg/l     | < 0.04   | 2.53     | 0.41     | 0.50     | 0.44     | < 0.04    | 0.46      | 0.90      |
| Phosphorus, Total         | mg/l     | 0.030    | 0.340    | 0.155    | 0.140    | 0.040    | 0.210     | 0.140     | 0.140     |
| Phosphorus, Dissolved     | mg/l     | 0.013    | 0.311    | 0.155    | 0.087    | 0.028    | 0.127     | 0.122     | 0.114     |
| Orthophosphate, Total     | mg/l     | 0.370    | 0.231    | 0.102    | 0.040    | 0.025    | 0.109     | 0.089     | 0.031     |
| Orthophosphate, Dissolved | mg/l     | < 0.010  | 0.225    | 0.101    | 0.024    | 0.017    | 0.079     | 0.075     | 0.014     |
| Organic Carbon, Total     | mg/l     | 2.2      | 3.1      | 3.9      | 2.5      | 2.6      | 6.0       | 2.8       | 2.7       |
| Calcium                   | mg/l     | 5.72     | 49.4     | 45.0     | 19.3     | 31.3     | 38.6      | 48.2      | 32.2      |
| Magnesium                 | mg/l     | 1.68     | 9.34     | 7.70     | 4.51     | 5.67     | 13.40     | 12.20     | 7.01      |
| Chloride                  | mg/l     | 1        | 71       | 59       | 38       | 31       | 60        | 51        | 83        |
| Sulfate                   | mg/l     | <20      | 39       | 22       | <20      | <20      | 26        | 34        | 22        |
| Turbidity                 | ntu      | 1.18     | 2.16     | 8.53     | 4.48     | <1.00    | 8.99      | 2.18      | 3.52      |
| Iron, Total               | ?g/l     | 372      | 47       | 87       | 393      | 97       | 119       | 70        | 321       |
| Iron, Dissolved           | ?g/1     | 189      | <20      | <20      | 57       | 54       | 30        | <20       | 36        |
| Manganese, Total          | ?g/l     | 105      | <10      | 11       | 20       | <10      | 227       | 17        | 45        |
| Manganese, Dissolved      | ?g/1     | 86       | <10      | 11       | 11       | <10      | 14        | 10        | 34        |
| Aluminum, Total           | ?g/l     | <200     | <200     | <200     | 356      | <200     | <200      | <200      | 214       |
| Aluminum, Dissolved       | ?g/1     | <200     | <200     | <200     | <200     | <200     | <200      | <200      | <200      |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                  | Units    | CHEM 12.0 | CHOC 9.1 | COWN 2.2 | COWN 2.2 | COWN 2.2 | COWN 1.0 | COWN 1.0 | COWN 1.0 |
|----------------------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Date                       | yyyymmdd | 20000510  | 19990720 | 19990727 | 19991109 | 20000510 | 19990727 | 19991109 | 20000216 |
| Time                       | hhmm     | 0815      | 1145     | 0830     | 1355     | 1330     | 0930     | 1250     | 1240     |
| Discharge                  | cfs      | 2,290.00  | 0.71     | NA       | NA       | NA       | 17.00    | 26.00    | 354.00   |
| Temperature                | degree C | 19.2      | 24.1     | 10.0     | 9.8      | 10.1     | 14.2     | 8.6      | 3.1      |
| Conductance                | umhos/cm | 265       | 134      | 160      | 201      | 152      | 178      | 203      | 196      |
| Dissolved Oxygen           | mg/l     | 4.17      | 5.33     | 6.40     | 5.63     | 5.34     | 5.63     | 5.35     | 7.05     |
| pН                         |          | 7.40      | 7.45     | 7.10     | 7.50     | 7.05     | 7.20     | 7.45     | 7.40     |
| Alkalinity                 | mg/l     | 68        | 28       | 40       | 40       | 38       | 42       | 40       | 52       |
| Acidity                    | mg/l     | 4         | 2        | 4        | 4        | 6        | 4        | 4        | 6        |
| Solids, Total              | mg/l     | 340       | 68       | 30       | 120      | 114      | 12       | 140      | 138      |
| Solids, Dissolved          | mg/l     | 336       | 58       | 20       | 120      | 108      | 12       | 140      | 132      |
| Ammonia, Total             | mg/l     | 0.04      | < 0.02   | 0.06     | 0.05     | < 0.02   | 0.10     | 0.08     | < 0.02   |
| Ammonia, Dissolved         | mg/l     | 0.04      | < 0.02   | 0.05     | 0.05     | < 0.02   | 0.09     | 0.07     | < 0.02   |
| Nitrite, Total             | mg/l     | 0.06      | < 0.01   | 0.01     | 0.02     | 0.01     | 0.02     | 0.02     | < 0.01   |
| Nitrite, Dissolved         | mg/l     | 0.02      | < 0.01   | 0.01     | 0.01     | 0.01     | 0.02     | 0.02     | < 0.01   |
| Nitrate, Total             | mg/l     | 0.52      | 0.04     | 0.47     | 0.15     | 0.55     | 0.64     | 0.27     | 0.66     |
| Nitrate, Dissolved         | mg/l     | 0.52      | < 0.04   | 0.47     | 0.15     | 0.55     | 0.63     | 0.27     | 0.65     |
| Phosphorus, Total          | mg/l     | 0.17      | 0.03     | 0.02     | 0.05     | 0.02     | 0.06     | 0.07     | 0.10     |
| Phosphorus, Dissolved      | mg/l     | 0.032     | 0.017    | 0.008    | 0.038    | < 0.010  | 0.058    | 0.052    | 0.092    |
| Orthophosphate, Total      | mg/l     | 0.036     | 0.011    | 0.005    | 0.011    | 0.019    | 0.035    | 0.022    | 0.030    |
| Orthophosphat e, Dissolved | mg/l     | 0.015     | 0.008    | 0.004    | 0.003    | < 0.010  | 0.004    | 0.008    | 0.018    |
| Organic Carbon, Total      | mg/l     | 4.7       | 2.3      | 3.4      | 3.6      | 4.5      | 3.6      | 3.7      | 3.4      |
| Calcium                    | mg/l     | 29.7      | 10.0     | 16.5     | 26.0     | 15.1     | 17.9     | 25.0     | 21.5     |
| Magnesium                  | mg/l     | 6.99      | 3.22     | 2.92     | 4.77     | 3.33     | 3.24     | 5.08     | 4.90     |
| Chloride                   | mg/l     | 26        | 13       | 9        | 16       | 10       | 11       | 19       | 16       |
| Sulfate                    | mg/l     | <20       | <20      | <20      | <20      | <20      | <20      | 20       | 20       |
| Turbidity                  | ntu      | 63.00     | 3.09     | 6.63     | 8.26     | 3.50     | 4.26     | 7.82     | 4.20     |
| Iron, Total                | µg/l     | 7,120     | 291      | 191      | 268      | 231      | 147      | 297      | 298      |
| Iron, Dissolved            | μg/l     | 143       | 291      | <20      | <20      | 49       | <20      | <20      | 34       |
| Manganese, Total           | μg/l     | 165       | 51       | 280      | 123      | 62       | 58       | 114      | 66       |
| Manganese, Dissolved       | μg/l     | 13        | 51       | 66       | 60       | 21       | 19       | 46       | 19       |
| Aluminum, Total            | μg/l     | 8,680     | <200     | <200     | <200     | 201      | <200     | <200     | 281      |
| Aluminum, Dissolved        | μg/l     | <200      | <200     | <200     | <200     | <200     | <200     | <200     | <200     |

Table A1.Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | COWN 1.0 | LSNK 7.6 | LSNK 7.6 | LSNK 7.6 | LSNK 7.6 | SEEL 10.3 | SEEL 10.3 | SEEL 10.3 |
|---------------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
| Date                      | yyyymmdd | 20000510 | 19990720 | 19991108 | 20000222 | 20000509 | 19990726  | 19991109  | 20000216  |
| Time                      | hhmm     | 1245     | 0945     | 1235     | 1005     | 1300     | 1300      | 1005      | 1050      |
| Discharge                 | cfs      | 106.000  | 0.387    | 0.213    | 1.345    | 1.971    | NA        | 8.210     | 20.220    |
| Temperature               | degree C | 11.7     | 22.0     | 5.3      | 0.8      | 18.8     | 18.9      | 9.8       | 0.6       |
| Conductance               | umhos/cm | 148      | 195      | 109      | 107      | 115      | 341       | 289       | 219       |
| Dissolved Oxygen          | mg/l     | 5.73     | 5.53     | 6.65     | 7.46     | 4.43     | 5.58      | 5.86      | 7.04      |
| pH                        |          | 7.35     | 7.65     | 7.00     | 6.55     | 7.20     | 7.75      | 7.50      | 7.40      |
| Alkalinity                | mg/l     | 40       | 40       | 32       | 14       | 24       | 126       | 114       | 48        |
| Acidity                   | mg/l     | 6        | 2        | 4        | 4        | 4        | 8         | 8         | 10        |
| Solids, Total             | mg/l     | 106      | 200      | 64       | 84       | 100      | 168       | 162       | 162       |
| Solids, Dissolved         | mg/l     | 106      | 176      | 64       | 84       | 94       | 168       | 162       | 162       |
| Ammonia, Total            | mg/l     | < 0.02   | < 0.02   | < 0.02   | < 0.02   | < 0.02   | 0.06      | < 0.02    | < 0.02    |
| Ammonia, Dissolved        | mg/l     | < 0.02   | < 0.02   | < 0.02   | < 0.02   | < 0.02   | 0.03      | < 0.02    | < 0.02    |
| Nitrite, Total            | mg/l     | 0.01     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01    | < 0.01    | < 0.01    |
| Nitrite, Dissolved        | mg/l     | 0.01     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01    | < 0.01    | < 0.01    |
| Nitrate, Total            | mg/l     | 0.46     | < 0.04   | 0.23     | 0.27     | < 0.04   | 0.11      | 0.07      | 0.60      |
| Nitrate, Dissolved        | mg/l     | 0.46     | < 0.04   | 0.23     | 0.27     | < 0.04   | 0.11      | 0.07      | 0.60      |
| Phosphorus, Total         | mg/l     | 0.020    | 0.040    | 0.040    | 0.080    | 0.020    | 0.020     | 0.023     | 0.040     |
| Phosphorus, Dissolved     | mg/l     | 0.010    | 0.024    | 0.029    | 0.040    | < 0.010  | 0.010     | 0.023     | 0.026     |
| Orthop hosphate, Total    | mg/l     | 0.020    | 0.007    | 0.021    | 0.025    | 0.022    | 0.003     | 0.005     | 0.018     |
| Orthophosphate, Dissolved | mg/l     | < 0.010  | < 0.010  | 0.007    | 0.015    | < 0.010  | < 0.010   | 0.002     | < 0.010   |
| Organic Carbon, Total     | mg/l     | 4.4      | 3.8      | 2.8      | 1.9      | 2.8      | 1.3       | 1.6       | 3.2       |
| Calcium                   | mg/l     | 17.00    | 17.70    | 7.70     | 7.35     | 7.59     | 46.00     | 44.30     | 22.20     |
| Magnesium                 | mg/l     | 3.56     | 3.83     | 2.01     | 2.15     | 2.10     | 6.21      | 6.81      | 4.15      |
| Chloride                  | mg/l     | 9        | 26       | 18       | 16       | 14       | 10        | 20        | 33        |
| Sulfate                   | mg/l     | <20      | <20      | <20      | <20      | <20      | <20       | <20       | <20       |
| Turbidity                 | ntu      | 2.87     | 4.75     | 2.29     | 1.28     | 3.46     | <1.00     | 1.82      | 3.59      |
| Iron, Total               | µg/l     | 192      | 889      | 195      | 104      | 338      | <20       | <20       | 248       |
| Iron, Dissolved           | µg/l     | 65       | 520      | 99       | 50       | 187      | <20       | <20       | 59        |
| Manganese, Total          | µg/l     | 39       | 174      | 46       | 12       | 37       | <10       | <10       | <10       |
| Manganese, Dissolved      | µg/l     | 19       | 114      | 45       | <10      | 30       | <10       | <10       | <10       |
| Aluminum, Total           | µg/l     | <200     | 205      | <200     | <200     | <200     | <200      | <200      | <200      |
| Aluminum, Dissolved       | µg/l     | <200     | <200     | <200     | <200     | <200     | <200      | <200      | <200      |

### Table A1.Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | SEEL 10.3 | SNAK 2.3 | SOUT 7.8 | SUSQ 365.0 | SUSQ 365.0 | SUSQ 365.0 | SUSQ 365.0 |
|---------------------------|----------|-----------|----------|----------|------------|------------|------------|------------|
| Date                      | yyyymmdd | 20000510  | 19990720 | 19990726 | 19990719   | 19991108   | 20000215   | 20000509   |
| Time                      | hhmm     | 1035      | 0830     | 1200     | 1130       | 0940       | 0945       | 0935       |
| Discharge                 | cfs      | 5.493     | 9.180    | 0.166    | 269.800    | 860.100    | 5,825.000  | 2,350.000  |
| Temperature               | degree C | 16.2      | 20.5     | 22.2     | 25.5       | 5.8        | 0.6        | 18.4       |
| Conductance               | umhos/cm | 195       | 135      | 220      | 231        | 185        | 201        | 201        |
| Dissolved Oxygen          | mg/l     | 4.28      | 5.72     | 5.56     | 4.32       | 6.70       | 7.22       | 4.79       |
| pH                        |          | 7.60      | 7.50     | 8.00     | 7.80       | 7.70       | 7.25       | 7.50       |
| Alkalinity                | mg/l     | 66        | 28       | 62       | 68         | 60         | 50         | 68         |
| Acidity                   | mg/l     | 6         | 2        | 4        | 4          | 4          | 4          | 6          |
| Solids, Total             | mg/l     | 124       | 6        | 112      | 154        | 114        | 140        | 140        |
| Solids, Dissolved         | mg/l     | 112       | NA       | 104      | 124        | 114        | 126        | 128        |
| Ammonia, Total            | mg/l     | < 0.02    | < 0.02   | 0.04     | 0.07       | 0.09       | 0.05       | < 0.02     |
| Ammonia, Dissolved        | mg/l     | < 0.02    | < 0.02   | 0.03     | 0.04       | 0.09       | 0.05       | < 0.02     |
| Nitrite, Total            | mg/l     | < 0.01    | < 0.01   | < 0.01   | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
| Nitrite, Dissolved        | mg/l     | < 0.01    | < 0.01   | < 0.01   | < 0.01     | < 0.01     | < 0.01     | < 0.01     |
| Nitrate, Total            | mg/l     | 0.05      | 0.07     | 0.07     | 0.09       | 0.42       | 0.74       | 0.57       |
| Nitrate, Dissolved        | mg/l     | 0.05      | 0.07     | 0.07     | 0.09       | 0.42       | 0.74       | 0.57       |
| Phosphorus, Total         | mg/l     | 0.02      | 0.02     | 0.04     | 0.06       | 0.07       | 0.16       | 0.04       |
| Phosphorus, Dissolved     | mg/l     | 0.010     | 0.013    | 0.032    | 0.048      | 0.065      | 0.068      | 0.018      |
| Orthophosphate, Total     | mg/l     | 0.021     | 0.002    | 0.009    | 0.018      | < 0.002    | 0.029      | 0.024      |
| Orthophosphate, Dissolved | mg/l     | < 0.010   | < 0.010  | 0.009    | 0.017      | < 0.010    | 0.017      | 0.015      |
| Organic Carbon, Total     | mg/l     | 3.3       | 1.8      | 4.9      | 3.8        | 2.5        | 2.2        | 2.6        |
| Calcium                   | mg/l     | 26.8      | 10.5     | 20.2     | 29.1       | 24.7       | 24.8       | 29.3       |
| Magnesium                 | mg/l     | 3.94      | 3.35     | 3.74     | 3.69       | 2.89       | 3.15       | 2.89       |
| Chloride                  | mg/l     | 10        | 13       | 17       | 15         | 15         | 28         | 14         |
| Sulfate                   | mg/l     | <20       | <20      | <20      | <20        | 29         | <20        | <20        |
| Turbidity                 | ntu      | 1.62      | 1.87     | 1.93     | 2.65       | 2.58       | 3.61       | 2.00       |
| Iron, Total               | µg/l     | 121       | 74       | 179      | 162        | 124        | 351        | 317        |
| Iron, Dissolved           | µg/l     | 46        | 24       | 52       | 39         | 34         | 67         | 63         |
| Manganese, Total          | µg/l     | <10       | <10      | 93       | 47         | 16         | 31         | 36         |
| Manganese, Dissolved      | µg/l     | <10       | <10      | 42       | 18         | 16         | 17         | 13         |
| Aluminum, Total           | μg/l     | <200      | <200     | <200     | <200       | <200       | 262        | <200       |
| Aluminum, Dissolved       | µg/l     | <200      | <200     | <200     | <200       | <200       | <200       | <200       |

### Table A1.Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | SUSQ 340.0 | SUSQ 340.0 | SUSQ 340.0 | SUSQ 340.0 | SUSQ 289.1 | SUSQ 289.1 | SUSQ 289.1 | SUSQ 289.1 |
|---------------------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|
| Date                      | yyyymmdd | 19990719   | 19991108   | 20000215   | 20000509   | 19990721   | 19991108   | 20000215   | 20000509   |
| Time                      | hhmm     | 1600       | 1145       | 1140       | 1205       | 1030       | 1415       | 1330       | 1425       |
| Discharge                 | cfs      | 429        | 1,160      | 7,670      | 2,410      | 643        | 2,980      | 10,100     | 6,130      |
| Temperature               | degree C | 26.6       | 6.7        | 0.5        | 19.1       | 24.6       | 7.1        | 0.8        | 20.3       |
| Conductance               | umhos/cm | 211        | 157        | 171        | 198        | 328        | 200        | 326        | 244        |
| Dissolved Oxygen          | mg/l     | 4.60       | 6.93       | 7.34       | 4.48       | 4.98       | 6.80       | 7.14       | 4.58       |
| pН                        |          | 7.70       | 7.80       | 6.95       | 7.70       | 8.15       | 7.50       | 7.10       | 8.15       |
| Alkalinity                | mg/l     | 60         | 54         | 40         | 62         | 76         | 68         | 60         | 34         |
| Acidity                   | mg/l     | 2          | 4          | 6          | 6          | 2          | 4          | 6          | 2          |
| Solids, Total             | mg/l     | 142        | 92         | 134        | 124        | 220        | 108        | 214        | 156        |
| Solids, Dissolved         | mg/l     | 108        | 92         | 116        | 116        | 218        | 108        | 184        | 94         |
| Ammonia, Total            | mg/l     | 0.05       | < 0.02     | 0.05       | < 0.02     | 0.03       | < 0.02     | 0.18       | < 0.02     |
| Ammonia, Dissolved        | mg/l     | 0.03       | < 0.02     | 0.05       | < 0.02     | 0.03       | < 0.02     | 0.18       | < 0.02     |
| Nitrite, Total            | mg/l     | < 0.01     | < 0.01     | 0.01       | < 0.01     | 0.01       | 0.02       | 0.01       | 0.02       |
| Nitrite, Dissolved        | mg/l     | < 0.01     | < 0.01     | < 0.01     | < 0.01     | 0.01       | 0.02       | 0.01       | 0.02       |
| Nitrate, Total            | mg/l     | < 0.04     | 0.26       | 0.78       | 0.54       | 0.39       | 0.42       | 0.98       | 0.58       |
| Nitrate, Dissolved        | mg/l     | < 0.04     | 0.26       | 0.78       | 0.54       | 0.38       | 0.42       | 0.98       | 0.58       |
| Phosphorus, Total         | mg/l     | 0.04       | 0.06       | 0.14       | 0.02       | 0.12       | 0.06       | 0.20       | 0.03       |
| Phosphorus, Dissolved     | mg/l     | 0.026      | 0.034      | 0.064      | 0.011      | 0.084      | 0.060      | 0.093      | < 0.010    |
| Orthophosphate, Total     | mg/l     | 0.008      | 0.009      | 0.018      | 0.019      | 0.042      | 0.014      | 0.042      | 0.017      |
| Orthophosphate, Dissolved | mg/l     | < 0.010    | 0.009      | 0.016      | < 0.010    | 0.018      | 0.006      | 0.038      | < 0.010    |
| Organic Carbon, Total     | mg/l     | 3.6        | 2.6        | 2.3        | 2.4        | 3.9        | 3.6        | 2.3        | 2.7        |
| Calcium                   | mg/l     | 26.2       | 20.1       | 18.3       | 27.7       | 35.0       | 24.6       | 26.0       | 31.3       |
| Magnesium                 | mg/l     | 3.27       | 2.61       | 2.78       | 2.90       | 5.71       | 3.82       | 4.65       | 4.51       |
| Chloride                  | mg/l     | 15         | 15         | 24         | 14         | 34         | 20         | 61         | 21         |
| Sulfate                   | mg/l     | <20        | <20        | <20        | <20        | <20        | <20        | <20        | <20        |
| Turbidity                 | ntu      | 3.15       | 1.28       | 8.04       | 2.26       | <1.00      | 4.38       | 5.63       | 1.45       |
| Iron, Total               | µg/l     | 255        | 183        | 570        | 176        | 84         | 161        | 703        | 108        |
| Iron, Dissolved           | µg/l     | 69         | 35         | 81         | 62         | 25         | 38         | 46         | 45         |
| Manganese, Total          | μg/l     | 73         | 32         | 44         | 38         | 43         | 19         | 47         | 23         |
| Manganese, Dissolved      | μg/l     | 32         | 28         | 22         | 24         | <10        | 13         | 19         | 10         |
| Aluminum, Total           | μg/l     | <200       | <200       | 512        | <200       | <200       | <200       | 593        | <200       |
| Aluminum, Dissolved       | μg/l     | <200       | <200       | <200       | <200       | <200       | <200       | <200       | <200       |

### Table A1. Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | TIOG 10.8 | TIOG 10.8 | TIOG 10.8 | TIOG 10.8 | TROW 1.8 | TRUP 4.5 | TRUP 4.5 | TRUP 4.5 |
|---------------------------|----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|
| Date                      | yyyymmdd | 19990726  | 19991109  | 20000216  | 20000510  | 19990719 | 19990727 | 19991109 | 20000216 |
| Time                      | hhmm     | 1445      | 1145      | 1145      | 1145      | 1500     | 1130     | 1530     | 1400     |
| Discharge                 | cfs      | 76.000    | 117.100   | 809.200   | 335.000   | NA       | 3.128    | 7.870    | 27.700   |
| Temperature               | degree C | 24.4      | 6.1       | 2.2       | 15.1      | 21.8     | 24.1     | 4.7      | 1.1      |
| Conductance               | umhos/cm | 224       | 208       | 191       | 161       | 113      | 382      | 283      | 224      |
| Dissolved Oxygen          | mg/l     | 5.33      | 5.92      | 6.94      | 4.33      | 5.05     | 5.58     | 6.99     | 7.03     |
| pH                        |          | 7.70      | 7.30      | 7.15      | 6.90      | 7.00     | 8.40     | 7.90     | 7.50     |
| Alkalinity                | mg/l     | 36        | 34        | 40        | 34        | 22       | 112      | 104      | 48       |
| Acidity                   | mg/l     | 8         | 8         | 10        | 8         | 4        | 0        | 4        | 6        |
| Solids, Total             | mg/l     | 92        | 138       | 138       | 120       | 64       | 120      | 184      | 166      |
| Solids, Dissolved         | mg/l     | 88        | 138       | 138       | 112       | 50       | 120      | 184      | 162      |
| Ammonia, Total            | mg/l     | 0.04      | < 0.02    | 0.05      | < 0.02    | < 0.02   | 0.03     | < 0.02   | < 0.02   |
| Ammonia, Dissolved        | mg/l     | 0.03      | < 0.02    | 0.05      | < 0.02    | < 0.02   | 0.03     | < 0.02   | < 0.02   |
| Nitrite, Total            | mg/l     | 0.01      | < 0.01    | < 0.01    | < 0.01    | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Nitrite, Dissolved        | mg/l     | 0.01      | < 0.01    | < 0.01    | < 0.01    | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Nitrate, Total            | mg/l     | 0.27      | 0.37      | 0.56      | 0.40      | 0.12     | < 0.04   | 0.16     | 0.58     |
| Nitrate, Dissolved        | mg/l     | 0.27      | 0.37      | 0.56      | 0.37      | 0.12     | < 0.04   | 0.16     | 0.58     |
| Phosphorus, Total         | mg/l     | 0.03      | 0.04      | 0.08      | 0.02      | 0.02     | 0.02     | 0.03     | 0.04     |
| Phosphorus, Dissolved     | mg/l     | 0.013     | 0.036     | 0.040     | < 0.010   | 0.017    | 0.018    | 0.028    | 0.030    |
| Orthophosphate, Total     | mg/l     | 0.010     | 0.004     | 0.026     | 0.020     | 0.005    | 0.019    | 0.006    | 0.027    |
| Orthophosphate, Dissolved | mg/l     | 0.006     | < 0.010   | 0.026     | < 0.010   | 0.005    | 0.009    | 0.003    | 0.014    |
| Organic Carbon, Total     | mg/l     | 2.9       | 2.6       | 2.5       | 3.0       | 1.6      | 4.1      | 3.0      | 3.0      |
| Calcium                   | mg/l     | 21.8      | 27.7      | 20.5      | 18.4      | 7.84     | 38.2     | 37.7     | 23.3     |
| Magnesium                 | mg/l     | 4.79      | 6.64      | 5.34      | 4.13      | 2.70     | 7.31     | 9.11     | 5.54     |
| Chloride                  | mg/l     | 9         | 13        | 13        | 8         | 10       | 31       | 23       | 29       |
| Sulfate                   | mg/l     | 36        | 51        | 34        | 25        | <20      | <20      | 25       | <20      |
| Turbidity                 | ntu      | 2.66      | 4.13      | 2.79      | 1.96      | 1.19     | 3.47     | 3.92     | 4.76     |
| Iron, Total               | µg/l     | 140       | 137       | 219       | 166       | 55       | 95       | 36       | 287      |
| Iron, Dissolved           | µg/l     | <20       | <20       | 21        | 80        | <20      | 22       | <20      | 48       |
| Manganese, Total          | μg/l     | 90        | 111       | 448       | 195       | 15       | 11       | 18       | 11       |
| Manganese, Dissolved      | μg/l     | 46        | 84        | 403       | 161       | 15       | <10      | 15       | <10      |
| Aluminum, Total           | μg/l     | <200      | <200      | <200      | <200      | <200     | <200     | <200     | 303      |
| Aluminum, Dissolved       | μg/l     | <200      | <200      | <200      | <200      | <200     | <200     | <200     | <200     |

Table A1.Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | TRUP 4.5 | WAPP 2.6 |
|---------------------------|----------|----------|----------|
| Date                      | yyyymmdd | 20000510 | 19990721 |
| Time                      | hhmm     | 1455     | 0830     |
| Discharge                 | cfs      | 2.997    | 1.291    |
| Temperature               | degree C | 20.7     | 20.3     |
| Conductance               | umhos/cm | 220      | 156      |
| Dissolved Oxygen          | mg/l     | 3.83     | 4.88     |
| pН                        |          | 7.95     | 7.35     |
| Alkalinity                | mg/l     | 78       | 40       |
| Acidity                   | mg/l     | 6        | 2        |
| Solids, Total             | mg/l     | 138      | 120      |
| Solids, Dissolved         | mg/l     | 138      | 120      |
| Ammonia, Total            | mg/l     | < 0.02   | < 0.02   |
| Ammonia, Dissolved        | mg/l     | < 0.02   | < 0.02   |
| Nitrite, Total            | mg/l     | < 0.01   | < 0.01   |
| Nitrite, Dissolved        | mg/l     | < 0.01   | < 0.01   |
| Nitrate, Total            | mg/l     | < 0.04   | 0.37     |
| Nitrate, Dissolved        | mg/l     | < 0.04   | 0.36     |
| Phosphorus, Total         | mg/l     | 0.02     | 0.02     |
| Phosphorus, Dissolved     | mg/l     | < 0.010  | 0.016    |
| Orthophosphat e, Total    | mg/l     | 0.016    | < 0.002  |
| Orthophosphate, Dissolved | mg/l     | < 0.01   | < 0.01   |
| Organic Carbon, Total     | mg/l     | 4.5      | 1.8      |
| Calcium                   | mg/l     | 21.5     | 14.4     |
| Magnesium                 | mg/l     | 4.64     | 4.48     |
| Chloride                  | mg/l     | 11       | 12       |
| Sulfate                   | mg/l     | <20      | <20      |
| Turbidity                 | ntu      | 2.37     | 1.82     |
| Iron, Total               | µg/l     | 91       | 46       |
| Iron, Dissolved           | µg/l     | 21.00    | 4.48     |
| Manganese, Total          | µg/l     | <10      | 10       |
| Manganese, Dissolved      | µg/l     | <10      | <10      |
| Aluminum, Total           | µg/l     | <200     | <200     |
| Aluminum, Dissolved       | µg/l     | <200     | <200     |

Table A1.Water Quality Data for New York-Pennsylvania Border Streams—Continued

| Parameter                 | Units    | BBDC 4.1 | CNWG 4.4 | CNWG 4.4 | CNWG 4.4 | CNWG 4.4 | DEER 44.2 | DEER 44.2 | DEER 44.2 |
|---------------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
| Date                      | yyyymmdd | 19990803 | 19990804 | 19991112 | 20000308 | 20000503 | 19990803  | 19991111  | 20000308  |
| Time                      | hhmm     | 1130     | 1130     | 1105     | 1005     | 1200     | 0800      | 1040      | 0730      |
| Discharge                 | cfs      | 0.633    | 5.214    | 7.598    | 16.420   | 7.011    | 2.655     | 12.780    | 25.060    |
| Temperature               | degree C | 17.6     | 22.1     | 7.7      | 8.8      | 12.4     | 19.7      | 10.2      | 7.7       |
| Conductance               | umhos/cm | 132      | 233      | 228      | 222      | 220      | 221       | 182       | 184       |
| Dissolved Oxygen          | mg/l     | 6.75     | 5.33     | 5.36     | 5.49     | 4.89     | 5.37      | 5.36      | 5.50      |
| pН                        |          | 7.15     | 7.40     | 7.20     | 7.05     | 6.90     | 7.60      | 7.20      | 7.00      |
| Alkalinity                | mg/l     | 22       | 44       | 40       | 28       | 28       | 50        | 54        | 26        |
| Acidity                   | mg/l     | 4        | 4        | 6        | 4        | 4        | 4         | 4         | 4         |
| Solids, Total             | mg/l     | 106      | 208      | 148      | 168      | 194      | 156       | 116       | 104       |
| Solids, Dissolved         | mg/l     | 76       | 176      | 148      | 162      | 182      | 142       | 102       | 104       |
| Ammonia, Total            | mg/l     | 0.02     | 0.07     | 0.09     | < 0.02   | 0.02     | 0.03      | < 0.02    | < 0.02    |
| Ammonia, Dissolved        | mg/l     | < 0.02   | 0.06     | 0.09     | < 0.02   | 0.02     | 0.03      | < 0.02    | < 0.02    |
| Nitrite, Total            | mg/l     | < 0.01   | 0.03     | 0.04     | 0.02     | 0.04     | 0.01      | 0.01      | < 0.01    |
| Nitrite, Dissolved        | mg/l     | < 0.01   | 0.02     | 0.04     | 0.02     | 0.04     | 0.01      | 0.01      | < 0.01    |
| Nitrate, Total            | mg/l     | 4.98     | 5.26     | 9.01     | 9.44     | 9.54     | 2.73      | 4.41      | 5.30      |
| Nitrate, Dissolved        | mg/l     | 4.98     | 4.95     | 9.01     | 9.34     | 9.54     | 2.69      | 4.40      | 5.24      |
| Phosphorus, Total         | mg/l     | 0.04     | 0.13     | 0.09     | 0.1      | 0.04     | 0.03      | 0.03      | 0.05      |
| Phosphorus, Dissolved     | mg/l     | 0.019    | 0.064    | 0.044    | 0.063    | 0.024    | 0.018     | 0.028     | 0.033     |
| Orthophosphate, Total     | mg/l     | 0.029    | 0.079    | 0.024    | 0.033    | 0.016    | 0.007     | 0.015     | 0.052     |
| Orthophosphate, Dissolved | mg/l     | 0.004    | 0.040    | 0.021    | 0.011    | 0.013    | 0.006     | 0.006     | 0.026     |
| Organic Carbon, Total     | mg/l     | 1.3      | 3.3      | 2.3      | 1.6      | 2.2      | 2.5       | 1.5       | 1.0       |
| Calcium                   | mg/l     | 8.84     | 17.10    | 17.50    | 16.40    | 18.40    | 18.30     | 17.20     | 13.60     |
| Magnesium                 | mg/l     | 4.98     | 10.70    | 9.70     | 8.74     | 11.00    | 6.15      | 6.13      | 5.16      |
| Chloride                  | mg/l     | 10       | 18       | 19       | 18       | 14       | 23        | 23        | 23        |
| Sulfate                   | mg/l     | <20      | <20      | <20      | <20      | <20      | <20       | <20       | <20       |
| Turbidity                 | ntu      | 10.50    | 16.20    | 1.20     | 3.65     | 2.34     | 2.21      | 1.50      | 1.47      |
| Iron, Total               | µg/l     | 209      | 834      | 129      | 308      | 300      | 120       | 109       | 162       |
| Iron, Dissolved           | µg/l     | <20      | 83       | 26       | 31       | 50       | 29        | 44        | 30        |
| Manganese, Total          | µg/l     | 33       | 144      | 34       | 38       | 40       | 27        | 22        | 19        |
| Manganese, Dissolved      | µg/l     | <10      | 114      | 34       | 29       | 20       | 23        | 19        | 15        |
| Aluminum, Total           | µg/l     | <200     | 616      | <200     | 209      | <200     | <200      | <200      | <200      |
| Aluminum, Dissolved       | µg/l     | <200     | <200     | <200     | <200     | <200     | <200      | <200      | <200      |

Table A2.Water Quality Data for Pennsylvania-Maryland Border Streams

| Parameter                 | Units    | DEER 44.2 | EBAU 1.5 | EBAU 1.5 | EBAU 1.5 | EBAU 1.5 | FBDC 4.1 | LNGA 2.5 | LNGA 2.5 |
|---------------------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Date                      | yyyymmdd | 20000502  | 19990803 | 19991111 | 20000208 | 20000502 | 19990803 | 19990802 | 19991111 |
| Time                      | hhmm     | 1005      | 0900     | 1245     | 0940     | 1100     | 1030     | 0800     | 0830     |
| Discharge                 | cfs      | 5.473     | 1.620    | 6.730    | 7.574    | 2.011    | 0.433    | 0.501    | 0.831    |
| Temperature               | degree C | 13.5      | 18.8     | 10.2     | 0.5      | 12.6     | 17.9     | 18.8     | 11.3     |
| Conductance               | umhos/cm | 180       | 280      | 168      | 172      | 178      | 119      | 201      | 169      |
| Dissolved Oxygen          | mg/l     | 5.34      | 5.74     | 5.53     | 7.33     | 5.18     | 6.03     | 5.47     | 4.90     |
| pH                        |          | 7.05      | 7.50     | 7.00     | 7.10     | 6.80     | 7.10     | 7.20     | 7.10     |
| Alkalinity                | mg/l     | 30        | 44       | 48       | 42       | 24       | 24       | 40       | 36       |
| Acidity                   | mg/l     | 4         | 6        | 6        | 6        | 6        | 4        | 6        | 6        |
| Solids, Total             | mg/l     | 152       | 166      | 128      | 158      | 164      | 88       | 208      | 136      |
| Solids, Dissolved         | mg/l     | 146       | 156      | 118      | 158      | 154      | 72       | 188      | 136      |
| Ammonia, Total            | mg/l     | < 0.02    | 0.03     | < 0.02   | 0.42     | < 0.02   | 0.02     | 0.11     | < 0.02   |
| Ammonia, Dissolved        | mg/l     | < 0.02    | 0.03     | < 0.02   | 0.42     | < 0.02   | 0.02     | 0.09     | < 0.02   |
| Nitrite, Total            | mg/l     | < 0.01    | 0.04     | 0.01     | 0.04     | 0.02     | < 0.01   | 0.04     | 0.02     |
| Nitrite, Dissolved        | mg/l     | < 0.01    | 0.04     | 0.01     | 0.03     | 0.02     | < 0.01   | 0.03     | 0.02     |
| Nitrate, Total            | mg/l     | 4.86      | 5.80     | 6.04     | 7.59     | 5.67     | 3.48     | 3.88     | 5.88     |
| Nitrate, Dissolved        | mg/l     | 4.86      | 5.80     | 6.04     | 7.59     | 5.67     | 3.48     | 3.85     | 5.82     |
| Phosphorus, Total         | mg/l     | 0.02      | 0.25     | 0.12     | 0.99     | 0.02     | 0.02     | 0.11     | 0.05     |
| Phosphorus, Dissolved     | mg/l     | < 0.010   | 0.226    | 0.117    | 0.084    | 0.013    | 0.014    | 0.048    | 0.046    |
| Orthophosphate, Total     | mg/l     | < 0.010   | 0.158    | 0.057    | 0.017    | 0.015    | 0.010    | 0.022    | 0.015    |
| Orthophosphate, Dissolved | mg/l     | < 0.010   | 0.155    | 0.057    | 0.013    | 0.014    | < 0.010  | 0.022    | 0.015    |
| Organic Carbon, Total     | mg/l     | 1.5       | 2.5      | 1.4      | 1.6      | 1.6      | 2.2      | 5.1      | 1.7      |
| Calcium                   | mg/l     | 15.00     | 14.20    | 14.60    | 13.80    | 14.10    | 7.55     | 16.60    | 17.50    |
| Magnesium                 | mg/l     | 5.94      | 5.88     | 5.63     | 5.52     | 5.76     | 4.17     | 5.43     | 5.56     |
| Chloride                  | mg/l     | 21        | 32       | 20       | 22       | 22       | 8        | 17       | 16       |
| Sulfate                   | mg/l     | <20       | <20      | <20      | <20      | <20      | <20      | <20      | <20      |
| Turbidity                 | ntu      | 1.11      | 1.78     | <1.00    | 1.02     | 1.05     | 2.78     | 38.70    | 2.20     |
| Iron, Total               | µg/l     | 156       | 102      | 80       | 114      | 180      | 311      | 857      | 230      |
| Iron, Dissolved           | µg/l     | 50        | 40       | 51       | 40       | 45       | 114      | 155      | 24       |
| Manganese, Total          | µg/l     | 30        | 13       | 29       | 25       | 31       | 11       | 212      | 53       |
| Manganese, Dissolved      | µg/l     | 22        | 10       | 28       | 20       | 20       | <10      | 154      | 43       |
| Aluminum, Total           | µg/l     | <200      | <200     | <200     | <200     | <200     | <200     | 664      | <200     |
| Aluminum, Dissolved       | µg/l     | <200      | <200     | <200     | <200     | <200     | <200     | <200     | <200     |

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams—Continued

| Parameter                 | Units    | LNGA 2.5 | LNGA 2.5 | OCTO 6.6 | ОСТО 6.6 | ОСТО 6.6 | ОСТО 6.6 | SBCC 20.4 | SCTT 3.0 |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|
| Date                      | yyyymmdd | 20000208 | 20000502 | 19990804 | 19991112 | 20000209 | 20000503 | 19990802  | 19990804 |
| Time                      | hhmm     | 0815     | 0745     | 1015     | 0930     | 0945     | 1015     | 0900      | 0800     |
| Discharge                 | cfs      | 3.344    | 0.993    | NA       | NA       | NA       | 149.270  | 0.619     | 0.082    |
| Temperature               | degree C | 0.30     | 12.00    | 2.44     | 8.20     | 0.80     | 13.20    | 18.30     | 17.40    |
| Conductance               | umhos/cm | 166      | 166      | 257      | 225      | 228      | 221      | 167       | 416      |
| Dissolved Oxy gen         | mg/l     | 7.61     | 4.72     | 5.94     | 5.88     | 7.81     | 4.89     | 6.34      | 2.88     |
| рН                        |          | 6.75     | 6.75     | 7.95     | 7.70     | 7.30     | 7.20     | 7.60      | 7.20     |
| Alkalinity                | mg/l     | 32       | 28       | 36       | 30       | 34       | 38       | 58        | 132      |
| Acidity                   | mg/l     | 6        | 6        | 2        | 2        | 2        | 2        | 4         | 20       |
| Solids, Total             | mg/l     | 154      | 166      | 208      | 188      | 140      | 200      | 136       | 310      |
| Solids, Dissolved         | mg/l     | 146      | 142      | 202      | 188      | 140      | 200      | 136       | 248      |
| Ammonia, Total            | mg/l     | < 0.02   | 0.03     | 0.03     | < 0.02   | 0.04     | 0.04     | 0.03      | 2.94     |
| Ammonia, Dissolved        | mg/l     | < 0.02   | 0.03     | 0.03     | < 0.02   | 0.03     | 0.04     | < 0.02    | 2.84     |
| Nitrite, Total            | mg/l     | 0.01     | 0.01     | < 0.01   | 0.01     | 0.03     | 0.02     | 0.01      | 0.06     |
| Nitrite, Dissolved        | mg/l     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | 0.03     | 0.02     | < 0.01    | 0.06     |
| Nitrate, Total            | mg/l     | 6.07     | 5.81     | 2.54     | 5.95     | 8.28     | 6.80     | 1.08      | 0.21     |
| Nitrate, Dissolved        | mg/l     | 6.07     | 5.81     | 2.54     | 5.87     | 1.24     | 6.74     | 1.08      | 0.21     |
| Phosphorus, Total         | mg/l     | 0.16     | 0.03     | 0.07     | 0.05     | 0.12     | 0.07     | 0.03      | 2.00     |
| Phosphorus, Dissolved     | mg/l     | 0.146    | 0.021    | 0.067    | 0.011    | 0.064    | 0.016    | 0.021     | 0.114    |
| Orthophosphate, Total     | mg/l     | 0.041    | 0.024    | 0.057    | 0.026    | 0.025    | 0.018    | 0.020     | 0.450    |
| Orthophosphate, Dissolved | mg/l     | 0.037    | 0.017    | 0.028    | 0.007    | 0.024    | 0.015    | 0.005     | 0.097    |
| Organic Carbon, Total     | mg/l     | 1.4      | 2.4      | 3.6      | 2.2      | 1.8      | 3.1      | 3.1       | 8.9      |
| Calcium                   | mg/l     | 16.5     | 14.7     | 21.3     | 19.9     | 19.9     | 18.3     | 19.2      | 32.6     |
| Magnesium                 | mg/l     | 5.59     | 6.02     | 10.60    | 9.98     | 9.78     | 9.71     | 3.79      | 17.80    |
| Chloride                  | mg/l     | 18       | 13       | 18       | 16       | 17       | 12       | 8         | 37       |
| Sulfate                   | mg/l     | <20      | <20      | 22       | <20      | 26       | <20      | <20       | <20      |
| Turbidity                 | ntu      | 1.90     | 3.72     | 3.02     | 3.00     | 1.86     | 2.46     | 6.63      | 68.20    |
| Iron, Total               | µg/l     | 87       | 481      | 99       | 67       | 179      | 332      | 370       | 14,200   |
| Iron, Dissolved           | µg/l     | 24       | 74       | <20      | <20      | 24       | 41       | 78        | 5,290    |
| Manganese, Total          | µg/l     | 24       | 59       | 42       | 26       | 28       | 51       | 27        | 2,290    |
| Manganese, Dissolved      | µg/l     | 17       | 39       | 42       | 26       | 21       | <10      | 22        | 2,290    |
| Aluminum, Total           | µg/l     | <200     | 335      | <200     | <200     | <200     | 313      | <200      | 258      |
| Aluminum, Dissolved       | µg/l     | <200     | <200     | <200     | <200     | <200     | <200     | <200      | <200     |

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Stream—Continued

| Parameter                 | Units    | SCTT 3.0 | SCTT 3.0 | SCTT 3.0 | SUSQ 44.5 | SUSQ 44.5 | SUSQ 44.5  | SUSQ 44.5  |
|---------------------------|----------|----------|----------|----------|-----------|-----------|------------|------------|
| Date                      | yyyymmdd | 19991111 | 20000208 | 20000502 | 19990805  | 19991110  | 20000210   | 20000511   |
| Time                      | hhmm     | 1405     | 1105     | 1245     | 0830      | 1335      | 1310       | 1230       |
| Discharge                 | cfs      | 0.785    | 0.601    | 0.601    | 2,930.000 | 9,390.000 | 15,900.000 | 25,100.000 |
| Temperature               | degree C | 10.5     | 2.3      | 12.6     | 26.4      | 24.9      | 14.6       | 24.5       |
| Conductance               | umhos/cm | 431      | 483      | 320      | 409       | 293       | 275        | 252        |
| Dissolved Oxygen          | mg/l     | 3.36     | 6.90     | 4.47     | 4.27      | NA        | NA         | NA         |
| pH                        |          | 6.25     | 7.10     | 6.90     | 7.75      | 7.40      | 7.40       | 7.90       |
| Alkalinity                | mg/l     | 128      | 124      | 40       | 66        | 56        | 58         | 52         |
| Acidity                   | mg/l     | 18       | 14       | 18       | 4         | 6         | 6          | 4          |
| Solids, Total             | mg/l     | 490      | 318      | 208      | 322       | 186       | 206        | 190        |
| Solids, Dissolved         | mg/l     | 468      | 314      | 196      | 310       | 180       | 198        | 172        |
| Ammonia, Total            | mg/l     | 0.32     | 0.40     | 9.04     | 0.07      | < 0.02    | 0.14       | < 0.02     |
| Ammonia, Dissolved        | mg/l     | 0.32     | 0.40     | 9.04     | 0.06      | < 0.02    | 0.14       | < 0.02     |
| Nitrite, Total            | mg/l     | 0.05     | 0.09     | 0.18     | 0.01      | 0.02      | 0.02       | 0.01       |
| Nitrite, Dissolved        | mg/l     | 0.05     | 0.09     | 0.18     | 0.02      | 0.02      | 0.02       | 0.01       |
| Nitrate, Total            | mg/l     | 0.61     | 1.84     | 1.20     | 0.34      | 0.83      | 1.44       | 0.60       |
| Nitrate, Dissolved        | mg/l     | 0.61     | 1.84     | 1.20     | 0.34      | 0.83      | 1.43       | 0.60       |
| Phosphorus, Total         | mg/l     | 0.690    | 0.220    | 0.190    | 0.060     | 0.177     | 0.060      | 0.110      |
| Phosphorus, Dissolved     | mg/l     | 0.483    | 0.088    | 0.081    | 0.030     | 0.177     | 0.048      | 0.074      |
| Orthophosphate, Total     | mg/l     | 0.382    | 0.071    | 0.064    | 0.029     | 0.047     | 0.043      | 0.068      |
| Orthophosphate, Dissolved | mg/l     | 0.382    | 0.036    | 0.032    | 0.016     | 0.047     | 0.035      | 0.063      |
| Organic Carbon, Total     | mg/l     | 149.0    | 3.2      | 9.4      | 4.7       | 2.9       | 1.9        | 2.5        |
| Calcium                   | mg/l     | 36.4     | 28.0     | 18.1     | 33.0      | 31.1      | 29.6       | 24.2       |
| Magnesium                 | mg/l     | 19.60    | 16.10    | 8.65     | 14.30     | 8.35      | 8.03       | 6.79       |
| Chloride                  | mg/l     | 39       | 100      | 29       | 32        | 22        | 23         | 15         |
| Sulfate                   | mg/l     | <20      | 23       | 46       | 66        | 59        | 41         | 48         |
| Turbidity                 | ntu      | 9.50     | 7.85     | 2.19     | 5.11      | 3.50      | 1.48       | 2.67       |
| Iron, Total               | µg/l     | 18,200   | 1,830    | 1,070    | 237       | 240       | 198        | 376        |
| Iron, Dissolved           | µg/l     | 16,500   | 1,240    | 667      | <20       | 27        | 40         | <20        |
| Manganese, Total          | µg/l     | 1,930.0  | 564.0    | 524.0    | 143.0     | 34.4      | 48.5       | 101.0      |
| Manganese, Dissolved      | µg/l     | 1,820.0  | 516.0    | 490.0    | 53.0      | 11.0      | 39.8       | 5.1        |
| Aluminum, Total           | µg/l     | 209.0    | <200.0   | <200.0   | 249.0     | 68.5      | 61.6       | 144.0      |
| Aluminum, Dissolved       | µg/l     | <200.0   | <200.0   | <200.0   | <200.0    | NA        | NA         | 58.8       |

### Table A2. Water Quality Data for Pennsylvania-Maryland Border Streams—Continued

| Parameter                 | Units    | SUSQ 10.0 | SUSQ 10.0 | SUSQ 10.0 | SUSQ 10.0 |
|---------------------------|----------|-----------|-----------|-----------|-----------|
| Date                      | yyyymmdd | 19990805  | 19991112  | 20000208  | 20000503  |
| Time                      | hhmm     | 1130      | 0805      | 1200      | 0845      |
| Discharge                 | cfs      | 2,770     | 17,700    | 14,000    | 54,300    |
| Temperature               | degree C | 31.2      | 12.6      | 3.3       | 14.8      |
| Conductance               | umhos/cm | 405       | 304       | 247       | 178       |
| Dissolved Oxygen          | mg/l     | 4.73      | 4.57      | 6.99      | 5.22      |
| рН                        |          | 7.55      | 7.70      | 7.40      | 7.35      |
| Alkalinity                | mg/l     | 70        | 74        | 68        | 38        |
| Acidity                   | mg/l     | 6         | 6         | 4         | 6         |
| Solids, Total             | mg/l     | 328       | 210       | 172       | 156       |
| Solids, Dissolved         | mg/l     | 304       | 210       | 172       | 136       |
| Ammonia, Total            | mg/l     | 0.11      | 0.07      | 0.12      | 0.08      |
| Ammonia, Dissolved        | mg/l     | 0.10      | 0.06      | 0.11      | 0.08      |
| Nitrite, Total            | mg/l     | 0.07      | 0.01      | 0.02      | 0.01      |
| Nitrite, Dissolved        | mg/l     | 0.07      | < 0.01    | 0.02      | < 0.01    |
| Nitrate, Total            | mg/l     | 0.47      | 1.21      | 1.70      | 1.00      |
| Nitrate, Dissolved        | mg/l     | 0.47      | 1.21      | 1.70      | 1.00      |
| Phosphorus, Total         | mg/l     | 0.04      | 0.04      | 0.17      | 0.04      |
| Phosphorus, Dissolved     | mg/l     | 0.020     | 0.031     | 0.063     | 0.016     |
| Orthophosphate, Total     | mg/l     | 0.022     | 0.071     | 0.016     | 0.018     |
| Orthophosphate, Dissolved | mg/l     | 0.010     | 0.017     | 0.013     | 0.017     |
| Organic Carbon, Total     | mg/l     | 3.6       | 3.0       | 2.3       | 2.5       |
| Calcium                   | mg/l     | 36.3      | 32.3      | 28.8      | 19.9      |
| Magnesium                 | mg/l     | 13.40     | 8.90      | 6.84      | 6.02      |
| Chloride                  | mg/l     | 30        | 24        | 20        | 11        |
| Sulfate                   | mg/l     | 60        | 33        | 33        | 26        |
| Turbidity                 | ntu      | 3.35      | 2.40      | 2.00      | 4.09      |
| Iron, Total               | µg/l     | 116       | 211       | 214       | 549       |
| Iron, Dissolved           | μg/l     | <20       | <20       | 62        | 85        |
| Manganese, Total          | μg/l     | 125       | 144       | 76        | 175       |
| Manganese, Dissolved      | μg/l     | 49        | 144       | 76        | 124       |
| Aluminum, Total           | μg/l     | <200      | <200      | <200      | 392       |
| Aluminum, Dissolved       | μg/l     | <200      | <200      | <200      | <200      |

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams—Continued

| Parameter        | Units    | COOK     | BABC     | BILL     | BIRD     | BISC     | BRIG     | BULK     |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date             | yyyymmdd | 20000523 | 20000515 | 20000522 | 20000517 | 20000523 | 20000516 | 20000523 |
| Time             | hhmm     | 1045     | 1545     | 1215     | 1030     | 0955     | 0945     | 1835     |
| Temperature      | degree C | 11.2     | 13.1     | 11.2     | 12.9     | 1.4      | 8.9      | 11.0     |
| pH               |          | 7.05     | 7.00     | 7.50     | 7.15     | 7.00     | 7.20     | 6.70     |
| Dissolved Oxygen | mg/l     | 4.27     | 4.15     | 4.23     | 3.79     | 4.05     | 4.80     | 4.26     |
| Conductivity     | umhos/cm | 99       | 91       | 209      | 123      | 88       | 133      | 77       |
| Alkalinity       | mg/l     | 28       | 26       | 70       | 44       | 22       | 44       | 28       |
| Acidity          | mg/l     | 4        | 4        | 6        | 4        | 6        | 6        | 4        |

### Table A3.Water Quality Data for Group 3 Streams

| Parameter        | Units    | CAMP     | DEEP     | DENT     | DRYB     | LWAP     | PARK     | PRIN     |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date             | yyyymmdd | 20000522 | 20000515 | 20000515 | 20000516 | 20000516 | 20000516 | 20000515 |
| Time             | hhmm     | 1310     | 1030     | 1155     | 1415     | 1145     | 1300     | 1415     |
| Temperature      | degree C | 11.2     | 9.7      | 16.5     | 14.0     | 10.8     | 10.9     | 13.4     |
| pH               |          | 7.45     | 6.55     | 6.35     | 7.40     | 7.10     | 6.95     | 6.80     |
| Dissolved Oxygen | mg/l     | 4.16     | 4.70     | 3.75     | 4.55     | 4.48     | 4.36     | 4.28     |
| Conductivity     | umhos/cm | 160      | 40       | 39       | 153      | 117      | 94       | 84       |
| Alkalinity       | mg/l     | 54       | 6        | 8        | 36       | 40       | 28       | 20       |
| Acidity          | mg/l     | 2        | 4        | 6        | 4        | 4        | 4        | 4        |

| Parameter        | Units    | REDH     | RUSS     | SACK     | SMIT     | STRA     | WBCO     | WHIT     |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date             | yyyymmdd | 20000522 | 20000516 | 20000516 | 20000522 | 20000522 | 20000523 | 20000517 |
| Time             | hhmm     | 1445     | 0830     | 1050     | 0930     | 1100     | 1235     | 0830     |
| Temperature      | degree C | 11.4     | 9.0      | 9.3      | 11.4     | 11.2     | 11.6     | 10.4     |
| pH               |          | 6.70     | 6.90     | 7.00     | 7.15     | 7.30     | 7.15     | 7.15     |
| Dissolved Oxygen | mg/l     | 4.02     | 4.61     | 4.61     | 3.79     | 4.06     | 4.07     | 4.74     |
| Conductivity     | umhos/cm | 62       | 120      | 92       | 123      | 144      | 102      | 121      |
| Alkalinity       | mg/l     | 22       | 34       | 26       | 44       | 54       | 32       | 32       |
| Acidity          | mg/l     | 4        | 6        | 4        | 4        | 4        | 4        | 4        |

## Appendix B

ORGANIC POLLUTION-TOLERANCE AND FUNCTIONAL FEEDING GROUP DESIGNATIONS OF BENTHIC MACROINVERTEBRATE TAXA

| Class: Order        | Family          | Family/Genus     | Organic Pollution<br>Tolerance Value | Functional Feeding<br>Group Designation |
|---------------------|-----------------|------------------|--------------------------------------|-----------------------------------------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           | 5                                    | Р                                       |
|                     | Elmidae         | Dubiraphia       | 6                                    | SC                                      |
|                     |                 | Macronychus      | 2                                    | SC                                      |
|                     |                 | Optioservus      | 4                                    | SC                                      |
|                     |                 | Oulimnius        | 5                                    | SC                                      |
|                     |                 | Stenelmis        | 5                                    | SC                                      |
|                     | Gyrinidae       | Dineutus         | 4                                    | Р                                       |
|                     | Hydrophilidae   | Berosus          | 5                                    | CG                                      |
|                     |                 | Hydrobius        | 5                                    | Р                                       |
|                     |                 | Laccobius        | 5                                    | Р                                       |
|                     |                 | Tropisternus     | 5                                    | CG                                      |
|                     | Psephenidae     | Ectopria         | 5                                    | SC                                      |
|                     | -               | Psephenus        | 4                                    | SC                                      |
|                     | Ptilodactylidae | Anchytarsus      | 5                                    | SH                                      |
| Diptera             | Athericidae     | Atherix          | 2                                    | Р                                       |
| L.                  | Ceratopogonidae | Bezzia           | 6                                    | Р                                       |
|                     | Chironomidae    | Chironomidae     | 7                                    | CG                                      |
|                     | Empididae       | Hemerodromia     | 6                                    | P                                       |
|                     | Simuliidae      | Simuliidae       | 6                                    | FC                                      |
|                     | Tabanidae       | Tabanus          | 5                                    | P                                       |
|                     | Tipulidae       | Antocha          | 3                                    | CG                                      |
|                     | Tipulidue       | Dicranota        | 3                                    | P                                       |
|                     |                 | Hexatoma         | 2                                    | P                                       |
|                     |                 | Limonia          | 6                                    | SH                                      |
|                     |                 | Tipula           | 4                                    | SH                                      |
| Ephemeroptera       | Ameletidae      | Ameletus         | 0                                    | CG                                      |
| Ephemeroptera       | Baetidae        | Acentrella       | 4                                    | CG                                      |
|                     | Daeliuae        | Baetis           | 6                                    | CG                                      |
|                     | Caenidae        | Caenis           | 7                                    | CG                                      |
|                     |                 | Drunella         |                                      | SC                                      |
|                     | Ephemerellidae  |                  | 1                                    | SC<br>SC                                |
|                     |                 | Ephemerella      | 1                                    |                                         |
|                     |                 | Eurylophella     | 4                                    | SC                                      |
|                     |                 | Serratella       | 2                                    | SC                                      |
|                     | Heptageniidae   | Epeorus          | 0                                    | CG                                      |
|                     |                 | Heptagenia       | 4                                    | SC                                      |
|                     |                 | Leucrocuta       | 1                                    | SC                                      |
|                     |                 | Stenacron        | 4                                    | SC                                      |
|                     |                 | Stenonema        | 3                                    | SC                                      |
|                     | Isonychiidae    | Isonychia        | 2                                    | FC                                      |
|                     | Leptophlebiidae | Paraleptophlebia | 1                                    | CG                                      |
|                     |                 | Habrophleboides  | 6                                    | CG                                      |
|                     | Polymitarcyidae | Ephoron          | 2                                    | CG                                      |
|                     | Potamanthidae   | Anthopotamus     | 4                                    | CG                                      |
|                     | Tricorythidae   | Tricorythodes    | 4                                    | CG                                      |
| Hemiptera           | Veliidae        | Rhagovelia       | 8                                    | Р                                       |
| Lepidoptera         | Pyralidae       | Petrophila       | 5                                    | SC                                      |
| Megaloptera         | Corydalidae     | Corydalus        | 4                                    | Р                                       |

| Class: Order              | Family            | Family/Genus   | Organic Pollution<br>Tolerance Value | Functional Feeding<br>Group Designation |
|---------------------------|-------------------|----------------|--------------------------------------|-----------------------------------------|
| Megaloptera               | Corydalidae       | Nigronia       | 2                                    | Р                                       |
|                           | Sialidae          | Sialis         | 4                                    | Р                                       |
| Odonata                   | Aeshnidae         | Boyeria        | 2                                    | Р                                       |
|                           | Gomphidae         | Gomphus        | 5                                    | Р                                       |
|                           |                   | Ophiogomphus   | 1                                    | Р                                       |
|                           |                   | Stylogomphus   | 4                                    | Р                                       |
| Plecoptera                | Chloroperlidae    | Alloperla      | 0                                    | CG                                      |
|                           |                   | Sweltsa        | 0                                    | Р                                       |
|                           | Leuctridae        | Leuctra        | 0                                    | SH                                      |
|                           | Nemouridae        | Amphinemura    | 2                                    | SH                                      |
|                           | Peltoperlidae     | Peltoperla     | 2                                    | SH                                      |
|                           | Perlidae          | Acroneuria     | 0                                    | Р                                       |
|                           |                   | Agnetina       | 2                                    | Р                                       |
|                           |                   | Eccoptura      | 2                                    | Р                                       |
|                           |                   | Neoperla       | 3                                    | P                                       |
|                           |                   | Paragnetina    | 1                                    | P                                       |
|                           | Perlodidae        | Diploperla     | 2                                    | P P                                     |
|                           | Terrodidae        | Isoperla       | 2                                    | P                                       |
| Trichoptera               | Brachycentridae   | Brachycentrus  | 1                                    | FC                                      |
| Пепорега                  | Glossosomatidae   | Glossosoma     | 0                                    | SC                                      |
|                           |                   |                |                                      | FC                                      |
|                           | Hydropsychidae    | Ceratopsyche   | 4                                    | FC<br>FC                                |
|                           |                   | Cheumatopsyche | 5                                    |                                         |
|                           |                   | Diplectrona    | 0                                    | FC                                      |
|                           |                   | Hydropsyche    | 4                                    | FC                                      |
|                           |                   | Macrostemum    | 3                                    | FC                                      |
|                           | <b>TT 1</b>       | Potamyia       | 5                                    | FC                                      |
|                           | Hydroptilidae     | Leucotrichia   | 6                                    | SC                                      |
|                           |                   | Hydroptila     | 6                                    | SC                                      |
|                           | Philopotamidae    | Chimarra       | 4                                    | FC                                      |
|                           |                   | Dolophilodes   | 0                                    | FC                                      |
|                           | Polycentropodidae | Polycentropus  | 6                                    | FC                                      |
|                           | Rhyacophilidae    | Rhyacophila    | 1                                    | Р                                       |
|                           | Uenonidae         | Neophylax      | 3                                    | SC                                      |
| Oligochaeta: Haplotaxida  | Naididae          | Naididae       | 8                                    | CG                                      |
|                           | Lumbriculidae     | Lumbriculidae  | 8                                    | CG                                      |
| Hirudinea: Gnathobdellida | Hirudinidae       | Helobdella     | 6                                    | Р                                       |
| Crustacea: Amphipoda      | Gammaridae        | Gammarus       | 6                                    | SH                                      |
| Decapoda                  | Cambaridae        | Cambarus       | 6                                    | CG                                      |
|                           |                   | Orconectes     | 6                                    | SH                                      |
| Isopoda                   | Asellidae         | Caecidotea     | 8                                    | SH                                      |
| Arachnoidea: Hydracarina  | Hydracarina       | Hydracarina    | 7                                    | Р                                       |
| Gastropoda: Gastropoda    | Physidae          | Physa          | 8                                    | SC                                      |
| * *                       | Planorbidae       | Gyraulus       | 6                                    | SC                                      |
|                           | Pleuroceridae     | Leptoxis       | 6                                    | SC                                      |
| Bivalvia: Pelecypoda      | Corbidulidae      | Corbicula      | 4                                    | FC                                      |
| 21. a. i a. i cicej podu  | Sphaeridae        | Psidium        | 8                                    | FC                                      |

# APPENDIX C

## MACROINVERTEBRATE DATA FOR INTERSTATE STREAMS CROSSING THE NEW YORK-PENNSYLVANIA AND PENNSYLVANIA-MARYLAND BORDERS

| Class: Order        | Family          | Family/Genus     | SNAK<br>2.3 | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 |
|---------------------|-----------------|------------------|-------------|-------------|-------------|-------------|
| Insecta: Coleoptera | Elmidae         | Optioservus      | 6           | 2           | 1           | 8           |
|                     |                 | Stenelmis        | 3           | 38          | 7           | 11          |
|                     | Gyrinidae       | Dineutus         |             |             |             |             |
|                     | Hydrophilidae   | Laccobius        |             |             |             |             |
|                     |                 | Tropisternus     |             |             |             |             |
|                     | Psephenidae     | Psephenus        | 2           | 15          |             | 1           |
| Diptera             | Athericidae     | Atherix          | 1           |             | 4           |             |
|                     | Ceratopogonidae | Bezzia           |             |             |             |             |
|                     | Chironomidae    | Chironomidae     | 10          | 20          | 28          | 41          |
|                     | Empididae       | Hemerodromia     |             | 2           |             | 4           |
|                     | Tabanidae       | Tabanus          |             |             |             |             |
|                     | Tipulidae       | Antocha          | 2           |             |             |             |
|                     |                 | Dicranota        |             |             |             | 2           |
|                     |                 | Hexatoma         | 1           | 7           | 8           | 1           |
|                     |                 | Tipula           |             |             |             |             |
| Ephemeroptera       | Baetidae        | Acentrella       |             |             |             |             |
|                     |                 | Baetis           | 1           |             |             | 1           |
|                     | Caenidae        | Caenis           | 9           |             |             |             |
|                     | Ephemerellidae  | Drunella         |             |             |             | 1           |
|                     |                 | Ephemerella      | 1           |             |             |             |
|                     |                 | Serratella       | 5           |             | 2           | 2           |
|                     | Heptageniidae   | Epeorus          | 2           |             |             | 1           |
|                     |                 | Heptagenia       |             |             | 4           |             |
|                     |                 | Leucrocuta       |             |             |             | 8           |
|                     |                 | Stenonema        | 4           | 2           | 1           | 4           |
|                     | Isonychiidae    | Isonychia        | 27          | 5           | 28          | 29          |
|                     | Leptophlebiidae | Paraleptophlebia | 1           |             |             |             |
|                     | Tricorythidae   | Tricorythodes    |             |             |             |             |
| Hemiptera           | Veliidae        | Rhagovelia       |             |             |             | 2           |
| Megaloptera         | Corydalidae     | Corydalus        |             | 1           |             |             |
|                     |                 | Nigronia         | 1           |             | 1           | 3           |
|                     | Sialidae        | Sialis           |             |             |             |             |
| Odonata             | Aeshnidae       | Boyeria          |             |             |             | 2           |
|                     | Gomphidae       | Gomphus          |             |             |             |             |
|                     |                 | Ophiogomphus     |             |             |             |             |
|                     |                 | Stylogomphus     |             |             | 2           |             |
| Plecoptera          | Leuctridae      | Leuctra          | 1           | 1           |             | 2           |
|                     | Perlidae        | Acroneuria       | 3           |             |             | 5           |
|                     |                 | Agnetina         |             |             |             |             |
|                     |                 | Paragnetina      | 2           |             |             |             |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams

| Class: Order             | Family            | Family/Genus   | SNAK<br>2.3 | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 |
|--------------------------|-------------------|----------------|-------------|-------------|-------------|-------------|
| Trichoptera              | Glossosomatidae   | Glossosoma     |             |             |             | 1           |
|                          | Hydropsychidae    | Ceratopsyche   | 13          | 1           | 30          |             |
|                          |                   | Cheumatopsyche | 16          | 8           | 3           | 3           |
|                          |                   | Diplectrona    | 1           | 1           |             | 3           |
|                          |                   | Hydropsyche    | 4           |             | 2           | 3           |
|                          |                   | Macrostemum    |             |             |             | 1           |
|                          |                   | Potamyia flava |             |             |             |             |
|                          | Hydroptilidae     | Leucotrichia   |             |             |             |             |
|                          |                   | Hydroptila     |             |             |             |             |
|                          | Philopotamidae    | Chimarra       | 18          | 33          |             | 1           |
|                          |                   | Dolophilodes   | 3           | 4           | 1           | 4           |
|                          | Polycentropodidae | Polycentropus  |             |             |             |             |
|                          | Rhyacophilidae    | Rhyacophila    | 1           |             |             |             |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       | 1           |             |             |             |
| Crustacea: Decapoda      | Cambaridae        | Cambarus       |             |             |             |             |
|                          |                   | Orconectes     |             |             |             | 2           |
| Arachnoidea: Hydracarina | Hydracarina       | Hydracarina    |             |             |             |             |
| Gastropoda: Gastropoda   | Planorbidae       | Gyraulus       |             |             |             |             |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

| Class: Order        | Family          | Family/Genus     | CAYT<br>1.7 | CHOC<br>9.1 | LSNK<br>7.6 | SEEL<br>10.3 |
|---------------------|-----------------|------------------|-------------|-------------|-------------|--------------|
| Insecta: Coleoptera | Elmidae         | Optioservus      | 8           | 10          | 2           |              |
|                     |                 | Stenelmis        | 18          | 19          |             | 1            |
|                     | Gyrinidae       | Dineutus         | 2           |             |             |              |
|                     | Hydrophilidae   | Laccobius        |             |             |             |              |
|                     |                 | Tropisternus     |             |             |             |              |
|                     | Psephenidae     | Psephenus        | 10          | 9           | 5           |              |
| Diptera             | Athericidae     | Atherix          |             | 11          | 4           | 4            |
|                     | Ceratopogonidae | Bezzia           |             |             |             |              |
|                     | Chironomidae    | Chironomidae     | 16          | 13          | 36          | 55           |
|                     | Empididae       | Hemerodromia     | 2           |             | 3           |              |
|                     | Tabanidae       | Tabanus          |             |             |             | 1            |
|                     | Tipulidae       | Antocha          |             |             |             | 1            |
|                     |                 | Dicranota        |             |             |             |              |
|                     |                 | Hexatoma         | 5           | 1           | 1           |              |
|                     |                 | Tipula           |             |             | 2           |              |
| Ephemeroptera       | Baetidae        | Acentrella       |             |             |             |              |
|                     |                 | Baetis           |             | 1           | 1           |              |
|                     | Caenidae        | Caenis           |             |             |             |              |
|                     | Ephemerellidae  | Drunella         |             |             |             |              |
|                     | -               | Ephemerella      |             |             |             |              |
|                     |                 | Serratella       | 10          | 1           |             |              |
|                     | Heptageniidae   | Epeorus          |             |             |             |              |
|                     |                 | Heptagenia       |             |             |             |              |
|                     |                 | Leucrocuta       |             |             |             |              |
|                     |                 | Stenonema        | 1           | 5           |             | 2            |
|                     | Isonychiidae    | Isonychia        | 11          | 19          | 15          | 3            |
|                     | Leptophlebiidae | Paraleptophlebia |             |             | 1           |              |
|                     | Tricorythidae   | Tricorythodes    |             |             |             | 26           |
| Hemiptera           | Veliidae        | Rhagovelia       |             |             |             |              |
| Megaloptera         | Corydalidae     | Corydalus        |             |             |             |              |
|                     | -               | Nigronia         |             | 1           | 2           | 1            |
|                     | Sialidae        | Sialis           |             |             |             |              |
| Odonata             | Aeshnidae       | Boyeria          |             |             | 2           |              |
|                     | Gomphidae       | Gomphus          |             |             |             |              |
|                     |                 | Ophiogomphus     |             | 3           | 1           | 1            |
|                     |                 | Stylogomphus     |             | 1           |             |              |
| Plecoptera          | Leuctridae      | Leuctra          |             | 1           | 1           |              |
| 1                   | Perlidae        | Acroneuria       | 1           | 4           | 1           | 1            |
|                     |                 | Agnetina         |             |             |             |              |
|                     | +               | Paragnetina      | 2           | +           |             |              |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

| Class: Order             | Family            | Family/Genus   | CAYT<br>1.7 | CHOC<br>9.1 | LSNK<br>7.6 | SEEL<br>10.3 |
|--------------------------|-------------------|----------------|-------------|-------------|-------------|--------------|
| Trichoptera              | Glossosomatidae   | Glossosoma     |             |             |             |              |
|                          | Hydropsychidae    | Ceratopsyche   | 43          | 13          | 7           | 66           |
|                          |                   | Cheumatopsyche | 1           | 6           | 27          | 11           |
|                          |                   | Diplectrona    |             |             |             |              |
|                          |                   | Hydropsyche    |             | 1           | 11          | 4            |
|                          |                   | Macrostemum    |             |             |             |              |
|                          |                   | Potamyia flava |             | 2           | 6           |              |
|                          | Hydroptilidae     | Leucotrichia   | 4           |             |             |              |
|                          |                   | Hydroptila     |             |             |             |              |
|                          | Philopotamidae    | Chimarra       | 5           | 23          | 21          |              |
|                          |                   | Dolophilodes   |             |             | 1           |              |
|                          | Polycentropodidae | Polycentropus  |             |             |             |              |
|                          | Rhyacophilidae    | Rhyacophila    |             |             |             |              |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |             |             |             |              |
| Crustacea: Decapoda      | Cambaridae        | Cambarus       |             |             |             |              |
|                          |                   | Orconectes     |             |             |             |              |
| Arachnoidea: Hydracarina | Hydracarina       | Hydracarina    |             |             |             |              |
| Gastropoda: Gastropoda   | Planorbidae       | Gyraulus       |             |             |             |              |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

| Class: Order        | Family          | Family/Genus     | SOUT<br>7.8 | TROW<br>1.6 | TRUP<br>4.5 | WAPP<br>2.6 |
|---------------------|-----------------|------------------|-------------|-------------|-------------|-------------|
| Insecta: Coleoptera | Elmidae         | Optioservus      |             |             | 3           | 2           |
|                     |                 | Stenelmis        | 12          | 20          | 3           | 1           |
|                     | Gyrinidae       | Dineutus         |             |             |             |             |
|                     | Hydrophilidae   | Laccobius        |             |             | 1           |             |
|                     |                 | Tropisternus     |             |             | 1           |             |
|                     | Psephenidae     | Psephenus        | 21          | 16          | 3           | 3           |
| Diptera             | Athericidae     | Atherix          |             |             | 50          | 2           |
|                     | Ceratopogonidae | Bezzia           |             | 4           |             |             |
|                     | Chironomidae    | Chironomidae     | 44          | 51          | 22          | 26          |
|                     | Empididae       | Hemerodromia     | 4           | 6           |             |             |
|                     | Tabanidae       | Tabanus          |             |             | 4           |             |
|                     | Tipulidae       | Antocha          |             |             | 1           |             |
|                     |                 | Dicranota        |             |             |             |             |
|                     |                 | Hexatoma         |             | 6           | 8           | 4           |
|                     |                 | Tipula           | 1           |             |             |             |
| Ephemeroptera       | Baetidae        | Acentrella       | -           | 3           |             |             |
|                     |                 | Baetis           | 2           |             | 2           | 3           |
|                     | Caenidae        | Caenis           |             |             |             |             |
|                     | Ephemerellidae  | Drunella         |             |             |             |             |
|                     |                 | Ephemerella      |             |             |             |             |
|                     |                 | Serratella       |             |             |             | 22          |
|                     | Heptageniidae   | Epeorus          |             |             |             | 3           |
|                     | 1.0             | Heptagenia       |             |             |             |             |
|                     |                 | Leucrocuta       |             |             |             | 8           |
|                     |                 | Stenonema        | 5           |             | 2           | 1           |
|                     | Isonychiidae    | Isonychia        | 9           | 8           | 1           | 25          |
|                     | Leptophlebiidae | Paraleptophlebia |             | 2           |             | -           |
|                     | Tricorythidae   | Tricorythodes    |             |             |             |             |
| Hemiptera           | Veliidae        | Rhagovelia       |             |             |             |             |
| Megaloptera         | Corydalidae     | Corydalus        |             |             |             |             |
|                     |                 | Nigronia         |             | 1           |             | 1           |
|                     | Sialidae        | Sialis           | 4           |             | 1           |             |
| Odonata             | Aeshnidae       | Boyeria          | 1           |             | -           |             |
| o donatu            | Gomphidae       | Gomphus          | -           |             | 7           |             |
|                     | Compiliance     | Ophiogomphus     | 5           |             | /           | 1           |
|                     |                 | Stylogomphus     | 5           |             |             |             |
| Plecoptera          | Leuctridae      | Leuctra          |             | 1           |             |             |
| Песорета            | Perlidae        | Acroneuria       | 1           | 1           |             | 1           |
|                     |                 | Agnetina         | 1           | 3           | 1           | 1           |
|                     |                 | Paragnetina      |             | 5           | 1           |             |
|                     |                 | 1 urugnetinu     |             |             |             |             |

### Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

| Class: Order             | Family            | Family/Genus   | SOUT<br>7.8 | TROW<br>1.6 | TRUP<br>4.5 | WAPP<br>2.6 |
|--------------------------|-------------------|----------------|-------------|-------------|-------------|-------------|
| Trichoptera              | Glossosomatidae   | Glossosoma     |             |             |             |             |
|                          | Hydropsychidae    | Ceratopsyche   | 6           | 3           | 14          | 15          |
|                          |                   | Cheumatopsyche | 6           | 5           | 2           | 8           |
|                          |                   | Diplectrona    |             |             |             |             |
|                          |                   | Hydropsyche    | 14          |             | 1           | 5           |
|                          |                   | Macrostemum    |             |             |             |             |
|                          |                   | Potamyia       |             | 1           |             |             |
|                          | Hydroptilidae     | Leucotrichia   |             |             |             |             |
|                          |                   | Hydroptila     | 1           |             |             |             |
|                          | Philopotamidae    | Chimarra       | 4           | 1           | 1           | 7           |
|                          |                   | Dolophilodes   |             | 1           |             |             |
|                          | Polycentropodidae | Polycentropus  | 1           | 1           |             |             |
|                          | Rhyacophilidae    | Rhyacophila    |             |             |             |             |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |             |             |             |             |
| Crustacea: Decapoda      | Cambaridae        | Cambarus       | 2           |             |             |             |
|                          |                   | Orconectes     |             |             |             |             |
| Arachnoidea: Hydracarina | Hydracarina       | Hydracarina    |             |             | 3           |             |
| Gastropoda: Gastropoda   | Planorbidae       | Gyraulus       |             |             | 1           |             |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

| Class: Order        | Family            | Family/Genus   | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.5 | EBAU<br>1.5 |
|---------------------|-------------------|----------------|-------------|-------------|--------------|-------------|
| Insecta: Coleoptera | Elmidae           | Optioservus    |             |             | 8            |             |
|                     |                   | Oulimnius      | 38          |             |              | 90          |
|                     |                   | Stenelmis      |             | 61          | 6            | 18          |
|                     | Hydrophilidae     | Hydrobius      |             |             |              |             |
|                     | Psephenidae       | Psephenus      | 1           |             | 3            | 7           |
|                     |                   | Ectopria       |             |             |              |             |
|                     | Ptilodactylidae   | Anchytarsus    | 10          |             |              |             |
| Diptera             | Athericidae       | Atherix        |             | 4           | 9            |             |
|                     | Ceratopogonidae   | Bezzia         |             |             |              |             |
|                     | Chironomidae      | Chironomidae   | 10          | 18          | 17           | 6           |
|                     | Empididae         | Hemerodromia   |             |             | 5            |             |
|                     | Tipulidae         | Antocha        | 1           |             | 7            | 2           |
|                     |                   | Dicranota      |             |             |              |             |
|                     |                   | Tipula         | 2           |             | 1            | 1           |
| Ephemeroptera       | Baetidae          | Acentrella     |             | 1           |              |             |
|                     |                   | Baetis         | 4           | 4           |              | 9           |
|                     | Ephemerellidae    | Ephemerella    |             |             |              |             |
|                     | _                 | Serratella     |             | 6           | 4            |             |
|                     | Heptageniidae     | Epeorus        | 3           |             |              |             |
|                     |                   | Heptagenia     | 4           | 25          |              |             |
|                     |                   | Stenonema      | 7           | 21          | 1            | 1           |
|                     | Isonychiidae      | Isonychia      | 13          | 21          | 9            | 3           |
| Megaloptera         | Corydalidae       | Corydalus      |             | 4           | 3            |             |
|                     |                   | Nigronia       | 8           |             | 13           |             |
|                     | Sialidae          | Sialis         |             |             |              |             |
| Odonata             | Aeshnidae         | Boyeria        |             |             |              | 1           |
|                     | Gomphidae         | Ophiogomphus   |             |             |              | 3           |
|                     | -                 | Stylogomphus   | 1           |             |              |             |
| Plecoptera          | Leuctridae        | Leuctra        | 38          |             | 1            |             |
| ^                   | Peltoperlidae     | Peltoperla     |             |             |              |             |
|                     | Perlidae          | Acroneuria     | 13          |             | 8            | 3           |
|                     |                   | Agnetina       | 7           |             |              |             |
|                     |                   | Eccoptura      | 1           |             |              |             |
| Trichoptera         | Brachycentridae   | Brachycentrus  |             |             |              |             |
|                     | Glossosomatidae   | Glossosoma     | 3           |             |              |             |
|                     | Hydropsychidae    | Ceratopsyche   | 10          | 4           | 18           | 19          |
|                     | 5 1 5             | Cheumatopsyche | 4           | 11          | 40           | 3           |
|                     |                   | Diplectrona    | 1           |             |              |             |
|                     |                   | Hydropsyche    | 6           | 8           | 22           | 6           |
|                     |                   | Macrostemum    |             |             |              |             |
|                     |                   | Potamyia       |             |             | 4            |             |
|                     | Hydroptilidae     | Leucotrichia   |             |             |              |             |
|                     | Philopotamidae    | Chimarra       |             |             | 7            | 1           |
|                     | - <b>T</b>        | Dolophilodes   | 4           |             |              | -           |
|                     |                   |                |             |             |              | ł           |
|                     | Polycentropodidae | Polycentropus  | 1           |             |              |             |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams

| Class: Order             | Family        | Family/Genus  | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.5 | EBAU<br>1.5 |
|--------------------------|---------------|---------------|-------------|-------------|--------------|-------------|
| Oligochaeta: Haplotaxida | Tubificidae   | Tubificidae   |             |             |              |             |
|                          | Lumbriculidae | Lumbriculidae |             |             | 1            |             |
| Crustacea: Amphipoda     | Gammaridae    | Gammarus      |             | 1           |              |             |
| Decapoda                 | Cambaridae    | Cambaridae    |             |             |              | 1           |
|                          |               | Orconectes    |             |             |              |             |
|                          |               | Caecidotea    |             |             |              | 1           |
| Arachnoidea: Hydracarina | Hydracarina   | Hydracarina   |             | 1           |              |             |
| Gastropoda: Gastropoda   | Physidae      | Physa         |             |             |              |             |
|                          | Planorbidae   | Gyraulus      |             |             |              |             |
| Bivalvia: Pelecypoda     | Corbiculidae  | Corbicula     |             | 4           |              |             |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams—Continued

| Class: Order        | Family            | Family/Genus   | FBDC<br>4.1 | LNGA<br>2.5 | ОСТО<br>6.6 | SBCC<br>20.4 |
|---------------------|-------------------|----------------|-------------|-------------|-------------|--------------|
| Insecta: Coleoptera | Elmidae           | Optioservus    | 20          | 14          |             |              |
|                     |                   | Oulimnius      |             |             |             | 18           |
|                     |                   | Stenelmis      | 4           | 7           | 27          |              |
|                     | Hydrophilidae     | Hydrobius      |             |             |             | 1            |
|                     | Psephenidae       | Psephenus      | 1           | 1           | 2           | 1            |
|                     |                   | Ectopria       |             |             |             | 4            |
|                     | Ptilodactylidae   | Anchytarsus    | 1           | 6           |             | 2            |
| Diptera             | Athericidae       | Atherix        |             |             |             |              |
|                     | Ceratopogonidae   | Bezzia         | 7           |             |             |              |
|                     | Chironomidae      | Chironomidae   | 51          | 14          | 7           | 18           |
|                     | Empididae         | Hemerodromia   | 3           |             | 1           |              |
|                     | Tipulidae         | Antocha        | 2           | 2           | 1           |              |
|                     |                   | Dicranota      | 2           | 32          |             | 10           |
|                     |                   | Tipula         | 3           | 1           |             |              |
| Ephemeroptera       | Baetidae          | Acentrella     |             |             |             | 1            |
|                     |                   | Baetis         | 9           | 3           | 13          | 1            |
|                     | Ephemerellidae    | Ephemerella    |             | 5           |             |              |
|                     |                   | Serratella     |             |             | 2           |              |
|                     | Heptageniidae     | Epeorus        |             |             |             |              |
|                     |                   | Heptagenia     |             |             |             |              |
|                     |                   | Stenonema      | 2           | 1           | 6           |              |
|                     | Isonychiidae      | Isonychia      | 1           |             | 3           |              |
| Megaloptera         | Corydalidae       | Corydalus      |             |             | 1           |              |
|                     |                   | Nigronia       | б           | 2           |             | 3            |
|                     | Sialidae          | Sialis         |             |             |             | 1            |
| Odonata             | Aeshnidae         | Boyeria        |             |             |             |              |
|                     | Gomphidae         | Ophiogomphus   |             |             |             |              |
|                     |                   | Stylogomphus   | 1           |             |             | 1            |
| Plecoptera          | Leuctridae        | Leuctra        | 4           | 3           |             | 15           |
|                     | Peltoperlidae     | Peltoperla     |             |             |             | 2            |
|                     | Perlidae          | Acroneuria     |             | 3           |             | 4            |
|                     |                   | Agnetina       | 4           |             |             |              |
|                     |                   | Eccoptura      | 2           |             |             |              |
| Trichoptera         | Brachycentridae   | Brachycentrus  |             |             | 5           |              |
|                     | Glossosomatidae   | Glossosoma     |             |             |             |              |
|                     | Hydropsychidae    | Ceratopsyche   | 10          | 4           | 15          | 4            |
|                     | ·                 | Cheumatopsyche | 37          | 5           | 2           | 5            |
|                     |                   | Diplectrona    |             |             |             | 4            |
|                     |                   | Hydropsyche    | 7           | 28          | 5           | 1            |
|                     |                   | Macrostemum    |             |             | 14          |              |
|                     |                   | Potamyia       |             |             |             |              |
|                     | Hydroptilidae     | Leucotrichia   |             |             | 5           |              |
|                     | Philopotamidae    | Chimarra       |             | 18          | 26          | 2            |
|                     | -                 | Dolophilodes   |             |             |             | 18           |
|                     | Polycentropodidae | Polycentropus  |             |             |             |              |
|                     | Rhyacophilidae    | Rhyacophila    |             |             |             |              |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams—Continued

| Class: Order             | Family        | Family/Genus  | FBDC<br>4.1 | LNGA<br>2.5 | ОСТО<br>6.6 | SBCC<br>20.4 |
|--------------------------|---------------|---------------|-------------|-------------|-------------|--------------|
| Oligochaeta: Haplotaxida | Tubificidae   | Tubificidae   |             |             |             |              |
|                          | Lumbriculidae | Lumbriculidae |             |             |             |              |
| Crustacea: Amphipoda     | Gammaridae    | Gammarus      |             |             | 11          |              |
| Decapoda                 | Cambaridae    | Cambaridae    |             |             |             |              |
|                          |               | Orconectes    |             | 3           |             |              |
|                          |               | Caecidotea    |             |             |             |              |
| Arachnoidea: Hydracarina | Hydracarina   | Hydracarina   |             |             |             |              |
| Gastropoda: Gastropoda   | Physidae      | Physa         |             |             |             |              |
|                          | Planorbidae   | Gyraulus      | 1           |             |             |              |
| Bivalvia: Pelecypoda     | Corbiculidae  | Corbicula     |             |             | 2           |              |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams—Continued

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Elmidae           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hudrophilidaa     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rsephenidae       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ptilodactulidae   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tipulidae         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Baetidae          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Daetidae          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ephemerellidae    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ephemeremuae      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hentageniidae     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tieptageinidae    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Isonychiidae      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Corydandae        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sialidae          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gompindue         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Leuctridae        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Brachycentridae   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 1 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Macrostemum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Potamyia flava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hydroptilidae     | Leucotrichia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Chimarra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Dolophilodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Polycentropodidae |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rhyacophilidae    | Rhyacophila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | FamilyElmidaeElmidaeHydrophilidaePsephenidaePsephenidaeOracopogonidaeCeratopogonidaeChironomidaeEmpididaeInpulidaeBaetidaeBaetidaeIsonychiidaeCorydalidaeSialidaeGomphidaePeltoperlidaeBaetidaeIsonychiidaeGomphidaeGiossosomatidaeGlossosomatidaeHydropsychidaePeltoperlidaePeltoperlidaePelhoperlidaePelhoperlidaePolycentropodidaeHydroptilidaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropodiaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicaeOropolicae | ElmidaeOptioservusOulimniusStenelmisHydrophilidaeHydrobiusPsephenidaePsephenusEctopriaPtilodactylidaeAnchytarsusAthericidaeAtherixCeratopogonidaeBezziaChironomidaeChironomidaeEmpididaeHemerodromiaTipulidaeAntochaDicranotaTipulaBaetidaeAcentrellaBaetidaeEphemerellaEphemerellidaeEpeorusHeptageniidaeIsonychiaCorydalidaeSialisAeshnidaeSialisAeshnidaeBoyeriaGomphidaePeltoperlaPeltoperlidaePeltoperlaPerridaeGossosomatidaeGlossosomatidaeGlossosomatidaeHydropsychidaeCeratopsycheHydropsychidaeCeratopsychePeltoperlidaePratopsycheHydropsychidaeCeratopsychePolycentropodidaeCheuctrichiaPhilopotamidaeCheuctrichiaPhilopotamidaeCheuctrichiaPhilopotamidaeCheuctrichiaPhilopotamidaeCheuctrichiaPhilopotamidaeCheuctrichiaPhilopotamidaePolycentropus |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams — Continued

| Class: Order             | Family        | Family/Genus  | SCTT<br>3.0 |
|--------------------------|---------------|---------------|-------------|
| Oligochaeta: Haplotaxida | Tubificidae   | Tubificidae   | 7           |
|                          | Lumbriculidae | Lumbriculidae |             |
| Crustacea: Amphipoda     | Gammaridae    | Gammarus      |             |
| Decapoda                 | Cambaridae    | Cambaridae    |             |
|                          |               | Orconectes    |             |
|                          |               | Caecidotea    | 3           |
| Arachnoidea: Hydracarina | Hydracarina   | Hydracarina   |             |
| Gastropoda: Gastropoda   | Physidae      | Physa         | 6           |
|                          | Planorbidae   | Gyraulus      |             |
| Bivalvia: Pelecypoda     | Corbiculidae  | Corbicula     |             |

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams — Continued

| Class: Order             | Family            | Family/Genus          | SUSQ<br>365.0 | CHEM<br>12.0 | COWN<br>2.2 | COWN<br>1.0 |
|--------------------------|-------------------|-----------------------|---------------|--------------|-------------|-------------|
| Insecta: Coleoptera      | Elmidae           | Dubiraphia            |               |              |             |             |
|                          |                   | Macronychus glabratus | 5             |              |             |             |
|                          |                   | Optioservus           | 7             | 3            |             | 1           |
|                          |                   | Stenelmis             | 41            | 14           |             | 10          |
|                          | Gyrinidae         | Dineutus              | 1             |              |             |             |
|                          | Hydrophilidae     | Berosus               |               |              |             |             |
|                          | Psephenidae       | Psephenus             | 9             |              |             | 9           |
| Diptera                  | Athericidae       | Atherix               | 1             |              |             | 1           |
|                          | Chironomidae      | Chironomidae          | 14            | 31           | 28          | 31          |
|                          | Empididae         | Hemerodromia          |               | 1            | 12          |             |
|                          | Simuliidae        | Simuliidae            | 3             | 6            |             | 3           |
|                          | Tipulidae         | Antocha               |               |              |             | 4           |
|                          |                   | Tipula                |               |              |             | 1           |
| Ephemeroptera            | Baetidae          | Acentrella            | 8             | 6            |             | 1           |
|                          |                   | Baetis                | 14            | 9            |             | 3           |
|                          | Caenidae          | Caenis                |               | 1            |             |             |
|                          | Ephemerellidae    | Ephemerella           |               |              |             |             |
|                          |                   | Serratella            | 1             | 14           |             |             |
|                          | Heptageniidae     | Heptagenia            |               |              |             |             |
|                          | 1 0               | Leucrocuta            |               |              |             |             |
|                          |                   | Stenacron             |               |              |             |             |
|                          |                   | Stenonema             | 4             | 12           | 10          | 10          |
|                          | Isonychiidae      | Isonychia             | 16            | 29           |             | 1           |
|                          | Polymitarcyidae   | Ephoron               | 2             |              |             |             |
|                          | Potamanthidae     | Anthopotamus          | 1             |              |             |             |
|                          | Tricorythidae     | Tricorythodes         |               |              |             |             |
| Hemiptera                | Veliidae          | Rhagovelia            |               |              |             |             |
| Lepidoptera              | Pyralidae         | Petrophila            |               | 1            |             |             |
| Megaloptera              | Corydalidae       | Corydalus             | 4             | 2            |             | 1           |
| Inegaloptera             |                   | Nigronia              | · ·           | _            |             | 1           |
|                          | Sialidae          | Sialis                |               |              |             | -           |
| Plecoptera               | Perlidae          | Acroneuria            | 4             |              |             |             |
| Песорета                 | Terridae          | Agnetina              |               | 2            |             |             |
|                          |                   | Paragnetina           | 8             | 2            |             |             |
| Trichotpera              | Hydropsychidae    | Ceratopsyche          | 16            | 21           |             | 35          |
| Inchotpera               | Trydropsychidae   | Cheumatopsyche        | 10            | 28           | 5           | 11          |
|                          |                   | Hydropsyche           | 3             | 20           | 1           | 4           |
|                          |                   | Macrostemum           | 2             |              | 1           |             |
|                          | Hydroptilidae     | Leucotrichia          | <u>ک</u>      |              | 1           |             |
|                          | Tryutopulluae     | Hydroptila            | 2             |              |             |             |
|                          | Philopotamidae    | Chimarra              | 5             | 42           |             |             |
|                          | Polycentropodidae | Polycentropus         | 5             | 42           |             |             |
| Oligochaeta: Haplotaxida | Naididae          | Naididae              |               |              |             |             |
| Ongochaeta: Hapiotaxida  | Lumbriculidae     |                       |               |              | 4           |             |
|                          | Lumoncundae       | Lumbriculidae         |               |              | 4           |             |

### Table C3. Macroinvertebrate Data for River Sites

| Table C3. | Macroinvertebrate Data for River Sites—Continued |
|-----------|--------------------------------------------------|
|-----------|--------------------------------------------------|

| Class: Order              | Family        | Family/Genus | SUSQ<br>365.0 | CHEM<br>12.0 | COWN<br>2.2 | COWN<br>1.0 |
|---------------------------|---------------|--------------|---------------|--------------|-------------|-------------|
| Hirudinea: Gnathobdellida | Hirudinidae   | Helobdella   |               |              |             |             |
| Crustacea: Amphipoda      | Gammaridae    | Gammarus     | 1             |              | 4           | 3           |
| Isopoda                   | Asellidae     | Caecidotea   |               |              | 52          | 22          |
| Gastropoda: Gastropoda    | Physidae      | Physa        |               |              | 1           |             |
|                           | Pleuroceridae | Leptoxis     | 8             |              |             |             |
| Bivalvia: Pelecypoda      | Corbidulidae  | Corbicula    |               |              |             |             |
|                           | Sphaeridae    | Psidium      |               | 13           |             |             |

| Elmidae         | Dubiraphia<br>Macronychus glabratus                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Macronychus glabratus                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Sider en genas                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Optioservus                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Stenelmis                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gyrinidae       | Dineutus                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hydrophilidae   | Berosus                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Psephenidae     | Psephenus                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Athericidae     | Atherix                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chironomidae    | Chironomidae                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Empididae       | Hemerodromia                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Simuliidae      | Simuliidae                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tipulidae       | Antocha                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -               | Tipula                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Baetidae        | Acentrella                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Baetis                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Caenidae        | Caenis                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ephemerellidae  | Ephemerella                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Serratella                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heptageniidae   | Heptagenia                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 0             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isonvchiidae    |                                                                                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | -                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -               | -                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Corydanidae     |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sialidae        |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Territate       |                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | -                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hudronsychidae  |                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trydropsychidae |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hudrontilidaa   |                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| riyuropundae    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dhilonotamidaa  |                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -               |                                                                                                | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Psephenidae<br>Athericidae<br>Chironomidae<br>Empididae<br>Simuliidae<br>Tipulidae<br>Baetidae | PsephenidaePsephenusAthericidaeAtherixChironomidaeChironomidaeEmpididaeHemerodromiaSimuliidaeSimuliidaeTipulidaeAntochaTipulidaeAntochaBaetidaeAcentrellaBaetidaeCaenisEphemerellidaeEphemerellaBephemerellidaeHeptageniaHeptageniidaeHeptageniaIsonychiidaeIsonychiaPolymitarcyidaeEphoronPotamanthidaeAnthopotamusTricorythidaeTricorythodesVeliidaeRhagoveliaPyralidaeSialisPerlidaeSialisPerlidaeSialisPerlidaeCorydalusMigroniaSialidaeSialidaeSialisPerlidaeCeratopsycheHydropsychidaeCeratopsycheHydroptilidaeLeucotrichiaHydroptilidaeChimarraPolycentropodiaePolycentropusNaididaeNaididae | PsephenidaePsephenus12AthericidaeAtherix1ChironomidaeChironomidae3EmpididaeHemerodromia3SimuliidaeSimuliidae1TipulidaeAntocha1TipulaBaetidaeAcentrellaBaetidaeAcentrella2CaenidaeEphemerella2EphemerellidaeHeptagenia2HeptageniidaeHeptagenia1IsonychiidaeTricorythodes1PolymitarcyidaeEphoron1PotamanthidaeAnthopotamus1TricorythidaeTricorythodes1VeliidaeSialis2PertlidaeSialis2PerdidaeCorydalus1CorydalidaeSialis2PolymitarcyidaeCorydalus1Yangnetina11CorydalidaeCorgalus1PyralidaePetrophila1PolymitareAcroneuria2Paragnetina1212Cheumatopsyche1914/dropsycheHydropsychidaeCeratopsyche4Macrostemum717PolycentropodidaePolycentropus17PolycentropodidaePolycentropus17 | PsephenidaePsephenus1210AthericidaeAtherix1Chironomidae37EmpididaeHemerodromia37EmpididaeHemerodromia37SimuliidaeSimuliidae11TipulidaeAntocha11BaetidaeAcentrella26CaenidaeCaenis26CaenidaeEphemerella22Serratella212HeptageniidaeHeptagenia21IsonychiidaeIsonychia136PolymitarcyidaeEphoron12PotamanthidaeAnthopotamus110IsonychiidaeTricorythodes12PotamanthidaeAcroneuria11CorydalidaeCorydalus33PerlidaeAcroneuria11HydropsychidaeSialis33PerlidaeAcroneuria11HydropsychidaeCeratopsyche128Cheumatopsyche421HydropsychidaeCeratopsyche128HydropsychidaeCheumatopsyche11PhilopotamidaeChimarra171PhilopotamidaeChimarra171PhilopotamidaeChimarra171PhilopotamidaeNaididaeNaididae1 | PsephenidaePsephenus1210AthericidaeAtherix11ChironomidaeChironomidae374EmpididaeHemerodromia11SimuliidaeSimuliidae11TipulidaeAntocha11BaetidaeAcentrella11BaetidaeCaenis11EphemerellidaeEphemerella22CaenidaeCaenis11EphemerellidaeEphemerella22Serratella211Leucrocuta22Stenacron31IsonychidaeIsonychia136IsonychidaeEphoron12PotamanthidaeAnthopotamus41VelidaeRhagovelia11PyralidaeCorydalus21VelidaeSialida32Nigronia211Paragnetina11Hydropsychiae128Cheumatopsyche128PertidaeCeratopsyche128PertidaeCheumatopsyche1974HydropsychiaeLeucorichia11PhilopotamidaeChimarra1718PolycentropodidaePolycentropus11NaididaeNaididae11 |

### Table C3. Macroinvertebrate Data for River Sites—Continued

| Table C3. | Macroinvertebrate Data for River Sites—Continued |
|-----------|--------------------------------------------------|
|-----------|--------------------------------------------------|

| Class: Order              | Family        | Family/Genus | SUSQ<br>289.1 | SUSQ<br>340.0 | SUSQ<br>44.5 | TIOG<br>10.8 |
|---------------------------|---------------|--------------|---------------|---------------|--------------|--------------|
| Hirudinea: Gnathobdellida | Hirudinidae   | Helobdella   | 3             |               |              |              |
| Crustacea: Amphipoda      | Gammaridae    | Gammarus     |               |               |              |              |
| Isopoda                   | Asellidae     | Caecidotea   |               |               |              |              |
| Gastropoda: Gastropoda    | Physidae      | Physa        |               |               |              |              |
|                           | Pleuroceridae | Leptoxis     |               |               |              |              |
| Bivalvia: Pelecypoda      | Corbidulidae  | Corbicula    |               |               | 1            |              |
|                           | Sphaeridae    | Psidium      |               | 7             |              |              |

| Class: Order        | Family          | Family/Genus     | COOK | BABC | BILL | BIRD |
|---------------------|-----------------|------------------|------|------|------|------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           |      |      |      |      |
|                     | Elmidae         | Optioservus      |      |      |      |      |
|                     |                 | Oulimnius        | 9    |      |      |      |
|                     |                 | Stenelmis        |      |      |      |      |
|                     | Hydrophilidae   | Hydrobius        |      |      |      |      |
|                     | Psephenidae     | Psephenus        | 7    |      | 3    |      |
|                     |                 | Ectopria         |      |      |      |      |
| Diptera             | Athericidae     | Atherix          |      |      |      |      |
|                     | Ceratopogonidae | Bezzia           |      |      | 1    |      |
|                     | Chironomidae    | Chironomidae     | 7    | 19   | 7    | 12   |
|                     | Empididae       | Hemerodromia     |      |      |      |      |
|                     | Simuliidae      | Simuliidae       |      |      |      | 2    |
|                     | Tabanidae       | Tabanus          | 2    |      |      |      |
|                     | Tipulidae       | Antocha          |      |      |      |      |
|                     |                 | Dicranota        |      |      |      |      |
|                     |                 | Hexatoma         |      | 1    | 5    | 1    |
|                     |                 | Limonia          |      |      |      |      |
|                     |                 | Tipula           |      | 2    |      |      |
| Ephemeroptera       | Ameletidae      | Ameletus         |      |      |      | 28   |
|                     | Baetidae        | Acentrella       | 3    | 3    | 3    |      |
|                     |                 | Baetis           | 15   | 5    | 15   |      |
|                     | Ephemerellidae  | Drunella         |      |      |      |      |
|                     |                 | Ephemerella      | 10   |      | 5    |      |
|                     |                 | Eurylophella     |      |      |      |      |
|                     | Ephemeridae     | Ephemera         |      |      |      |      |
|                     | Heptageniidae   | Epeorus          | 9    |      |      | 42   |
|                     |                 | Heptagenia       |      |      |      | 3    |
|                     |                 | Stenacron        |      |      | 1    |      |
|                     |                 | Stenonema        | 16   | 2    |      |      |
|                     | Leptophlebiidae | Paraleptophlebia | 2    | 52   | 51   | 1    |
|                     |                 | Habrophleboides  |      |      |      |      |
| Megaloptera         | Corydalidae     | Nigronia         |      |      |      |      |
|                     | Sialidae        | Sialis           |      |      |      |      |
| Odonata             | Aeshnidae       | Boyeria          |      |      |      |      |
|                     | Gomphidae       | Ophiogomphus     |      |      |      |      |
|                     |                 | Stylogomphus     |      |      | 1    |      |
| Plecoptera          | Chloroperlidae  | Alloperla        | 2    | 3    | 18   | 11   |
|                     | -               | Sweltsa          |      |      |      |      |
|                     | Lectridae       | Leuctra          | 2    | 19   |      | 1    |
|                     | Nemouridae      | Amphinemura      | 12   | 4    | 1    | 1    |
|                     | Perlidae        | Acroneuria       | 1    | 3    | 1    |      |
|                     |                 | Agnetina         |      |      |      |      |
|                     |                 | Neoperla         |      |      |      |      |
|                     | Perlodidae      | Diploperla       |      |      |      |      |
|                     |                 | Isoperla         |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites

| Class: Order             | Family            | Family/Genus   | COOK | BABC | BILL | BIRD |
|--------------------------|-------------------|----------------|------|------|------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      |      |      |      |
|                          | Hydropsychidae    | Ceratopsyche   |      |      |      |      |
|                          |                   | Cheumatopsyche |      |      |      |      |
|                          |                   | Diplectrona    | 3    |      |      |      |
|                          |                   | Hydropsyche    |      |      |      |      |
|                          | Hydroptilidae     | Hydroptila     |      |      | 1    |      |
|                          | Philopotamidae    | Chimarra       |      |      |      |      |
|                          |                   | Dolophilodes   | 3    | 5    | 1    |      |
|                          | Polycentropodidae | Polycentropus  |      |      |      | 10   |
|                          | Rhyacophilidae    | Rhyacophila    | 1    | 1    |      |      |
|                          | Uenonidae         | Neophylax      | 1    |      |      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       | 6    |      |      |      |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       |      |      |      |      |
| Decapoda                 | Cambaridae        | Cambaridae     |      |      |      |      |
|                          |                   | Cambarus       | 1    |      |      |      |
| Isopoda                  | Asellidae         | Caecidotea     |      |      |      |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |      | 1    |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites—Continued

| Class: Order        | Family          | Family/Genus     | BISC | BRIG | BULK | CAMP |
|---------------------|-----------------|------------------|------|------|------|------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           |      |      |      |      |
|                     | Elmidae         | Optioservus      |      |      |      |      |
|                     |                 | Oulimnius        |      |      |      |      |
|                     |                 | Stenelmis        |      |      |      |      |
|                     | Hydrophilidae   | Hydrobius        |      |      |      |      |
|                     | Psephenidae     | Psephenus        |      |      |      | 2    |
|                     |                 | Ectopria         |      |      |      |      |
| Diptera             | Athericidae     | Atherix          |      |      |      |      |
|                     | Ceratopogonidae | Bezzia           |      |      | 1    |      |
|                     | Chironomidae    | Chironomidae     | 5    | 1    | 4    | 6    |
|                     | Empididae       | Hemerodromia     |      |      |      |      |
|                     | Simuliidae      | Simuliidae       |      |      |      |      |
|                     | Tabanidae       | Tabanus          |      |      |      |      |
|                     | Tipulidae       | Antocha          |      |      |      |      |
|                     | 1               | Dicranota        |      |      | 1    |      |
|                     |                 | Hexatoma         | 2    |      | 1    | 7    |
|                     |                 | Limonia          |      |      |      |      |
|                     |                 | Tipula           | 1    |      | 1    |      |
| Ephemeroptera       | Ameletidae      | Ameletus         | 1    | 1    | -    |      |
| Ephenieropteru      | Baetidae        | Acentrella       | -    | -    |      |      |
|                     | Dactidae        | Baetis           | 5    |      | 4    | 3    |
|                     | Ephemerellidae  | Drunella         | 5    |      | 4    | 1    |
|                     | Ephemeremuae    | Ephemerella      |      |      | 1    | 4    |
|                     |                 | Eurylophella     |      |      |      | 4    |
|                     | Enhomoridoo     |                  |      |      |      |      |
|                     | Ephemeridae     | Ephemera         | 50   | 40   | 23   | (    |
|                     | Heptageniidae   | Epeorus          |      | 42   |      | 6    |
|                     |                 | Heptagenia       | 7    | 1    | 12   |      |
|                     |                 | Stenacron        | -    |      |      |      |
|                     |                 | Stenonema        | 2    |      | 1    |      |
|                     | Leptophlebiidae | Paraleptophlebia |      | 2    |      | 5    |
|                     |                 | Habrophleboides  |      |      |      |      |
| Megaloptera         | Corydalidae     | Nigronia         |      |      | 8    | 1    |
|                     | Sialidae        | Sialis           |      |      |      |      |
| Odonata             | Aeshnidae       | Boyeria          |      |      |      |      |
|                     | Gomphidae       | Ophiogomphus     |      |      | 1    |      |
|                     |                 | Stylogomphus     |      |      |      |      |
| Plecoptera          | Chloroperlidae  | Alloperla        | 16   | 5    | 12   | 55   |
|                     |                 | Sweltsa          |      |      |      |      |
|                     | Lectridae       | Leuctra          | 2    |      | 9    | 12   |
|                     | Nemouridae      | Amphinemura      | 2    | 2    | 4    | 3    |
|                     | Perlidae        | Acroneuria       | 3    |      | 16   | 2    |
|                     |                 | Agnetina         |      |      |      |      |
|                     |                 | Neoperla         |      |      |      |      |
|                     | Perlodidae      | Diploperla       |      |      |      |      |
|                     |                 | Isoperla         | -    |      |      |      |

| Class: Order             | Family            | Family/Genus   | BISC | BRIG | BULK | CAMP |
|--------------------------|-------------------|----------------|------|------|------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      |      |      |      |
|                          | Hydropsychidae    | Ceratopsyche   |      |      | 3    |      |
|                          |                   | Cheumatopsyche |      |      |      |      |
|                          |                   | Diplectrona    | 2    | 1    | 7    | 1    |
|                          |                   | Hydropsyche    |      |      |      |      |
|                          | Hydroptilidae     | Hydroptila     |      |      |      |      |
|                          | Philopotamidae    | Chimarra       |      |      |      | 3    |
|                          |                   | Dolophilodes   | 6    |      |      |      |
|                          | Polycentropodidae | Polycentropus  |      | 1    | 5    |      |
|                          | Rhyacophilidae    | Rhyacophila    |      |      |      |      |
|                          | Uenonidae         | Neophylax      |      |      |      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |      |      |      |      |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       |      |      |      |      |
| Decapoda                 | Cambaridae        | Cambaridae     | 1    |      |      |      |
|                          |                   | Cambarus       |      |      |      |      |
| Isopoda                  | Asellidae         | Caecidotea     |      |      |      |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |      |      | 1    |

| Class: Order        | Family          | Family/Genus     | DEEP | DENT | DRYB | LWAP |
|---------------------|-----------------|------------------|------|------|------|------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           |      |      | 1    |      |
|                     | Elmidae         | Optioservus      |      |      |      |      |
|                     |                 | Oulimnius        |      |      |      |      |
|                     |                 | Stenelmis        |      | 5    |      |      |
|                     | Hydrophilidae   | Hydrobius        |      |      |      |      |
|                     | Psephenidae     | Psephenus        |      |      | 1    | 1    |
|                     |                 | Ectopria         |      |      |      |      |
| Diptera             | Athericidae     | Atherix          | 2    |      |      |      |
|                     | Ceratopogonidae | Bezzia           |      |      |      |      |
|                     | Chironomidae    | Chironomidae     | 34   | 48   | 59   | 2    |
|                     | Empididae       | Hemerodromia     | 2    | 1    | 1    |      |
|                     | Simuliidae      | Simuliidae       |      | 57   | 12   |      |
|                     | Tabanidae       | Tabanus          |      |      |      |      |
|                     | Tipulidae       | Antocha          | 2    |      |      |      |
|                     | 1               | Dicranota        | 1    |      |      | 1    |
|                     |                 | Hexatoma         | 2    |      |      | -    |
|                     |                 | Limonia          |      |      |      |      |
|                     |                 | Tipula           |      |      |      |      |
| Ephemeroptera       | Ameletidae      | Ameletus         |      |      | 14   |      |
| Epitemeropteru      | Baetidae        | Acentrella       |      |      | 3    |      |
|                     | Daetituae       | Baetis           | 3    |      | 18   | 1    |
|                     | Ephemerellidae  | Drunella         | 5    |      | 10   | 1    |
|                     | Ephemeremdae    | Ephemerella      | 2    |      |      | 1    |
|                     |                 |                  | 3    |      |      | 1    |
|                     | <b>F1</b> 1     | Eurylophella     | 1    |      |      |      |
|                     | Ephemeridae     | Ephemera         | 2    |      |      | 4.4  |
|                     | Heptageniidae   | Epeorus          | 1    |      |      | 44   |
|                     |                 | Heptagenia       |      |      |      | 4    |
|                     |                 | Stenacron        |      |      | 1    |      |
|                     |                 | Stenonema        | 3    |      |      |      |
|                     | Leptophlebiidae | Paraleptophlebia | 2    |      | 4    | 1    |
|                     |                 | Habrophleboides  | 14   |      |      |      |
| Megaloptera         | Corydalidae     | Nigronia         | 4    | 1    |      | 1    |
|                     | Sialidae        | Sialis           |      |      |      | 1    |
| Odonata             | Aeshnidae       | Boyeria          | 1    |      |      |      |
|                     | Gomphidae       | Ophiogomphus     | 1    |      |      |      |
|                     |                 | Stylogomphus     |      |      |      |      |
| Plecoptera          | Chloroperlidae  | Alloperla        |      |      |      | 25   |
|                     |                 | Sweltsa          |      |      |      | 3    |
|                     | Lectridae       | Leuctra          | 20   |      |      | 7    |
|                     | Nemouridae      | Amphinemura      | 7    | 1    | 2    | 4    |
|                     | Perlidae        | Acroneuria       | 6    |      |      | 2    |
|                     |                 | Agnetina         |      |      |      |      |
|                     |                 | Neoperla         |      |      |      |      |
|                     | Perlodidae      | Diploperla       |      |      |      |      |
|                     |                 | Isoperla         |      |      |      | 3    |

| Class: Order             | Family            | Family/Genus   | DEEP | DENT | DRYB | LWAP |
|--------------------------|-------------------|----------------|------|------|------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      | 1    |      |      |
|                          | Hydropsychidae    | Ceratopsyche   |      |      |      |      |
|                          |                   | Cheumatopsyche | 1    | 41   |      |      |
|                          |                   | Diplectrona    | 1    |      |      |      |
|                          |                   | Hydropsyche    | 1    | 35   |      |      |
|                          | Hydroptilidae     | Hydroptila     |      |      |      |      |
|                          | Philopotamidae    | Chimarra       |      |      |      |      |
|                          |                   | Dolophilodes   |      |      |      |      |
|                          | Polycentropodidae | Polycentropus  | 1    |      |      |      |
|                          | Rhyacophilidae    | Rhyacophila    | 1    |      | 1    |      |
|                          | Uenonidae         | Neophylax      |      |      |      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |      |      |      |      |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       | 1    | 1    |      |      |
| Decapoda                 | Cambaridae        | Cambaridae     |      |      |      |      |
|                          |                   | Cambarus       |      |      |      |      |
| Isopoda                  | Asellidae         | Caecidotea     |      |      |      |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |      | 1    |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites—Continued

| Class: Order        | Family          | Family/Genus     | PARK | PRIN | REDH | RUSS |
|---------------------|-----------------|------------------|------|------|------|------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           |      |      |      |      |
|                     | Elmidae         | Optioservus      |      |      |      |      |
|                     |                 | Oulimnius        |      |      |      |      |
|                     |                 | Stenelmis        |      |      |      |      |
|                     | Hydrophilidae   | Hydrobius        |      |      |      |      |
|                     | Psephenidae     | Psephenus        |      |      |      |      |
|                     |                 | Ectopria         |      |      |      |      |
| Diptera             | Athericidae     | Atherix          |      |      |      |      |
|                     | Ceratopogonidae | Bezzia           |      |      |      |      |
|                     | Chironomidae    | Chironomidae     | 3    | 19   | 6    | 4    |
|                     | Empididae       | Hemerodromia     |      | 1    |      |      |
|                     | Simuliidae      | Simuliidae       | 2    |      |      |      |
|                     | Tabanidae       | Tabanus          |      |      |      |      |
|                     | Tipulidae       | Antocha          |      |      |      |      |
|                     |                 | Dicranota        |      |      | 2    | 1    |
|                     |                 | Hexatoma         | 2    | 1    |      | 3    |
|                     |                 | Limonia          |      |      |      |      |
|                     |                 | Tipula           |      | 1    | 1    |      |
| Ephemeroptera       | Ameletidae      | Ameletus         | 2    | 4    |      | 6    |
|                     | Baetidae        | Acentrella       |      | 5    |      |      |
|                     |                 | Baetis           | 3    | 22   |      | 2    |
|                     | Ephemerellidae  | Drunella         |      |      | 1    |      |
|                     |                 | Ephemerella      |      | 1    |      |      |
|                     |                 | Eurylophella     |      |      |      |      |
|                     | Ephemeridae     | Ephemera         |      |      |      |      |
|                     | Heptageniidae   | Epeorus          | 44   | 15   | 4    | 64   |
|                     | 1.0             | Heptagenia       | 8    | 5    |      | 3    |
|                     |                 | Stenacron        |      | -    |      | -    |
|                     |                 | Stenonema        | 2    |      |      |      |
|                     | Leptophlebiidae | Paraleptophlebia | 3    | 15   |      |      |
|                     |                 | Habrophleboides  |      |      |      |      |
| Megaloptera         | Corydalidae     | Nigronia         |      |      |      |      |
| .91                 | Sialidae        | Sialis           |      |      |      |      |
| Odonata             | Aeshnidae       | Boyeria          |      |      |      |      |
|                     | Gomphidae       | Ophiogomphus     |      |      |      |      |
|                     |                 | Stylogomphus     |      |      |      |      |
| Plecoptera          | Chloroperlidae  | Alloperla        | 7    | 8    | 1    | 11   |
| 1 loop to lu        | store r strang  | Sweltsa          | 4    |      | 1    |      |
|                     | Lectridae       | Leuctra          | 20   | 2    | 74   | 5    |
|                     | Nemouridae      | Amphinemura      | 9    | 3    | 3    | 5    |
|                     | Perlidae        | Acroneuria       |      | 2    |      |      |
|                     |                 | Agnetina         |      | -    |      |      |
|                     |                 | Neoperla         |      |      |      |      |
|                     | Perlodidae      | Diploperla       |      |      |      |      |
|                     | I CHOUIDAU      | Isoperla         |      |      | 7    |      |

| Class: Order             | Family            | Family/Genus   | PARK | PRIN | REDH | RUSS |
|--------------------------|-------------------|----------------|------|------|------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      |      |      |      |
|                          | Hydropsychidae    | Ceratopsyche   |      |      |      |      |
|                          |                   | Cheumatopsyche |      |      |      |      |
|                          |                   | Diplectrona    |      |      |      |      |
|                          |                   | Hydropsyche    |      |      |      |      |
|                          | Hydroptilidae     | Hydroptila     |      |      |      |      |
|                          | Philopot amidae   | Chimarra       |      |      |      |      |
|                          |                   | Dolophilodes   |      |      | 5    |      |
|                          | Polycentropodidae | Polycentropus  |      | 2    |      |      |
|                          | Rhyacophilidae    | Rhyacophila    |      |      | 1    |      |
|                          | Uenonidae         | Neophylax      |      |      |      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |      | 3    | 1    | 1    |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       |      |      |      |      |
| Decapoda                 | Cambaridae        | Cambaridae     |      |      | 1    | 1    |
|                          |                   | Cambarus       | 1    |      |      |      |
| Isopoda                  | Asellidae         | Caecidotea     |      |      |      |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites—Continued

| Class: Order                          | Family                  | Family/Genus     | SACK | SMIT | STRA | WBCO |
|---------------------------------------|-------------------------|------------------|------|------|------|------|
| Insecta: Coleoptera                   | Dytiscidae              | Agabus           |      |      |      |      |
|                                       | Elmidae                 | Optioservus      |      |      | 2    |      |
|                                       |                         | Oulimnius        |      | 11   |      | 3    |
|                                       |                         | Stenelmis        |      |      | 1    |      |
|                                       | Hydrophilidae           | Hydrobius        |      |      | 1    |      |
|                                       | Psephenidae             | Psephenus        |      |      | 11   |      |
|                                       |                         | Ectopria         |      | 4    |      |      |
| Diptera                               | Athericidae             | Atherix          |      |      |      |      |
|                                       | Ceratopogonidae         | Bezzia           |      | 1    |      |      |
|                                       | Chironomidae            | Chironomidae     | 1    | 12   | 14   | 13   |
|                                       | Empididae               | Hemerodromia     |      | 3    |      |      |
|                                       | Simuliidae              | Simuliidae       |      |      |      |      |
|                                       | Tabanidae               | Tabanus          |      |      |      |      |
|                                       | Tipulidae               | Antocha          |      |      |      |      |
|                                       |                         | Dicranota        |      |      | 1    |      |
|                                       |                         | Hexatoma         |      |      | 1    | 2    |
|                                       |                         | Limonia          |      | 5    |      |      |
|                                       |                         | Tipula           |      | -    |      |      |
| Ephemeroptera                         | Ameletidae              | Ameletus         | 2    | 2    | 2    | 11   |
| r · · · · · · ·                       | Baetidae                | Acentrella       |      | 1    | 2    |      |
|                                       | Buetidae                | Baetis           | 2    | 7    | 7    | 14   |
| · · · · · · · · · · · · · · · · · · · | Ephemerellidae          | Drunella         | 2    | ,    | 1    | 17   |
| · · · · · · · · · · · · · · · · · · · | Epitemerenidae          | Ephemerella      |      | 2    | 4    | 2    |
|                                       |                         | Eurylophella     |      | 2    | 1    | 2    |
|                                       | Ephemeridae             | Ephemera         |      | 5    | 1    |      |
|                                       | Heptageniidae           | Epeorus          | 53   | 5    | 2    | 6    |
|                                       | Tieptageimdae           | Heptagenia       | 12   | 1    | 1    | 29   |
|                                       |                         | Stenacron        | 12   | 1    | 1    | 29   |
|                                       |                         | Stenonema        |      | 4    | 4    |      |
|                                       | Leptophlebiidae         | Paraleptophlebia | 6    | 4    | 19   | 20   |
|                                       | Leptophieondae          |                  | 0    |      | 19   | 20   |
| M 1 (                                 |                         | Habrophleboides  |      | 7    |      |      |
| Megaloptera                           | Corydalidae<br>Sialidae | Nigronia         |      | 7    |      |      |
|                                       |                         | Sialis           |      |      |      |      |
| Odonata                               | Aeshnidae               | Boyeria          |      |      |      |      |
|                                       | Gomphidae               | Ophiogomphus     |      |      |      |      |
|                                       |                         | Stylogomphus     |      | 1    |      |      |
| Plecoptera                            | Chloroperlidae          | Alloperla        | 6    |      | 19   | 14   |
|                                       |                         | Sweltsa          | 2    |      |      |      |
|                                       | Lectridae               | Leuctra          | 7    | 65   |      | 2    |
|                                       | Nemouridae              | Amphinemura      | 10   | 16   | 5    | 6    |
|                                       | Perlidae                | Acroneuria       | 4    | 4    |      | 3    |
|                                       |                         | Agnetina         |      |      | 1    |      |
|                                       |                         | Neoperla         |      |      | 3    |      |
|                                       | Perlodidae              | Diploperla       |      |      |      |      |
|                                       |                         | Isoperla         |      |      |      | 1    |

| Class: Order             | Family            | Family/Genus   | SACK | SMIT | STRA | WBCO |
|--------------------------|-------------------|----------------|------|------|------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      |      |      |      |
|                          | Hydropsychidae    | Ceratopsyche   |      |      | 2    |      |
|                          |                   | Cheumatopsyche |      |      |      |      |
|                          |                   | Diplectrona    | 1    | 7    |      | 1    |
|                          |                   | Hydropsyche    |      |      |      |      |
|                          | Hydroptilidae     | Hydroptila     |      |      |      |      |
|                          | Philopotamidae    | Chimarra       |      |      |      |      |
|                          |                   | Dolophilodes   | 1    |      | 8    | 3    |
|                          | Polycentropodidae | Polycentropus  |      |      |      |      |
|                          | Rhyacophilidae    | Rhyacophila    | 1    |      |      |      |
|                          | Uenonidae         | Neophylax      |      |      |      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |      |      |      | 3    |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       |      |      |      |      |
| Decapoda                 | Cambaridae        | Cambaridae     |      |      |      |      |
|                          |                   | Cambarus       | 1    | 1    |      | 2    |
| Isopoda                  | Asellidae         | Caecidotea     | 1    |      |      |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites—Continued

| Class: Order        | Family          | Family/Genus     | WHIT |
|---------------------|-----------------|------------------|------|
| Insecta: Coleoptera | Dytiscidae      | Agabus           |      |
|                     | Elmidae         | Optioservus      |      |
|                     |                 | Oulimnius        |      |
|                     |                 | Stenelmis        |      |
|                     | Hydrophilidae   | Hydrobius        |      |
|                     | Psephenidae     | Psephenus        |      |
|                     |                 | Ectopria         |      |
| Diptera             | Athericidae     | Atherix          |      |
|                     | Ceratopogonidae | Bezzia           |      |
|                     | Chironomidae    | Chironomidae     | 9    |
|                     | Empididae       | Hemerodromia     |      |
|                     | Simuliidae      | Simuliidae       |      |
|                     | Tabanidae       | Tabanus          |      |
|                     | Tipulidae       | Antocha          |      |
|                     |                 | Dicranota        |      |
|                     |                 | Hexatoma         | 1    |
|                     |                 | Limonia          |      |
|                     |                 | Tipula           |      |
| Ephemeroptera       | Ameletidae      | Ameletus         | 4    |
|                     | Baetidae        | Acentrella       |      |
|                     |                 | Baetis           | 13   |
|                     | Ephemerellidae  | Drunella         |      |
|                     |                 | Ephemerella      | 4    |
|                     |                 | Eurylophella     |      |
|                     | Ephemeridae     | Ephemera         |      |
|                     | Heptageniidae   | Epeorus          | 40   |
|                     |                 | Heptagenia       |      |
|                     |                 | Stenacron        |      |
|                     |                 | Stenonema        |      |
|                     | Leptophlebiidae | Paraleptophlebia |      |
|                     |                 | Habrophleboides  |      |
| Megaloptera         | Corydalidae     | Nigronia         |      |
|                     | Sialidae        | Sialis           |      |
| Odonata             | Aeshnidae       | Boyeria          |      |
|                     | Gomphidae       | Ophiogomphus     |      |
|                     |                 | Stylogomphus     |      |
| Plecoptera          | Chloroperlidae  | Alloperla        | -    |
|                     | <b>T</b> . • 1  | Sweltsa          | 6    |
|                     | Lectridae       | Leuctra          | 11   |
|                     | Nemouridae      | Amphinemura      | 29   |
|                     | Perlidae        | Acroneuria       |      |
|                     |                 | Agnetina         |      |
|                     |                 | Neoperla         | 0    |
|                     | Perlodidae      | Diploperla       | 8    |
|                     |                 | Isoperla         |      |

| Class: Order             | Family            | Family/Genus   | WHIT |
|--------------------------|-------------------|----------------|------|
| Trichoptera              | Brachycentridae   | Brachycentrus  |      |
|                          | Hydropsychidae    | Ceratopsyche   | 1    |
|                          |                   | Cheumatopsyche |      |
|                          |                   | Diplectrona    |      |
|                          |                   | Hydropsyche    |      |
|                          | Hydroptilidae     | Hydroptila     |      |
|                          | Philopotamidae    | Chimarra       |      |
|                          |                   | Dolophilodes   | 2    |
|                          | Polycentropodidae | Polycentropus  |      |
|                          | Rhyacophilidae    | Rhyacophila    |      |
|                          | Uenonidae         | Neophylax      |      |
| Oligochaeta: Haplotaxida | Naididae          | Naididae       |      |
| Crustacea: Amphipoda     | Gammaridae        | Gammarus       |      |
| Decapoda                 | Cambaridae        | Cambaridae     |      |
|                          |                   | Cambarus       |      |
| Isopoda                  | Asellidae         | Caecidotea     |      |
| Gastropoda: Gastropoda   | Physidae          | Physa          |      |

## Appendix D

## WATER CLASSIFICATION AND BEST USAGE RELATIONSHIPS

#### New York:

The New York State water quality classifications are summarized from Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705, effective September 1, 1991, New York State Department of Environmental Conservation, Division of Water, Albany, New York. Only classifications that are used in this report will be described in this section. The classes are as follows:

**Class B:** The best usages of Class B waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

**Class C:** The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

**Class D:** The best usage of these waters is fishing. Due to such natural conditions as intermittence of flow, water conditions not conducive to propagation of game fishery, or streambed conditions, the waters will not support fish propagation. These waters shall be suitable for fish survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

(T): Suffix added to classes where trout survival is an additional best use to the use classification.

#### Pennsylvania:

The Pennsylvania state water quality classifications are summarized from Water Quality Standards of the Department's Rules and Regulations, 25 Pa. Code, Chapter 93.3-5, effective August 1989, Pennsylvania Department of Environmental Resources, Division of Water Quality, Harrisburg, Pennsylvania. All surface waters must meet protected water uses for aquatic life (warm water fishes), water supply (potable, industrial, livestock, and wildlife), and recreation (boating, fishing, water contact sports, and aesthetics). Only classifications that are used in this report will be described in this section. The use classifications are as follows:

**CWF** - Cold Water Fishes: Maintenance and/or propagation of fish species including the family Salmonidae and additional flora and fauna, which are indigenous to a cold water habitat.

**WWF** – Warm Water Fishes: Maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

TSF – Trout Stocked Fishery: Maintenance of stocked trout from February 15 to July 31 and maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

MF – Migratory Fishes: Passage, maintenance and propagation of anadromous and catadromous fishes and other fishes that ascend to flowing waters to complete their life cycle. The MF designation is in addition to other designations when appropriate.

### Maryland:

The Maryland State water quality classifications are summarized from Water Quality Regulations for Designated Uses, COMAR 26.08.02, Effective November 1, 1993, Maryland Department of the Environment, Annapolis, Maryland. All surface waters must protect public health or welfare; enhance the quality of water; protect aquatic resources; and serve the purposes of the Federal Act. Only classifications that are used in this report will be described in this section. The designated use classifications are as follows:

**I-P** – Water Contact Recreation, Protection of Aquatic Life, and Public Water Supply: This use designation includes waters that are suitable for water contact sports; play and leisure time activities where individuals may come in direct contact with surface water; fishing; the growth and propagation of fish (other than trout), other aquatic life, and wild life; and industrial supply. The P designation indicates that the water source may be used as a public water supply.

III-P – Natural Trout Waters and Public Water Supply: This use designation includes waters that have the potential for or are suitable for the growth and propagation of trout, and capable of supporting self-sustaining trout populations and their food organisms. The P designation indicates that the water use may be used as a public water supply.

**IV-P** – Recreational Trout Waters and Public Water Supply: This use designation includes cold or warm waters that have the potential for or are capable of holding or supporting adult trout for put-and-take fishing; and managed as a special fishery by periodic stocking and seasonal catching. The P designation indicates that the waters may be used as a public water supply.

# APPENDIX E

# STATISTICAL TREND RESULTS BY PARAMETER

|                         |       | C      | Concentratio | ns      |        | Flow - Adjusted Concentrations |        |        |         |  |
|-------------------------|-------|--------|--------------|---------|--------|--------------------------------|--------|--------|---------|--|
| Station                 | Р     | b      | Tau          | % Slope | Median | Р                              | b      | Tau    | % Slope |  |
| Cayuta Creek            | 0.366 | -2.801 | -0.093       | -1.648  | 170    | 0.122                          | -3.497 | -0.187 | NA      |  |
| Chemung River           | 0.875 | 0.267  | 0.023        | 0.117   | 228    | 0.974                          | 0.062  | -0.002 | NA      |  |
| Conowingo Creek         | 0.471 | 1.360  | 0.091        | 0.810   | 168    | 0.273                          | 1.649  | 0.129  | -37.206 |  |
| Cowanesque River        | 0.187 | 1.671  | 0.172        | 1.359   | 123    | 0.000                          | -0.047 | 0.007  | 1.043   |  |
| Deer Creek              | 0.753 | -0.266 | -0.021       | -0.196  | 136    | 0.618                          | 0.521  | 0.063  | NA      |  |
| Ebaugh Creek            | 0.058 | 4.216  | 0.226        | 2.540   | 166    | 0.195                          | 4.064  | 0.164  | -24.331 |  |
| Octoraro Creek          | 0.505 | -1.197 | -0.044       | -0.688  | 174    | 0.809                          | 0.331  | 0.009  | 11.699  |  |
| Scott Creek             | 0.750 | 1.108  | 0.031        | 0.543   | 204    | 0.071                          | 4.724  | 0.211  | NA      |  |
| Susquehanna River 10.0  | 0.946 | 0.000  | -0.019       | 0.000   | 180    | 0.790                          | -1.007 | -0.043 | -11.758 |  |
| Susquehanna River 44.5  | 0.482 | 3.093  | 0.070        | 1.578   | 196    | 0.532                          | -2.166 | -0.122 | 48.272  |  |
| Susquehanna River 289.1 | 0.451 | -1.263 | -0.088       | -0.831  | 152    | 0.178                          | -1.404 | -0.154 | -38.385 |  |
| Susquehanna River 340   | 0.948 | 0.000  | 0.027        | 0.000   | 124    | 0.974                          | -0.082 | 0.016  | -13.532 |  |
| Susquehanna River 365   | 0.721 | -0.309 | -0.044       | -0.243  | 127    | 0.784                          | 0.311  | -0.017 | -9.744  |  |
| Tioga River             | 0.044 | -1.965 | -0.210       | -1.424  | 135    | 0.445                          | -0.787 | -0.092 | 11.014  |  |
| Troups Creek            | 0.127 | 1.995  | 0.182        | 1.202   | 166    | 0.547                          | 1.505  | 0.086  | NA      |  |

 Table E1.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Suspended Solids

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C      | Concentration | าร      |        | Fle     | ow-Adjusted | Concentratio | ns      |
|-------------------------|---------|--------|---------------|---------|--------|---------|-------------|--------------|---------|
| Station                 | Р       | b      | Tau           | % Slope | Median | Р       | b           | Tau          | % Slope |
| Cayuta Creek            | < 0.001 | -0.003 | -0.445        | -8.342  | 0.030  | 0.022   | -0.002      | -0.274       | 31.611  |
| Chemung River           | 0.001   | -0.003 | -0.313        | -6.694  | 0.050  | 0.020   | -0.003      | -0.236       | NA      |
| Conowingo Creek         | 0.344   | -0.001 | -0.092        | -2.241  | 0.050  | 0.826   | 0.000       | -0.031       | 3.977   |
| Cowanesque River        | 0.197   | -0.002 | -0.164        | -3.343  | 0.060  | 0.041   | -0.003      | -0.274       | NA      |
| Deer Creek              | 0.002   | -0.002 | -0.289        | -7.532  | 0.030  | 0.483   | 0.000       | -0.077       | NA      |
| Ebaugh Creek            | 0.007   | -0.003 | -0.261        | -6.836  | 0.050  | 0.737   | -0.001      | -0.038       | 8.896   |
| Octoraro Creek          | 0.033   | -0.003 | -0.204        | -7.053  | 0.040  | 0.369   | -0.001      | -0.024       | 39.727  |
| Scott Creek             | 0.972   | 0.000  | -0.011        | 0.000   | 0.150  | 0.499   | 0.007       | 0.082        | -29.02  |
| Susquehanna River 10.0  | 0.210   | -0.001 | -0.134        | -1.767  | 0.080  | 0.860   | 0.000       | -0.030       | 4.574   |
| Susquehanna River 44.5  | 0.147   | -0.001 | -0.161        | -3.586  | 0.040  | 0.058   | -0.002      | -0.224       | 39.107  |
| Susquehanna River 289.1 | 0.010   | -0.003 | -0.249        | -6.017  | 0.050  | 0.104   | -0.002      | -0.158       | NA      |
| Susquehanna River 340   | 0.002   | -0.002 | -0.297        | -4.775  | 0.035  | < 0.001 | -0.002      | -0.357       | 41.373  |
| Susquehanna River 365   | <.0001  | -0.002 | -0.307        | -6.616  | 0.030  | 0.015   | -0.002      | -0.253       | 52.607  |
| Tioga River             | < 0.001 | -0.003 | -0.338        | -5.574  | 0.060  | 0.445   | -0.787      | -0.092       | 11.014  |
| Troups Creek            | 0.810   | 0.000  | -0.041        | 0.000   | 0.020  | 0.699   | 0.000       | -0.510       | 12.705  |

Table E2. Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Ammonia

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C      | Concentration | ns      |        | Flow - Adjusted Concentrations |        |        |         |  |
|-------------------------|---------|--------|---------------|---------|--------|--------------------------------|--------|--------|---------|--|
| Station                 | Р       | b      | Tau           | % Slope | Median | Р                              | b      | Tau    | % Slope |  |
| Cayuta Creek            | 0.132   | -0.017 | -0.154        | -2.895  | 0.574  | 0.015                          | -0.030 | -0.274 | NA      |  |
| Chemung River           | 0.062   | -0.013 | -0.193        | -1.768  | 0.752  | 0.338                          | -0.009 | -0.099 | -81.456 |  |
| Conowingo Creek         | < 0.001 | 0.195  | 0.416         | 2.602   | 7.480  | < 0.001                        | 0.224  | 0.510  | NA      |  |
| Cowanesque River        | 0.058   | -0.015 | -0.243        | -2.899  | 0.517  | 0.722                          | -0.007 | -0.071 | 43.351  |  |
| Deer Creek              | 0.126   | 0.040  | 0.160         | 0.863   | 4.662  | 0.072                          | 0.041  | 0.192  | NA      |  |
| Ebaugh Creek            | 0.350   | 0.013  | 0.103         | 0.228   | 5.810  | 0.831                          | 0.010  | 0.026  | NA      |  |
| Octoraro Creek          | 0.067   | 0.085  | 0.171         | 1.607   | 5.279  | 0.111                          | 0.107  | 0.202  | NA      |  |
| Scott Creek             | 0.621   | 0.008  | 0.068         | 0.388   | 2.076  | 0.764                          | 0.009  | 0.045  | -5.291  |  |
| Susquehanna River 10.0  | 0.574   | -0.005 | -0.056        | -0.420  | 1.232  | 0.057                          | -0.019 | -0.224 | NA      |  |
| Susquehanna River 44.5  | 0.528   | -0.007 | -0.067        | -0.758  | 0.901  | 0.801                          | 0.001  | -0.012 | 9.049   |  |
| Susquehanna River 289.1 | < 0.001 | -0.020 | -0.347        | -2.864  | 0.700  | 0.011                          | -0.017 | -0.252 | NA      |  |
| Susquehanna River 340   | < 0.001 | -0.019 | -0.448        | -3.500  | 0.531  | 0.001                          | -0.015 | -0.352 | 63.817  |  |
| Susquehanna River 365   | 0.001   | -0.017 | -0.320        | -2.799  | 0.594  | 0.138                          | -0.013 | -0.169 | -98.397 |  |
| Tioga River             | 0.040   | -0.011 | -0.196        | -2.061  | 0.510  | 0.082                          | -0.009 | -0.187 | NA      |  |
| Troups Creek            | 0.120   | -0.013 | -0.186        | -7.071  | 0.188  | 0.000                          | 0.000  | 0.003  | -1.625  |  |

 Table E3.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Nitrogen

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C      | oncentration | IS      |        | Fk    | ow-Adjusted | Concentratio | ns      |
|-------------------------|---------|--------|--------------|---------|--------|-------|-------------|--------------|---------|
| Station                 | Р       | b      | Tau          | % Slope | Median | Р     | b           | Tau          | % Slope |
| Cayuta Creek            | 0.025   | -0.005 | -0.222       | -5.540  | 0.090  | 0.108 | -0.004      | -0.189       | NA      |
| Chemung River           | 0.259   | -0.002 | -0.113       | -2.821  | 0.070  | 0.130 | -0.002      | -0.166       | 74.050  |
| Conowingo Creek         | 0.053   | -0.003 | -0.194       | -4.126  | 0.080  | 0.065 | -0.003      | -0.193       | NA      |
| Cowanesque River        | 0.440   | 0.000  | -0.073       | 0.000   | 0.030  | 0.286 | -0.001      | -0.128       | 59.063  |
| Deer Creek              | < 0.001 | -0.002 | -0.417       | -7.323  | 0.030  | 0.002 | -0.002      | -0.332       | NA      |
| Ebaugh Creek            | 0.010   | -0.002 | -0.251       | -5.131  | 0.040  | 0.085 | -0.002      | -0.182       | 83.148  |
| Octoraro Creek          | 0.042   | -0.003 | -0.214       | -4.296  | 0.075  | 0.035 | -0.003      | -0.254       | 43.308  |
| Scott Creek             | 0.010   | -0.008 | -0.292       | -9.077  | 0.090  | 0.275 | -0.004      | -0.114       | 52.280  |
| Susquehanna River 10.0  | 0.002   | -0.002 | -0.316       | -3.967  | 0.050  | 0.037 | -0.001      | -0.245       | -81.129 |
| Susquehanna River 44.5  | 0.064   | -0.002 | -0.184       | -4.161  | 0.060  | 0.165 | -0.002      | -0.197       | NA      |
| Susquehanna River 289.1 | 0.010   | -0.003 | -0.266       | -5.015  | 0.050  | 0.007 | -0.002      | -0.266       | -81.579 |
| Susquehanna River 340   | < 0.001 | -0.002 | -0.327       | -5.008  | 0.040  | 0.023 | -0.001      | -0.231       | NA      |
| Susquehanna River 365   | < 0.001 | -0.002 | -0.312       | -4.537  | 0.040  | 0.089 | -0.002      | -0.192       | 71.614  |
| Tioga River             | 0.119   | 0.000  | -0.146       | 0.000   | 0.030  | 0.113 | -0.001      | -0.158       | NA      |
| Troups Creek            | 0.088   | 0.000  | -0.177       | 0.000   | 0.030  | 0.296 | 0.000       | -0.089       | NA      |

 Table E4.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Phosphorus

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | С     | oncentratio | ns      |        | Flow    | w-Adjusted | Concentrat | ions    |
|-------------------------|---------|-------|-------------|---------|--------|---------|------------|------------|---------|
| Station                 | Р       | b     | Tau         | % Slope | Median | Р       | b          | Tau        | % Slope |
| Cayuta Creek            | 0.641   | 0.252 | 0.049       | 1.145   | 22.0   | 0.636   | -0.191     | -0.039     | NA      |
| Chemung River           | 0.022   | 1.006 | 0.231       | 3.725   | 27.0   | < 0.001 | 0.814      | 0.412      | NA      |
| Conowingo Creek         | < 0.001 | 0.175 | 0.338       | 1.096   | 16.0   | 0.001   | 0.194      | 0.344      | NA      |
| Cowanesque River        | 0.581   | 0.000 | 0.118       | 0.000   | 10.0   | 1.000   | -0.018     | 0.043      | 4.486   |
| Deer Creek              | < 0.001 | 0.333 | 0.352       | 1.958   | 17.0   | < 0.001 | 0.324      | 0.410      | -68.280 |
| Ebaugh Creek            | < 0.001 | 2.924 | 0.372       | 9.431   | 31.0   | 0.008   | 2.885      | 0.282      | -47.862 |
| Octoraro Creek          | 0.013   | 0.144 | 0.257       | 1.025   | 14.0   | 0.001   | 0.172      | 0.404      | 61.561  |
| Scott Creek             | 0.050   | 0.598 | 0.214       | 1.760   | 34.0   | 0.035   | 0.485      | 0.252      | -74.474 |
| Susquehanna River 10.0  | 0.821   | 0.000 | 0.020       | 0.000   | 15.0   | 0.621   | 0.067      | 0.064      | -34.724 |
| Susquehanna River 44.5  | 0.240   | 0.302 | 0.146       | 2.016   | 15.0   | 0.950   | 0.011      | 0.059      | -1.994  |
| Susquehanna River 289.1 | 0.003   | 0.689 | 0.294       | 4.593   | 15.0   | < 0.001 | 0.462      | 0.363      | NA      |
| Susquehanna River 340   | 0.012   | 0.305 | 0.253       | 3.051   | 10.0   | 0.012   | 0.184      | 0.255      | -46.130 |
| Susquehanna River 365   | 0.009   | 0.285 | 0.275       | 2.851   | 10.0   | 0.138   | 0.155      | 0.179      | -86.319 |
| Tioga River             | 0.585   | 0.000 | -0.055      | 0.000   | 9.0    | 0.122   | -0.099     | -0.151     | 70.828  |
| Troups Creek            | 0.074   | 0.403 | 0.212       | 3.099   | 13.0   | 0.938   | 0.046      | 0.017      | 27.817  |

 Table E5.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Chloride

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C      | Concentration | าร      |        | Fle     | ow-Adjusted | Concentratio | ons     |
|-------------------------|---------|--------|---------------|---------|--------|---------|-------------|--------------|---------|
| Station                 | Р       | b      | Tau           | % Slope | Median | Р       | b           | Tau          | % Slope |
| Cayuta Creek            | 0.005   | -0.999 | -0.283        | -4.163  | 24     | 0.008   | -1.301      | -0.294       | -84.662 |
| Chemung River           | < 0.001 | -1.017 | -0.379        | -3.280  | 31     | < 0.001 | -0.963      | -0.385       | NA      |
| Conowingo Creek         | 0.122   | -0.398 | -0.171        | -2.746  | 14.5   | 0.233   | -0.366      | -0.137       | 63.266  |
| Cowanesque River        | < 0.001 | -1.569 | -0.535        | -7.133  | 22     | < 0.001 | -1.290      | -0.519       | NA      |
| Deer Creek              | 0.075   | 0.000  | 0.159         | 0.000   | 10     | 0.190   | 0.245       | 0.141        | -61.887 |
| Ebaugh Creek            | 0.209   | 0.000  | 0.108         | 0.000   | 10     | 0.222   | 0.104       | 0.131        | 15.220  |
| Octoraro Creek          | 0.203   | -0.237 | -0.133        | -1.129  | 21     | 0.102   | -0.368      | -0.154       | NA      |
| Scott Creek             | 0.014   | -1.137 | -0.259        | -4.944  | 23     | 0.016   | -0.893      | -0.276       | -88.643 |
| Susquehanna River 10.0  | 0.037   | -0.786 | -0.215        | -2.069  | 38     | 0.204   | -0.803      | -0.138       | 48.927  |
| Susquehanna River 44.5  | 0.613   | -0.499 | -0.075        | -1.061  | 47     | 0.001   | -1.229      | -0.360       | NA      |
| Susquehanna River 289.1 | 0.020   | -0.617 | -0.236        | -3.628  | 17     | 0.020   | -0.631      | -0.238       | NA      |
| Susquehanna River 340   | 0.215   | -0.293 | -0.126        | -1.773  | 16.5   | 0.095   | -0.519      | -0.170       | NA      |
| Susquehanna River 365   | 0.170   | -0.300 | -0.114        | -1.878  | 16     | 0.047   | -0.517      | -0.186       | NA      |
| Tioga River             | < 0.001 | -1.755 | -0.442        | -4.499  | 39     | < 0.001 | -1.792      | -0.495       | NA      |
| Troups Creek            | < 0.001 | -1.222 | -0.374        | -5.817  | 21     | < 0.001 | -1.191      | -0.423       | NA      |

 Table E6.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Sulfate

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C       | Concentration | IS      |        | FI      | ow - Adjusted | Concentratio | ons     |
|-------------------------|---------|---------|---------------|---------|--------|---------|---------------|--------------|---------|
| Station                 | Р       | b       | Tau           | % Slope | Median | Р       | b             | Tau          | % Slope |
| Cayuta Creek            | 0.002   | -24.027 | -0.319        | -12.449 | 193    | 0.585   | -3.776        | -0.103       | 28.934  |
| Chemung River           | 0.003   | -23.992 | -0.296        | -8.756  | 274    | 0.017   | -26.770       | -0.242       | 49.767  |
| Conowingo Creek         | < 0.001 | -47.189 | -0.406        | -11.426 | 413    | 0.005   | -26.752       | -0.299       | NA      |
| Cowanesque River        | 0.246   | 17.000  | 0.148         | 6.104   | 278.5  | 0.329   | 26.298        | 0.123        | -56.366 |
| Deer Creek              | < 0.001 | -45.841 | -0.544        | -17.837 | 257    | 0.005   | -21.544       | -0.301       | NA      |
| Ebaugh Creek            | < 0.001 | -47.287 | -0.552        | -15.842 | 298.5  | < 0.001 | -24.496       | -0.417       | NA      |
| Octoraro Creek          | 0.201   | -22.197 | -0.175        | -5.549  | 400    | 0.274   | -7.555        | -0.076       | NA      |
| Scott Creek             | 0.075   | -38.875 | -0.209        | -8.582  | 453    | 0.536   | -36.980       | -0.061       | NA      |
| Susquehanna River 10.0  | < 0.001 | -46.909 | -0.375        | -10.541 | 445    | 0.014   | -51.119       | -0.282       | NA      |
| Susquehanna River 44.5  | < 0.001 | -56.553 | -0.393        | -10.117 | 559    | 0.007   | -46.332       | -0.352       | 86.619  |
| Susquehanna River 289.1 | < 0.001 | -46.195 | -0.421        | -17.498 | 264    | < 0.001 | -45.275       | -0.418       | NA      |
| Susquehanna River 340   | 0.002   | -32.347 | -0.313        | -10.606 | 305    | 0.046   | -25.027       | -0.203       | 70.683  |
| Susquehanna River 365   | 0.002   | -24.827 | -0.323        | -9.229  | 269    | 0.010   | -11.474       | -0.335       | NA      |
| Tioga River             | 0.299   | -10.232 | -0.101        | -3.654  | 280    | 0.955   | 0.434         | 0.007        | -1.388  |
| Troups Creek            | 0.328   | -6.713  | -0.114        | -3.390  | 198    | 0.486   | -5.478        | -0.053       | 37.463  |

 Table E7.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Iron

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |       | C       | Concentration | าร      |        | Fle   | ow-Adjusted | Concentratio | ons     |
|-------------------------|-------|---------|---------------|---------|--------|-------|-------------|--------------|---------|
| Station                 | Р     | b       | Tau           | % Slope | Median | Р     | b           | Tau          | % Slope |
| Cayuta Creek            | 0.578 | 0.000   | -0.058        | 0.000   | 100    | 0.445 | -3.689      | -0.112       | 23.068  |
| Chemung River           | 1.000 | 0.000   | -0.002        | 0.000   | 220    | 0.978 | 1.018       | 0.005        | -3.345  |
| Conowingo Creek         | 0.003 | -21.537 | -0.296        | -8.006  | 269    | 0.009 | -24.567     | -0.282       | NA      |
| Cowanesque River        | 0.257 | 6.502   | 0.130         | 2.520   | 258    | 0.214 | 27.191      | 0.154        | NA      |
| Deer Creek              | 0.193 | -0.745  | -0.133        | -0.745  | 100    | 0.410 | -4.524      | -0.090       | 22.903  |
| Ebaugh Creek            | 0.235 | -0.751  | -0.116        | -0.751  | 100    | 0.120 | -4.950      | -0.167       | 48.034  |
| Octoraro Creek          | 0.254 | -9.598  | -0.122        | -3.561  | 269.5  | 0.184 | -9.755      | -0.103       | NA      |
| Scott Creek             | 0.910 | 0.000   | 0.009         | 0.000   | 100    | 0.816 | 2.054       | 0.031        | -8.402  |
| Susquehanna River 10.0  | 0.151 | -7.586  | -0.148        | -2.952  | 257    | 0.078 | -8.387      | -0.205       | NA      |
| Susquehanna River 44.5  | 0.033 | -17.104 | -0.227        | -6.344  | 269.6  | 0.185 | -15.726     | -0.178       | NA      |
| Susquehanna River 289.1 | 0.080 | -8.132  | -0.170        | -4.620  | 176    | 0.015 | -10.298     | -0.236       | NA      |
| Susquehanna River 340   | 0.491 | -0.998  | -0.071        | -0.632  | 158    | 0.511 | -2.074      | -0.069       | 14.831  |
| Susquehanna River 365   | 0.166 | -1.502  | -0.136        | -1.502  | 100    | 0.005 | -9.144      | -0.325       | NA      |
| Tioga River             | 0.360 | 2.268   | 0.098         | 1.080   | 210    | 0.056 | 10.122      | 0.191        | -23.352 |
| Troups Creek            | 0.444 | -2.248  | -0.096        | -1.551  | 145    | 0.938 | -0.874      | -0.001       | 5.877   |

 Table E8.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Aluminum

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | (       | Concentration | IS      |        | F     | low-Adjusted | Concentratio | ns      |
|-------------------------|---------|---------|---------------|---------|--------|-------|--------------|--------------|---------|
| Station                 | Р       | b       | Tau           | % Slope | Median | Р     | b            | Tau          | % Slope |
| Cayuta Creek            | 0.008   | -0.951  | -0.276        | -6.341  | 15     | 0.203 | -0.489       | -0.156       | NA      |
| Chemung River           | 0.033   | -2.059  | -0.217        | -2.709  | 76     | 0.059 | -2.806       | -0.192       | 45.634  |
| Conowingo Creek         | 0.458   | -0.856  | -0.079        | -1.678  | 51     | 0.178 | -1.028       | -0.146       | NA      |
| Cowanesque River        | 0.016   | 5.810   | 0.278         | 6.835   | 85     | 0.657 | 0.695        | 0.035        | -3.417  |
| Deer Creek              | 0.059   | -0.670  | -0.191        | -2.310  | 29     | 0.286 | -0.381       | -0.115       | NA      |
| Ebaugh Creek            | 0.367   | -0.778  | -0.093        | -1.944  | 40     | 0.562 | -0.580       | -0.064       | 27.220  |
| Octoraro Creek          | 0.151   | -1.677  | -0.140        | -3.494  | 48     | 0.211 | -0.950       | -0.118       | NA      |
| Scott Creek             | 0.081   | -11.497 | -0.198        | -9.581  | 120    | 0.699 | 3.356        | 0.054        | -11.241 |
| Susquehanna River 10.0  | < 0.001 | -4.425  | -0.338        | -3.116  | 142    | 0.105 | -2.914       | -0.188       | -46.136 |
| Susquehanna River 44.5  | 0.035   | -4.215  | -0.229        | -3.572  | 118    | 0.026 | -3.895       | -0.281       | 29.668  |
| Susquehanna River 289.1 | 0.237   | -0.430  | -0.111        | -1.509  | 28.5   | 0.141 | -0.745       | -0.142       | 28.163  |
| Susquehanna River 340   | 0.956   | 0.000   | 0.008         | 0.000   | 38     | 0.891 | 0.107        | 0.016        | -2.898  |
| Susquehanna River 365   | 0.633   | -1.000  | -0.049        | -0.372  | 27     | 0.587 | -0.208       | -0.086       | 6.317   |
| Tioga River             | < 0.001 | -25.327 | -0.382        | -9.630  | 263    | 0.018 | -17.789      | -0.247       | NA      |
| Troups Creek            | 0.543   | 0.000   | -0.077        | 0.000   | 12.5   | 0.425 | -0.383       | -0.072       | -55.947 |

 Table E9.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Manganese

Strong Significant Trend: P < 0.05 Significant Trend: 0.05 < P < 0.10 No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

|                         |         | C      | Concentration | s       |        | F       | low - Adjusted | Concentratio | ons     |
|-------------------------|---------|--------|---------------|---------|--------|---------|----------------|--------------|---------|
| Station                 | Р       | b      | Tau           | % Slope | Median | Р       | b              | Tau          | % Slope |
| Cayuta Creek            | 0.066   | -1.000 | -0.187        | -1.922  | 52     | 0.291   | -0.605         | -0.118       | NA      |
| Chemung River           | 0.422   | -0.253 | -0.091        | -0.401  | 63     | 0.059   | -2.806         | -0.192       | 45.634  |
| Conowingo Creek         | < 0.001 | -1.558 | -0.390        | -2.734  | 57     | 0.008   | -1.259         | -0.277       | NA      |
| Cowanesque River        | 0.229   | 1.002  | 0.154         | 2.045   | 49     | 0.374   | 0.913          | 0.103        | NA      |
| Deer Creek              | < 0.001 | -1.196 | -0.349        | -3.232  | 37     | 0.055   | -0.682         | -0.205       | NA      |
| Ebaugh Creek            | 0.716   | 0.154  | 0.034         | 0.309   | 50     | 0.234   | 0.343          | 0.128        | NA      |
| Octoraro Creek          | 0.007   | -1.195 | -0.279        | -2.133  | 56     | 0.435   | -0.499         | -0.032       | NA      |
| Scott Creek             | 0.033   | -1.258 | -0.235        | -1.936  | 65     | 0.164   | -0.858         | -0.156       | NA      |
| Susquehanna River 10.0  | 0.006   | -1.144 | -0.284        | -2.118  | 54     | 0.029   | -0.684         | -0.248       | -34.154 |
| Susquehanna River 44.5  | < 0.001 | -1.590 | -0.410        | -3.244  | 49     | < 0.001 | -1.447         | -0.408       | NA      |
| Susquehanna River 289.1 | 0.061   | -0.666 | -0.187        | -1.281  | 52     | 0.129   | -0.684         | -0.147       | NA      |
| Susquehanna River 340   | 0.088   | -0.537 | -0.173        | -1.278  | 42     | 0.286   | -0.285         | -0.110       | -65.877 |
| Susquehanna River 365   | 0.262   | -0.415 | -0.119        | -0.989  | 42     | 0.587   | -0.221         | -0.086       | -69.626 |
| Tioga River             | 0.504   | -0.260 | -0.069        | -0.501  | 52     | 0.400   | -0.303         | -0.081       | -57.717 |
| Troups Creek            | 0.940   | 0.000  | 0.028         | 0.000   | 36     | 0.588   | -0.316         | -0.098       | NA      |

 Table E10.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Water Quality Index

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)