ASSESSMENT OF INTERSTATE STREAMS IN THE SUSQUEHANNA RIVER BASIN

Monitoring Report No. 15 July 1, 2000, Through June 20, 2001

Publication 223

June 30, 2002

Prepared by Susan R. LeFevre Biologist

Darryl L. Sitlinger Water Quality Technician

Watershed Assessment and Protection Program Susquehanna River Basin Commission

Printed on recycled paper

This report is prepared in cooperation with U.S. Environmental Protection Agency under Contract No. 1-093392-02.

SUSQUEHANNA RIVER BASIN COMMISSION

Paul O. Swartz, Executive Director

John T. Hicks, N.Y. Commissioner Scott J. Foti., N.Y. Alternate

David E. Hess, Pa. Commissioner Irene B. Brooks, Pa. Alternate

Vacant, Md. Commissioner Dr. Robert M. Summers, Md. Alternate

Brig. Gen. Stephen M. Rhoades, U.S. Commissioner Col. Charles J. Fiala, Jr., U.S. Alternate Col. John P. Carroll, U.S. Alternate

The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact^{*} among the states of Maryland, New York, Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development and control of basin water resources among the public and private sectors.

*Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976).

This report is available on our website (<u>www.SRBC.net</u>) by selecting Public Information/Technical Reports. For a CD Rom or for a hard copy, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, Pa. 17102-2391, (717) 238-0423, FAX (717) 238-2436, E-mail: <u>srbc@srbc.net</u>.

ABSTRACT	1
INTRODUCTION.	1
BASIN GEOGRAPHY	2
METHODS	2
Field and Laboratory Methods	2
Sampling frequency	
Stream discharge	
Water samples	
Field chemistry	
Macroinvertebrate and physical habitat sampling	
Data Synthesis Methods	13
Chemical water quality	
Reference category designations	
Biological and physical habitat conditions	
Trend analysis	
RESULTS	21
Water Quality	
Biological Communities and Physical Habitat	
	21
New York-Pennsylvania streams	
Pennsylvania-Maryland streams River sites	
Group 3 Sites	
Gloup 5 Siles	
Trends Analysis	
Total suspended solids	
Total ammonia	
Total nitrogen	
Total phosphorus	
Total chloride	
Total sulfate	
Total iron	
Total aluminum	
Total manganese	
Water quality index	
BIOASSESSMENT OF INTERSTATE STREAMS	
New York-Pennsylvania Border Streams	
An ale ale and (ADAL CO)	40
Apalachin Creek (APAL 6.9)	

TABLE OF CONTENTS

Bentley Creek (BNTY 0.9)	
Cascade Creek (CASC 1.6)	
Cayuta Creek (CAYT 1.7)	
Choconut Creek (CHOC 9.1)	55
Little Snake Creek (LSNK 7.6)	55
Seeley Creek (SEEL 10.3)	55
Snake Creek (SNAK 2.3)	55
South Creek (SOUT 7.8)	60
Troups Creek (TRUP 4.5)	60
Trowbridge Creek (TROW 1.8)	60
Wappasening Creek (WAPP 2.6)	
North Fork Cowanesque River (NFCR 7.6)	
Pennsylvania - Maryland Streams	65
Big Branch Deer Creek (BBDC 4.1)	65
Conowingo Creek (CNWG 4.4)	65
Deer Creek (DEER 44.2)	69
Ebaughs Creek (EBAU 1.5)	69
Falling Branch Deer Creek (FBDC 4.1).	
Long Arm Creek (LNGA 2.5)	69
Octoraro Creek (OCTO 6.6)	
Scott Creek (SCTT 3.0)	73
South Branch Conewago Creek (SBCC 20.4)	77
River Sites	77
Chemung River (CHEM 12.0)	77
Cowanesque River (COWN 2.2)	
Cowanesque River (COWN 1.0).	
Susquehanna River at Windsor, N.Y. (SUSQ 365.0)	
Susquehanna River at Kirkwood, N.Y. (SUSQ 340.0)	
Susquehanna River at Sayre, Pa. (SUSQ 289.1)	
Susquehanna River at Marietta, Pa. (SUSQ 44.5)	
Susquehanna River at Conowingo, Md. (SUSQ 10.0)	
Tioga River (TIOG 10.8)	
Group 3 Sites	90
Babcock Run (BABC)	
Bill Hess Creek (BILL).	
Bird Creek (BIRD)	
Biscuit Hollow (BISC)	
Briggs Hollow Run (BRIG)	
Bulkley Brook (BULK)	
Camp Brook (CAMP)	
Cook Hollow (COOK)	
Deep Hollow Brook (DEEP)	
Denton Creek (DENT)	
Dry Brook (DRYB)	

Little Wappasening Creek (LWAP)	91
Parks Creek (PARK)	91
Prince Hollow Run (PRIN)	
Red House/Beagle Hollow Run (REDH)	
Russell Run (RUSS)	
Sackett Creek (SACK)	
Smith Creek (SMIT)	
Strait Creek (STRA)	
White Branch Cowanesque River (WBCO)	
White Hollow (WHIT)	93
MANAGEMENT IMPLICATIONS	93
New York – Pennsylvania Sites	93
Pennsylvania – Maryland Sites	
River Sites	94
Group 3 Streams	94
Future Study	
CONCLUSIONS REFERENCES	

TABLES

3
ing 5
ng 7
14
n and 18
s 19

Table 19.	Trend Summary of Selected Parameters for Group 1 Streams, 1986-2001	45
Table 20.	Trend Category Counts and Weighted Values of Concentrations for Group 1 Streams	46
Table 21.	Trend Category Counts and Weighted Values of Flow-Adjusted Concentrations for Group 1 Streams	47
Table 22.	Abbreviations Used in Tables 23 Through 53	49
Table 23.	Water Quality Summary Apalachin Creek at Little Meadows, Pa	51
Table 24.	Water Quality Summary Bentley Creek at Wellsburg, N.Y	52
Table 25.	Water Quality Summary Cascade Creek at Lanesboro, Pa.	53
Table 26.	Water Quality Summary Cayuta Creek at Waverly, N.Y	54
Table 27.	Water Quality Summary Choconut Creek at Vestal Center, N.Y	56
Table 28.	Water Quality Summary Little Snake Creek at Brackney, Pa	
Table 29.	Water Quality Summary Seeley Creek at Seeley Creek, N.Y.	58
Table 30.	Water Quality Summary Snake Creek at Brookdale, Pa	59
Table 31.	Water Quality Summary South Creek at Fassett, Pa.	61
Table 32.	Water Quality Summary Troups Creek at Austinburg, Pa	62
Table 33.	Water Quality Summary Trowbridge Creek at Great Bend, Pa	63
Table 34.	Water Quality Summary Wappasening Creek at Nichols, N.Y	64
Table 35.	Water Quality Summary North Fork Cowanesque River at North Fork, Pa	66
Table 36.	Water Quality Summary Big Branch Deer Creek at Fawn Grove, Pa	67
Table 37.	Water Quality Summary Conowingo Creek at Pleasant Grove, Pa	68
Table 38.	Water Quality Summary Deer Creek at Gorsuch Mills, Md.	70
Table 39.	Water Quality Summary Ebaughs Creek at Stewartstown, Pa	71
Table 40.	Water Quality Summary Falling Branch Deer Creek at Fawn Grove, Pa	72
Table 41.	Water Quality Summary Long Arm Creek at Bandanna, Pa.	74
Table 42.	Water Quality Summary Octoraro Creek at Rising Sun, Md	75
Table 43.	Water Quality Summary Scott Creek at Delta, Pa	76
Table 44.	Water Quality Summary South Branch Conewago Creek at Bandanna, Pa	78
Table 45.	Water Quality Summary Chemung River at Chemung, N.Y	79
Table 46.	Water Quality Summary Cowanesque River (COWN 2.2) at Lawrenceville, Pa	81
Table 47.	Water Quality Summary Cowanesque River (COWN 1.0) at Lawrenceville, Pa	82
Table 48.	Water Quality Summary Susquehanna River at Windsor, N.Y	83
Table 49.	Water Quality Summary Susquehanna River at Kirkwood, N.Y	84
Table 50.	Water Quality Summary Susquehanna River at Sayre, Pa	86
Table 51.	Water Quality Summary Susquehanna River at Marietta, Pa	87
Table 52.	Water Quality Summary Susquehanna River at Conowingo, Md.	88
Table 53.	Water Quality Summary Tioga River at Lindley, N.Y	89
Table 54.	Summary of Overall Direction of Trends	97

FIGURES

Figure 1.	Interstate Streams Along the New York-Pennsylvania Border Between Apalachin	
	Creek and Cascade Creek	8
Figure 2.	Interstate Streams Along the New York-Pennsylvania Border Between Seeley Creek	
	and Wappasening Creek	9
Figure 3.	Interstate Streams Along the New York-Pennsylvania Border Between North Fork	
	Cowanesque River and Tioga River	. 10
Figure 4.	Interstate Streams Along the Pennsylvania-Maryland Border	. 11
Figure 5.	Parameters Exceeding Water Quality Standards	.23
Figure 6.	Summary of New York-Pennsylvania Border Streams Habitat and Biological Condition	
-	Scores	. 39
Figure 7.	Summary of Pennsylvania - Maryland Border Streams Habitat and Biological Condition	
C	Scores	.40
Figure 8.	Summary of River Habitat and Biological Condition Scores	41
Figure 9.	Summary of Group 3 Streams Habitat and Biological Condition Scores	

APPENDIXES

Appendix A.	Water Quality Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania -Maryland Borders	103
Appendix B.	Organic Pollution-Tolerance and Functional Feeding Group Designations of Benthic Macroinvertebrate Taxa	
Appendix C.	Macroinvertebrate Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania -Maryland Borders	127
Appendix D.	Water Classification and Best Usage Regulations	143
Appendix E.	Statistical Trend Results By Parameter	147

ACKNOWLEDGMENTS

The authors would like to acknowledge those who made significant contributions to the completion of this project. The Pennsylvania Department of Environmental Protection, Bureau of Laboratories, in Harrisburg, Pa., conducted all laboratory analysis of chemical water quality. Jennifer Hoffman supervised the project and reviewed the report. Robert Edwards assisted with trends analysis of water quality and reviewed the report. Donna Fiscus and Holly Wolbert produced all the maps. Doreen McCabe provided proofreading and formatting services, and Susan Obleski provided helpful reviews of this report. Jeff Erikson aided in macroinvertebrate identification. Additional thanks go to the U.S. Environmental Protection Agency, which provided funding for this project.

viii

Assessment of Interstate Streams in the Susquehanna River Basin

Monitoring Report No. 15 July 1, 2000, Through June 30, 2001

Susan R. LeFevre, Biologist Darryl L. Sitlinger, Water Quality Technician

ABSTRACT

The Susquehanna River Basin Commission (SRBC) used a water quality index (WQI) and the U.S. Agency's Environmental Protection (USEPA's) Rapid Bioassessment Protocol III (RBP III) to assess the chemical water quality, biological conditions, and physical habitat of 50 sample sites in the Interstate Streams Water Quality Network from July 1, 2000 to June 30, 2001. Only 38 out of 3,008 parameter observations exceeded water quality standards. Assessment results indicate that approximately 31 percent of the sites supported nonimpaired biological communities. Water quality impacts in the New York-Pennsylvania border streams were mostly from metals. while Pennsylvania-Maryland border sites suffered from low dissolved oxygen kvels.

A Seasonal Kendall Test was performed on water quality parameters to determine trends and their magnitude for the period 1986-2001. Overall, an increasing trend was found in total chloride, while decreasing trends were found for total ammonia, total nitrogen, total phosphorus, total iron, and total manganese.

A Pearson Product Moment Correlation was performed on WQI, RBP III score, and physical habitat score. A significant (p<0.05) negative correlation occurred between WQI and biological community score for Pennsylvania-Maryland sites, and a significant (p<0.05) positive correlation occurred between biological community and physical habitat score for river sites. These relationships, while based on a small number of observations, are presented as subjects to be considered by resource managers, local interest groups, elected officials, and other policymakers.

INTRODUCTION

One of SRBC's functions is to review projects that may have interstate impacts on water resources in the Susquehanna River Basin. SRBC established a monitoring program in 1986 to collect data that were not available from monitoring programs implemented by New York, Pennsylvania, and Maryland. The state agencies do not assess all of the interstate streams and do not produce comparable data needed to determine potential impacts on the water quality of interstate streams. SRBC's ongoing interstate monitoring program is partially funded through a grant from the United States Environmental Protection Agency (USEPA).

The interstate water quality monitoring program includes periodic collection of water and biological samples from interstate streams, as well as physical habitat assessments of them. Water quality data are used to: (1) assess compliance with water quality standards; (2) characterize stream quality and seasonal variations: (3) build a database for assessment of water quality trends; (4) identify streams for reporting to USEPA under Section 305(b) of the Clean Water Act; (5) provide information to signatory states for 303(d) listing and possible Total Maximum Daily Load (TMDL) development; and (6) identify areas for restoration and protection. Biological conditions are assessed using benthic macroinvertebrate populations, which provide an indication of the biological health of a stream and serve as indicators of water quality. Habitat assessments provide information concerning potential stream impairment from erosion and sedimentation, as well as an indication of the stream's ability to support a healthy biological community.

SRBC's interstate monitoring program began in April 1986. For the first five years, results were reported for water years that ran from October to September. In 1991, SRBC changed the reporting periods to correspond with its fiscal year that covers the period from July to June. This report is presented for fiscal year 2001, which covers July 1, 2000, to June 30, 2001.

BASIN GEOGRAPHY

The Susquehanna River Basin is the largest river basin on the Atlantic Coast of the United States, draining 27,510 square miles. The Susquehanna River originates at the outlet of Otsego Lake, Cooperstown, N.Y., and flows 444 miles through New York, Pennsylvania, and Maryland to the Chesapeake Bay at Havre de Grace, Maryland, Eighty-three streams cross state lines in the basin (Table 1). Several streams traverse the state lines at multiple points, contributing to 91 crossings. At 45 of these locations, streams flow from New York into Pennsylvania. Twenty-two reaches cross from Pennsylvania into New York, 15 from Pennsylvania into Maryland, and nine from Maryland into Pennsylvania. Many streams are small, and 32 are unnamed.

METHODS

Field and Laboratory Methods

Sampling frequency

In Water Year 1989, the interstate streams were divided into three groups, according to the degree of water quality impairment, historical water quality impacts, and potential for degradation. These groupings were determined based on historical water quality and land use. To date, these groups remain consistent and are described below.

Streams with impaired water quality or judged to have a high potential for degradation due to large drainage areas or historical pollution were assigned to Group 1. Originally, water samples were collected from Group 1 stations every other month, except January and February. Sampling was alternated so that streams along the New York-Pennsylvania border were sampled during November, March, May, July, and September, while streams along the Pennsylvania-Maryland border were sampled during October, December, April, June, and August. During fiscal year 1997. water quality sampling of Group 1 streams was reduced to quarterly sampling. In this sampling 2000-2001, New York-Pennsylvania period streams were sampled July, November, February, and May. Pennsylvania-Maryland stations were sampled August, November, February, and May. Benthic macroinvertebrates were collected and habitat assessments were performed in Group 1 streams during July and August 2000.

Streams judged to have a moderate potential for impacts were assigned to Group 2. Water quality samples, benthic macroinvertebrate samples, and physical habitat information were obtained from Group 2 stations once a year; preferably during base flow conditions in the summer months. In this sampling period, water chemistry, macroinvertebrate, and physical habitat information were collected during July and August 2000.

Stream Name	Monitoring Group	Flow Direction (from ®to)		
Streams Along the New York–Pennsylvania Border				
Apalachin Creek	2	$Pa. \rightarrow N.Y.$		
Babcock Run	3	$N.Y. \rightarrow Pa.$		
Bentley Creek	1	$Pa. \rightarrow N.Y.$		
Bill Hess Creek	3	N.Y.→Pa.		
Bird Creek	3	$Pa. \rightarrow N.Y.$		
Biscuit Hollow	3	N.Y.→Pa.		
Briggs Hollow Run	3	$N.Y. \rightarrow Pa.$		
Bulkley Brook	3	N.Y.→Pa.		
Camp Brook	3	N.Y.→Pa.		
Cascade Creek	1	N.Y.→Pa.		
Cayuta Creek	1	N.Y.→Pa.		
Chemung River	1	$N.Y. \rightarrow Pa. \rightarrow N.Y. \rightarrow Pa.$		
Choconut Creek	2	$Pa. \rightarrow N.Y.$		
Cook Hollow	3	N.Y.→Pa.		
Cowanesque River	1	$Pa. \rightarrow N.Y.$		
Deep Hollow Brook	3	N.Y.→Pa.		
Denton Creek*	3	N.Y.→Pa.		
Dry Brook*	3	N.Y.→Pa.		
Holden Creek*	2	N.Y.→Pa.		
Little Snake Creek	1	$Pa. \rightarrow N.Y.$		
Little Wappasening Creek	3	$Pa. \rightarrow N.Y.$		
North Fork Cowanesque River	2	N.Y.→Pa.		
Parks Creek	3	$Pa. \rightarrow N.Y.$		
Prince Hollow Run	3	N.Y.→Pa.		
Red House/Beagle Hollow	3	N.Y.→Pa.		
Russell Run	3	N.Y.→Pa.		
Sackett Creek	3	$Pa. \rightarrow N.Y.$		
Seeley Creek	1	$Pa. \rightarrow N.Y.$		
Smith Creek	3	$Pa. \rightarrow N.Y.$		
Snake Creek	2	$Pa. \rightarrow N.Y.$		
South Creek	2	$Pa. \rightarrow N.Y.$		
Strait Creek	3	N.Y.→Pa.		
Susquehanna River	1	$N.Y. \rightarrow Pa. \rightarrow N.Y. \rightarrow Pa.$		
Tioga River	1	$Pa. \rightarrow N.Y.$		
Troups Creek	1	N.Y.→Pa.		
Trowbridge Creek	2	N.Y.→Pa.		
Wappasening Creek	2	$Pa. \rightarrow N.Y.$		
White Branch	3	N.Y.→Pa.		
White Hollow	3	$Pa. \rightarrow N.Y.$		
17 Unnamed tributaries*	3	N.Y.→Pa.		
2 Unnamed tributaries*	3	$Pa. \rightarrow N.Y.$		
2 Unnamed tributaries*	3	$Pa. \rightarrow N.Y. \rightarrow Pa.$		

Table 1. Interstate Streams in the Susquehanna River Basin

*Not sampled in 2000–2001

Stream Name	Monitoring Group	Flow Direction (from→to)
Strea	ms Along The Pennsylvania–Maryla	and Border
Big Branch Deer Creek	2	$Pa. \rightarrow Md.$
Conowingo Creek	1	Pa.→Md.
Deer Creek	1	Pa.→Md.
Ebaughs Creek	1	Pa.→Md.
Falling Branch Deer Creek	2	Pa.→Md.
Island Branch*	3	$Pa. \rightarrow Md.$
Long Arm Creek	1	Md.→Pa.
Octoraro Creek	1	$Pa. \rightarrow Md.$
Scott Creek	1	Md.→Pa.
South Branch Conewago Creek	2	Md.→Pa.
Susquehanna River	1	$Pa. \rightarrow Md.$
6 Unnamed tributaries*	3	Md.→Pa.
7 Unnamed tributaries*	3	Pa.→Md.

Table 1. Interstate Streams in the Susquehanna River Basin—Continued

*Not sampled in 2000-2001

Streams judged to have a low potential for impacts were assigned to Group 3. During previous reporting years, these stations were not sampled but were visually inspected for signs of degradation once a year. However, beginning in fiscal year 2000, the biological and habitat conditions of these streams were assessed during Field chemistry parameters also were May. measured on Group 3 streams at the time of biological sampling. New York-Pennsylvania border and Pennsylvania-Maryland border stream stations sampled during fiscal year 2001 are listed in Tables 2 and 3, respectively, and are depicted in Figures 1 through 4.

Stream discharge

Stream discharge was measured at all stations unless high streamflows made access impossible. Several stations are located near U.S. Geological Survey (USGS) stream gages. These stations include the following: the Susquehanna River at Windsor, N.Y., Kirkwood, N.Y., Sayre, Pa., Marietta, Pa., and Conowingo, Md.; the Chemung River at Chemung, N.Y.; the Tioga River at Lindley, N.Y.; and the Cowanesque River at Lawrenceville, Pa. Recorded stages from USGS gaging stations and rating curves were used to determine instantaneous discharges in cubic feet per second (cfs). Instantaneous discharges for stations not located near USGS gaging stations were measured at the time of sampling, using standard USGS procedures. Stream discharges are tabulated according to station name and date in Appendix A.

Water samples

Water samples were collected at each of the sites to measure nutrient and metal concentrations. Chemical and physical parameters monitored are listed in Table 4. Water samples were collected using a depth-integrated sampler. Composite samples were obtained by collecting numerous depth-integrated samples across the stream channel and combining them in a churn splitter that was previously rinsed with distilled water. Water samples were thoroughly mixed in the churn splitter and collected in two 500-ml bottles and four 250-ml bottles. One of the 500-ml bottles was for a raw sample and the other 500-ml bottle consisted of a filtered sample. The two 250-ml bottles consisted of a whole water sample and a filtered sample fixed with concentrated nitric acid (HNO₃) for metal analysis. The other two 250-ml bottles consisted of a whole water sample and a filtered water sample fixed with concentrated sulfuric acid (H₂SO₄) for nutrient analysis. A cellulose nitrate filter with 0.45micrometer pore size was used to obtain the filtrate for laboratory analysis. The samples were chilled on ice and sent to the Pennsylvania Department of Environmental Protection

Station	Stream and Location	Monitoring Group	Rationale
APAL 6.9	Apalachin Creek,	2	Monitor for potential water quality impacts
	Little Meadows, Pa.	_	
BABC	Babcock Run, Cadis, Pa.	3	Monitor for potential impacts
BILL	Bill Hess Creek, Nelson, Pa.	3	Monitor for potential impacts
BIRD	Bird Creek, Webb Mills, N.Y.	3	Monitor for potential impacts
BISC	Biscuit Hollow, Austinburg, Pa.	3	Monitor for potential impacts
BNTY 0.9	Bentley Creek, Wellsburg, N.Y.	1	Monitor for potential water quality impacts
BRIG	Briggs Hollow, Nichols, N.Y.	3	Monitor for potential impacts
BULK	Bulkley Brook, Knoxville, Pa.	3	Monitor for potential impacts
САМР	Camp Brook, Osceola, Pa.	3	Monitor for potential impacts
CASC 1.6	Cascade Creek, Lanesboro, Pa.	1	Monitor for potential water quality impacts
CAYT 1.7	Cayuta Creek, Waverly, N.Y.	1	Municipal discharge from Waverly, N.Y.
CHEM 12.0	Chemung River, Chemung, N.Y.	1	Municipal and industrial discharges from Elmira, N.Y.
CHOC 9.1	Choconut Creek, Vestal Center, N.Y.	2	Monitor for potential water quality impacts
COOK	Cook Hollow, Austinburg, Pa.	3	Monitor for potential impacts
COWN 2.2	Cowanesque River, Lawrenceville, Pa.	1	Impacts from flood control reservoir
COWN 1.0	Cowanesque River, Lawrenceville, Pa	1	Recovery zone from upstream flood control reservoir
DEEP	Deep Hollow Brook, Danville, N.Y.	3	Monitor for potential impacts
DENT	Denton Creek, Hickory Grove, Pa.	3	Monitor for potential impacts
DRYB	Dry Brook, Waverly, N.Y.	3	Monitor for potential impacts
HLDN 3.5	Holden Creek, Woodhull, NY	2	Monitor for potential water quality impacts
LSNK 7.6	Little Snake Creek, Brackney, Pa.	1	Monitor for potential water quality impacts
LWAP	Little Wappasening Creek, Nichols, N.Y.	3	Monitor for potential impacts
NFCR 7.6	North Fork Cowanesque River, North Fork, Pa.	2	Monitor for potential water quality impacts
PARK	Parks Creek, Litchfield, N.Y.	3	Monitor for potential impacts
PRIN	Prince Hollow Run Cadis, Pa.	3	Monitor for potential impacts
REDH	Red House Run, Osceola, Pa.	3	Monitor for p otential impacts
RUSS	Russell Run, Windham, Pa.	3	Monitor for potential impacts

Table 2.Stream Stations Sampled Along the New York–Pennsylvania Border and Sampling
Rationale

Station	Stream and Location	Monitoring Group	Rationale
SACK	Sackett Creek, Nichols, N.Y.	3	Monitor for potential impacts
SEEL 10.3	Seeley Creek, Seeley Creek, N.Y.	1	Monitor for potential water quality impacts
SMIT	Smith Creek, East Lawrence, Pa.	3	Monitor for potential impacts
SNAK 2.3	Snake Creek, Brookdale, Pa.	2	Monitor for potential water quality impacts
SOUT 7.8	South Creek, Fassett, Pa.	2	Monitor for potential water quality impacts
STRA	Strait Creek, Nelson, Pa.	3	Monitor for potential impacts
SUSQ 365.0	Susquehanna River, Windsor, N.Y.	1	Large drainage area (1,882 sq. mi.); municipal discharges from Cooperstown, Sidney, Bainbridge, and Oneonta
SUSQ 340.0	Susquehanna River, Kirkwood, N.Y.	1	Large drainage area (2,232 sq. mi.); historical pollution due to sewage from Lanesboro, Oakland, Susquehanna, Great Bend, and Hallstead
SUSQ 289.1	Susquehanna River, Sayre, Pa.	1	Large drainage area (4,933 sq. mi.); municipal and industrial discharges
TIOG 10.8	Tioga River, Lindley, N.Y.	1	Pollution from acid mine discharges and impacts from flood control reservoirs
TRUP 4.5	Troups Creek, Austinburg, Pa.	1	High turbidity and moderately impaired macroinvertebrate populations
TROW 1.8	Trowbridge Creek, Great Bend, Pa.	2	Monitor for potential water quality impacts
WAPP 2.6	Wappasening Creek, Nichols, N.Y.	2	Monitor for potential water quality impacts
WBCO	White Branch Cowanesque River, North Fork, Pa.	3	Monitor for potential impacts
WHIT	White Hollow, Wellsburg, N.Y.	3	Monitor for potential impacts

Table 2.Stream Stations Sampled Along the New York–Pennsylvania Border and Sampling
Rationale - Continued

Station	Stream and Location	Monitoring Group	Rationale
LNGA 2.5	Long Arm Creek, Bandanna, Pa.	1	Monitor for potential water quality impacts
SBCC 20.4	South Branch Conewago Creek, Bandanna, Pa.	2	Monitor for potential water quality impacts
DEER 44.2	Deer Creek, Gorsuch Mills, Md.	1	Past pollution from Gorsuch Mills, Md., Stewartstown, Pa.; Nonpoint runoff to Chesapeake Bay
EBAU 1.5	Ebaughs Creek, Stewartstown, Pa.	1	Municipal discharge from Stewartstown, Pa.; Nonpoint runoff to Chesapeake Bay
SCTT 3.0	Scott Creek, Delta, Pa.	1	Historical pollution due to untreated sewage
BBDC 4.1	Big Branch Deer Creek, Fawn Grove, Pa.	2	Monitor for potential water quality impacts
FBDC 4.1	Falling Branch Deer Creek, Fawn Grove, Pa.	2	Monitor for potential water quality impacts
CNWG 4.4	Conowingo Creek, Pleasant Grove, Pa.	1	High nutrient loads and other agricultural runoff; Nonpoint runoff to Chesapeake Bay
OCTO 6.6	Octoraro Creek, Rising Sun, Md.	1	High nutrient loads due to agricultural runoff from New Bridge, Md.; Water quality impacts from Octoraro Lake; Nonpoint runoff to Chesapeake Bay
SUSQ 44.5	Susquehanna River, Marietta, Pa.	1	Bracket hydroelectric dams near the state line
SUSQ 10.0	Susquehanna River, Conowingo, Md.	1	Bracket hydroelectric dams near the state line

Table 3.Stream Stations Sampled Along the Pennsylvania–Maryland Border and Sampling
Rationale

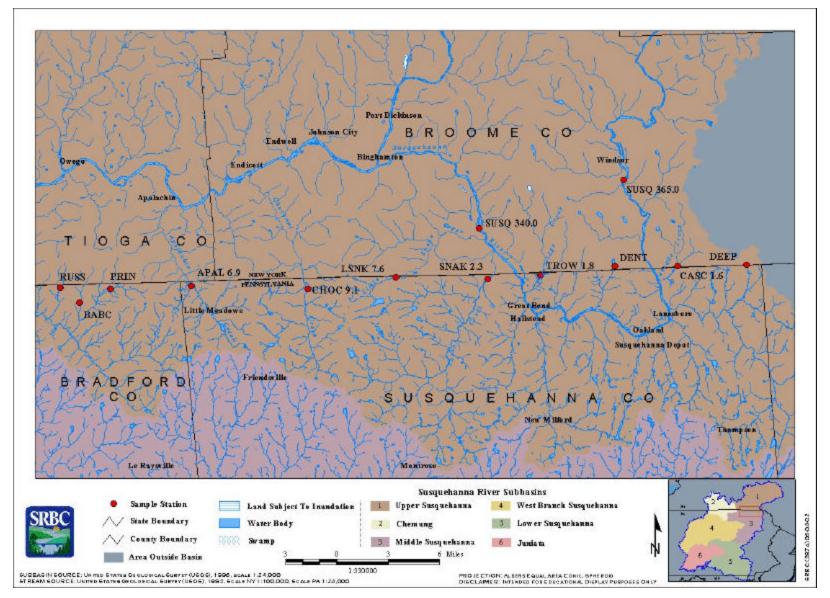


Figure 1. Interstate Streams Along the New York-Pennsylvania Border Between Apalachin Creek and Cascade Creek

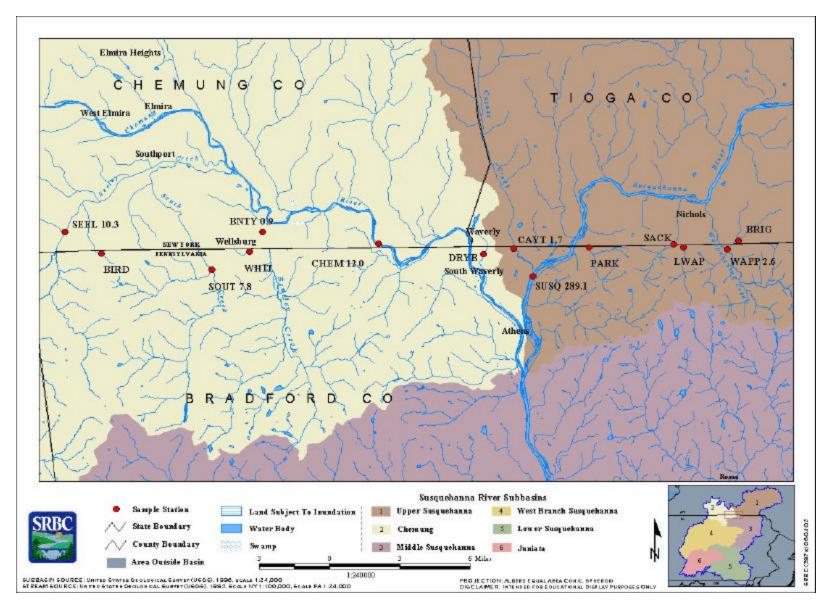


Figure 2. Interstate Streams Along the New York-Pennsylvania Border Between Seeley Creek and Wappasening Creek

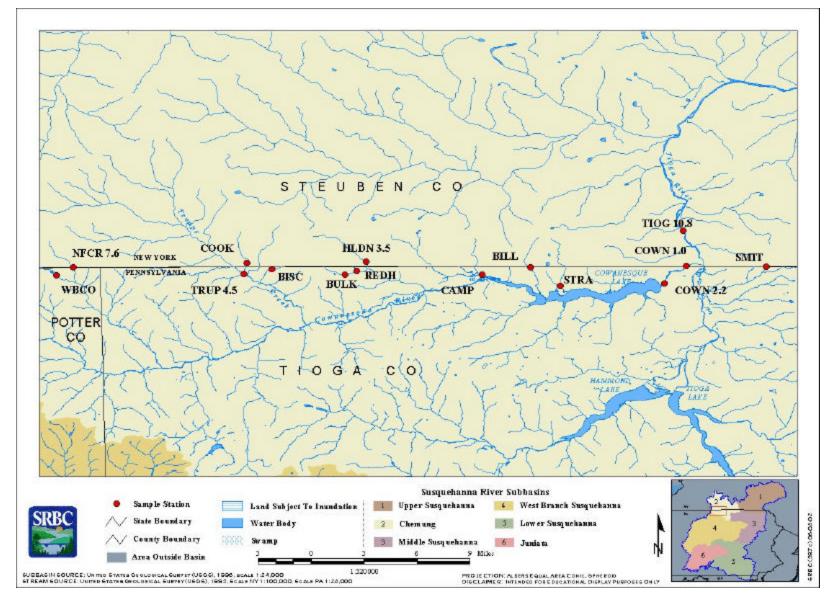


Figure 3. Interstate Streams Along the New York-Pennsylvania Border Between North Fork Cowanesque River and Tioga River

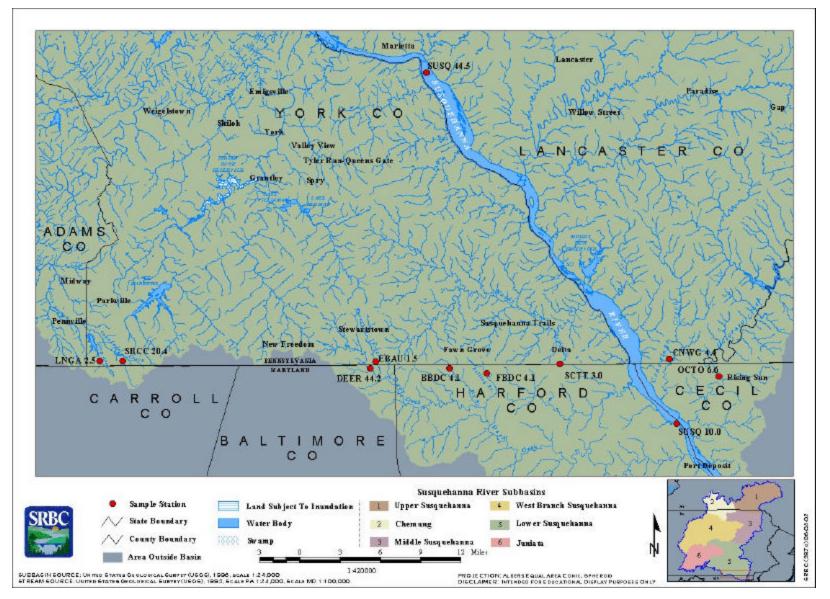


Figure 4. Interstate Streams Along the Pennsylvania - Maryland Border

Parameter	STORET Code
Physical	
Discharge	00060
Temperature	00010
Chemical	
Field Analyses	
Conductivity	00095
Dissolved Oxygen	00300
pH	00400
Alkalinity	00410
Acidity	00435
Laboratory Analyses	
Solids, Dissolved	00515
Solids, Total	00500
Ammonia as Nitrogen, Dissolved	00608
Ammonia as Nitrogen, Total	00610
Nitrite as Nitrogen, Dissolved	00613
Nitrite as Nitrogen, Total	00615
Nitrate as Nitrogen, Dissolved	00618
Nitrate as Nitrogen, Total	00620
Nitrogen, Dissolved	00602
Nitrogen, Total	00600
Phosphorus, Dissolved	00666
Phosphorus, Total	00665
Orthophosphate, Dissolved	00671
Orthophosphate, Total	70507
Organic Carbon, Total	00680
Calcium, Total	00916
Magnesium, Total	00927
Chloride, Total	00940
Sulfate, Total	00945
Iron, Dissolved	01046
Iron, Total	01045
Manganese, Dissolved	01056
Manganese, Total	01055
Aluminum, Dissolved	01106
Aluminum, Total	01105
Turbidity	82079

Table 4. Monitored Parameters

(Pa. DEP), Bureau of Laboratories in Harrisburg, Pa., within 24 hours of collection.

Field chemistry

dissolved Temperature, oxygen, conductivity, pH, alkalinity, and acidity were measured in the field. Dissolved oxygen was measured using a YSI model 55 dissolved oxygen meter that was calibrated at the beginning of each day when water samples were collected. A VWR Scientific Model 2052 conductivity meter was used to measure conductivity. A Cole Parmer meter was used to measure pH. The pH meter was calibrated at the beginning of the day and randomly checked throughout the day. Alkalinity was determined by titrating a known volume of water to pH 4.5 with 0.02N sulfuric acid (H2SO4). Acidity was measured by titrating a known volume of sample water to pH 8.3 with 0.02N sodium hydroxide (NaOH).

Macroinvertebrate and physical habitat sampling

SRBC staff collected benthic macroinvertebrate samples from Group 1 and Group 2 stations between July 24 and August 3, 2000, and from Group 3 streams between May 1 and 7, 2001. The benthic macroinvertebrate community was sampled to provide an indication of the biological condition of the stream. Macroinvertebrates are defined as aquatic insects and other invertebrates too large to pass through a No. 30 sieve.

Benthic macroinvertebrate samples were analyzed using field and laboratory methods described in <u>Rapid Bioassessment Protocol for</u> <u>Use in Streams and Rivers</u> by Barbour and others (1999). Sampling was performed using a 1-metersquare kick screen with size No. 30 mesh. The kick screen was stretched across the current to collect organisms dislodged from riffle/run areas by physical agitation of the stream substrate. Two kick screen samples were collected from a representative riffle/run at each station. The two samples were composited and preserved in isopropyl alcohol for later laboratory analysis. In the laboratory, composite samples were sorted into 100-organism subsamples using a gridded pan and a random numbers table. The organisms contained in the subsamples were identified to genus (except Chironomidae and Oligochaeta) and enumerated. Each taxon was assigned an organic pollution tolerance value and a functional feeding category as outlined in Appendix B. A taxa list for each station can be found in Appendix C.

Physical habitat conditions at each station were assessed using a slightly modified version of the habitat assessment procedure outlined by Barbour and others (1999). Eleven habitat parameters were field-evaluated at each site and used to calculate a site-specific habitat assessment score. Habitat parameters were evaluated on a scale of 0 to 20 and were based on instream composition, channel morphology, and riparian zone and bank conditions. Some of the parameters to be evaluated varied based on whether the streams were characterized by riffles and runs or by glides and pools. Table 5 summarizes criteria used to evaluate habitat parameters.

Data Synthesis Methods

Chemical water quality

Results of laboratory analysis for chemical parameters were compared to New York, Pennsylvania, and Maryland State water quality In addition, a simple WQI was standards. calculated, using procedures established by McMorran and Bollinger (1990). The WQI was used to make comparisons between sampling periods and stations within the same geographical region; therefore, the water quality data were divided into two groups. One group contained stations along the New York-Pennsylvania border, and the other group contained stations along the Pennsylvania-Maryland border. The data in each group were sorted by parameter and ranked by increasing order of magnitude, with several exceptions. Dissolved oxygen was ranked by decreasing order of magnitude, while pH, alkalinity, acidity, calcium, and magnesium were not included in the WQI analysis. The values of

Table 5.	Criteria	Used to	Evaluate	Physical	Habitat

Habitat Parameter	OPTIMAL (20-16)	SUBOPTIMAL (15-11)	MARGINAL (10-6)	POOR (5-0)
1 Epifaunal Substrate (R/R) ¹	Well-developed riffle/run; riffle is as wide as stream and length extends 2 times the width of stream; abundance of cobble	length is less than 2 times width; abundance of cobble; boulders and	Run area may be lacking; riffle not as wide as stream and its length is less than 2 times the width; some cobble present	Riffle or run virtually nonexistent; large boulders and bedrock prevalent; cobble lacking
1 Epifaunal Substrate (G/P) ²	Preferred benthic substrate abundant throughout stream site and at stage to allow full colonization (i.e. log/snags that are not new fall and not transient)	Substrate common but not prevalent or well suited for full colonization potential	Substrate frequently disturbed or removed	Substrate unstable or lacking
2 Instream Cover (R/R)	> 50% mix of boulders, cobble, submerged logs, undercut banks or other stable habitat	other stable habitat; adequate	10-30% mix of boulder, cobble, or other stable habitat; habitat availability less than desirable	< 10% mix of boulder, cobble, or other stable habitat; lack of habitat is obvious
2 Instream Cover (G/P)	> 50% mix of snags, submerged logs, undercut banks or other stable habitat; rubble, gravel may be present	30-50% mix of stable habitat; adequate habitat for maintenance of populations	10-30% mix of stable habitat; habitat availability less than desirable	Less than 10% stable habitat; lack of habitat obvious
3 Embeddedness ^a (R/R)	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediments		Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediments	Gravel, cobble, and boulder particles are >75% surrounded by fine sediments
3 Pool Substrate Characterization (G/P)	gravel and firm sand prevalent; root mats and submerged vegetation common	mud may be dominant; some root mats and submerged vegetation present	All mud or clay or sand bottom; little or no root mat; no submerged vegetation	Hard-pan clay or bedrock; no root mat or vegetation
4 Velocity/Depth Regimes ^b (R/R)	All 4 velocity/depth regimes present (slow/deep, slow/shallow, fast/deep, fast/shallow)		Only 2 of 4 regimes present (if fast/shallow or slow/shallow are missing, score low)	Dominated by 1 velocity/depth regime
4 Pool Variability ^c (G/P)	Even mix of large-shallow, large- deep, small-shallow, small-deep pools present		Shallow pools much more prevalent than deep pools	Majority of pools small-shallow or pools absent

Table 5. Criteria Used to Evaluate Physical Habitat—Continued

Habitat Parameter	OPTIMAL (20-16)	SUBOPTIMAL (15-11)	MARGINAL (10-6)	POOR (5-0)
5 Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new gravel,	Heavy deposits of fine material,
(R / R)	or point bars and <5% of the bottom affected by sediment deposition	formation, mostly from coarse gravel; 5-30% of the bottom	coarse sand on old and new bars; 30-50% of the bottom affected;	increased bar development; >50% of the bottom changing frequently;
		affected; slight deposition in pools	sediment deposits at obstructions; moderate deposition of pools prevalent	pools almost absent due to sediment deposition
5 Sediment Deposition (G/P)	Less than 20% of bottom affected; minor accumulation of fine and coarse material at snags and submerged vegetation; little or no enlargement of island of point bars	20-50% affected; moderate accumulation; substantial sediment movement only during major storm event; some new increase in bar formation	pools shallow, heavily silted; embankments may be present on	Channelized; mud, silt, and/or sand in braided or non-braided channels; pools almost absent due to substantial sediment deposition
6 Channel Flow Status (R/R) (G/P)	Water reaches base of both lower banks and minimal amount of channel substrate is exposed	Water fills >75% of the available channel; or <25% of channel substrate exposed	Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed	Very little water in channel and mostly present as standing pools
7 Channel Alteration ^d (R/R) (G/P)	No channelization or dredging present	Some channelization present, usually in areas of bridge abutments; evidence of past channelization (>20 yr) may be present, but not recent	New embankments present on both banks; and 40-80% of stream reach channelized and disrupted	Banks shored with gabion or cement; >80% of the reach channelized and disrupted
8. Frequency of Riffles (R/R)	Occurrence of riffles relatively frequent; distance between riffles divided by the width of the stream equals 5 to 7; variety of habitat	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream equals 7 to 15	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the stream width is between 15-25	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is >25
8. Channel Sinuosity (G/P)	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line	stream length 2 to 3 times longer than if it was in a straight line	stream length 1 to 2 times longer than if it was in a straight line	Channel straight; waterway has been channelized for a long time
9. Condition of Banks ^e (R/R) (G/P)	Banks stable; no evidence of erosion or bank failure, little potential for future problems; <5% of bank affected; on Glide/Pool streams side slopes generally <30%	Moderately stable; infrequent, small areas of erosion mostly healed over; 5-30% of bank in reach has areas of erosion; on Glide/Pool streams side slopes up to 40% on one bank; slight erosion potential in extreme floods		Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; on side slopes, 60-100% of bank has erosional scars; on Glide/Pool streams side slopes > 60% common
(score each bank 0-10)	(9-10)	(6-8)	(3-5)	(0-2)

TT 11 F		
Table 5.	Criteria Used to Evaluate Physical Habitat—Continued	

Habitat Parameter	OPTIMAL (20-16)	SUBOPTIMAL (15-11)	MARGINAL (10-6)	POOR (5-0)
10. Vegetative Protective Cover (R/R) (G/P)		70-90% of the streambank surfaces covered by vegetation; disruption evident but not affecting full plant growth potential to any great extent	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation	<50% of the streambank surfaces covered by vegetation; disruption is very high; vegetation removed to 5 cm or less
(score each bank 0-10)	(9-10)	(6-8)	(3-5)	(0-2)
11. Riparian Vegetative Zone Width (R/R) (G/P)	Width of riparian zone >18 meters; human activities (i.e. parking lots, roadbeds, clearcuts, lawns, or crops) have not impacted zone	Width or riparian zone 12-18 meters; human activities have impacted zone only minimally	Width of riparian zone 6-12 meters; human activities have impacted zone only minimally	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities
(score each bank 0-10)	(9-10)	(6-8)	(3-5)	(0-2)

1 R/R – Riffle/Run	Habitat assessment parameters that are used for streams that are characterized by riffles and runs.
$^{2}G/P - Glide/Pool$	Habitat assessment parameters that are used for streams that are characterized by glides and pools.
^a Embeddedness	The degree to which the substrate materials that serve as habitat for benthic macroinvertebrates and for fish spawning and egg incubation (predominantly cobble and/or gravel) are surrounded by fine sediment. Embeddedness is evaluated with respect to the suitability of these substrate materials as habitat for
	macroinvertebrates and fish by providing shelter from the current and predators, and by providing egg deposition and incubation sites.
^b Velocity/Depth Regimes	The general guidelines are 0.5 m depth to separate shallow from deep, and 0.3 m/sec to separate fast from slow.
^c Pool Variability	Rated based on the variety and spatial complexity of slow- or still-water habitat within the sample segment. It should be noted that even in high - gradient
	segments, functionally important slow-water habitat may exist in the form of plunge-pools and/or larger eddies. General guidelines are any pool dimension (i.e.,
	length, width, oblique) greater than half the cross-section of the stream for separating large from small and 1 m depth separating shallow and deep.
^d Channel Alteration	A measure of large-scale changes in the shape of the stream channel. Channel alt eration includes: concrete channels, artificial embankments, obvious
	straightening of the natural channel, rip -rap, or other structures.
^e Condition of Banks	Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks and are therefore considered to be unstable. Left and right bank
	orientation is determined by facing downstream.

Source: Modified from Barbour and others, 1999.

each chemical analysis were divided by the highest ranking value in the group to obtain a percentile. The WQI score was calculated by averaging all percentile ranks for each sample. Water quality index scores range from 1 to 100, and high WQI scores indicate poor water quality. Water quality scores and a list of parameters exceeding standards for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 48.

Reference category designations

Four reference sites were included in this These four sites represented the best study. available suite of conditions, in terms of habitat and biological community, for each of the Sites located on the New Yorkcategories. Pennsylvania border were compared to Little Snake Creek (LSNK 7.6) at Brackney, Pa. Little Snake Creek represented the best biological and habitat conditions in the Northern Appalachian Plateau and Uplands Ecoregion. Big Branch Deer Creek (BBDC 4.1) near Fawn Grove, Pa., served as the reference site for sampling stations located on the Pennsylvania-Maryland border. Big Branch Deer Creek had the best biological and habitat conditions in the Northern Piedmont Ecoregion (Omernik, 1987). The Susquehanna River (SUSQ 289.1) at Sayre, Pa., was used as the reference site for all of the Susquehanna River main stem samples, as well as for Cowanesque River, Chemung River, and Tioga River sites. Bill Hess Creek (BILL) near Nelson, Pa., served as the reference site for Group 3 sites, as it had the best biological and habitat conditions of these sites.

Biological and physical habitat conditions

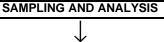
Benthic macroinvertebrate samples were assessed using procedures described by Barbour and others (1999), Klemm and others (1990), and Plafkin and others (1989). Using these methods, staff calculated a series of biological indexes for a stream and compared them to a reference station in the same region to determine the degree of impairment. The metrics used in this survey are summarized in Table 6. Metrics 1, 3, 4, and 6 were taken from Barbour and others (1999). Metric 2 (Shannon-Weaver Diversity Index) followed the methods described in Klemm and others (1990), and was substituted for the recommended ratio of shredders to total macroinvertebrates, which required specialized sampling procedures. The source for Metric 5 was from Plafkin and others (1989).

The 100-organism subsample data were used to generate scores for each of the eight metrics. Each metric score was then converted to a biological condition score, based on the percent similarity of the metric score, relative to the metric score of the reference site. The sum of the biological condition scores constituted the total biological score for the sample site, and total biological scores were used to assign each site to a biological condition category (Table 7). Habitat assessment scores of sample sites were compared to those of reference sites to classify each sample site into a habitat condition category (Table 8).

Trend analysis

A long-term trend has been defined as a steady increase or decrease of a variable over time, as opposed to a change (step trend), which is a sudden difference in water quality associated with an event (Bauer and others, 1984). As the interstate streams data are not useful for analyzing step trends due to large drainage areas and insufficient information about discharges, only long-term trends were included in this study. Trends analysis was performed on Group 1 streams (see Table 1) for the following total suspended solids, total parameters: ammonia, total nitrogen, total phosphorus, total chloride, total sulfate, total iron, total manganese, total aluminum, and water quality index. The period covered for the trends analysis was April 1986 through June 2001. Streams that have been recently added to the Group 1 sampling were not included in the trends analysis due to lack of historic seasonal data. Those steams were Bentley Creek, Cascade Creek, Little Snake Creek, Seeley Creek, and Long Arm Creek.

Table 6.Summary of Metrics Used to Evaluate the Overall Biological Integrity of Stream and River
Benthic Macroinvertebrate Communities


Metric	Description
1. Taxonomic Richness (a)	The total number of taxa present in the 100-organism subsample. Number decreases with increasing stress.
2. Shannon-Weaver Diversity Index(b)	A measure of biological community complexity based on the number of equally or nearly equally abundant taxa in the community. Index value decreases with increasing stress.
3. Hilsenhoff Biotic Index (a)	A measure of the organic pollution tolerance of a benthic macroinvertebrate community. Index value increases with increasing stress.
4. EPT Index (a)	The total number of Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) taxa present in the 100-organism subsample. Number decreases with increasing stress.
5. Ratio of EPT/Chironomids (c)	The total number of individuals in the orders Ephemeroptera, Plecoptera, and Trichoptera divided by the number of Chironomidae (midges) in a sample. A measure of community balance and indicator of environmental stress. Ratio decreases with increasing stress.
6. Percent Dominant Taxa (a)	A measure of community balance at the lowest positive taxonomic level. Percentage increases with increasing stress.

Sources: (a) Barbour and others, 1999

(b) Klemm and others, 1990

(c) Plafkin and others, 1989

Table 7.	Summary of Criteria	Used to Classify the	Biological Conditi	ons of Sample Sites

 \downarrow

	\downarrow				
TOTAL BIOL		DETERMINATIO		ia	
Metric	6	Biological Condition Scorin 3 4 2			
1. Taxonomic Richness (a)	>80 %	79 - 60 %	59 - 40 %	<40 %	
2. Shannon Diversity Index (a)	>75 %	74 - 50 %	49 – 25 %	<25 %	
3. Modified Hilsenhoff Biotic Index (b)	>85 %	84 - 70 %	69 - 50 %	<50 %	
4. EPT Index (a)	>90 %	89 - 80 %	79 - 70 %	<70 %	
5. Ratio EPT/Chironomids (a)	>75 %	74 - 50 %	49 – 25 %	<25 %	
6. Percent Dominant Taxa (c)	<20 %	20 - 30 %	31 - 40 %	>40 %	
Total Biological Score (d)	1				
	\downarrow				
	\downarrow				
	\downarrow				
	BIOASSESSM	ENT			
Percent Comparability of Study and Ref	erence	Distantia			
Site Total Biological Scores (g)		Biologica	Condition Categ	jory	
>83		N	Ioningained		
>83 79 - 54			Nonimpaired ghtly Impaired		
79 - 34 50 - 21					
<17			erately Impaired		
<17		Sev	erely Impaired		

(a) Score is study site value/reference site value X 100.

(b) Score is reference site value/study site value X 100.

(c) Scoring criteria evaluate actual percent contribution, not percent comparability to the reference station.

(d) Total Biological Score = the sum of Biological Condition Scores assigned to each metric.

(e) Values obtained that are intermediate to the indicated ranges will require subjective judgment as to the correct placement into a biological condition category.

	Habitat Parameter Scoring Criteria			
Parameter	Excellent	Good	Fair	Poor
Epifaunal Substrate	20-16	15-11	10-6	5-0
Instream Cover	20-16	15-11	10-6	5-0
Embeddedness/Pool Substrate	20-16	15-11	10-6	5-0
Velocity/Depth Regimes/Pool Variability	20-16	15-11	10-6	5-0
Sediment Deposition	20-16	15-11	10-6	5-0
Channel Flow Status	20-16	15-11	10-6	5-0
Channel Alteration	20-16	15-11	10-6	5-0
Frequency of Riffles/Channel Sinuosity	20-16	15-11	10-6	5-0
Condition of Banks (a)	20-16	15-11	10-6	5-0
Vegetative Protective Cover (a)	20-16	15-11	10-6	5-0
Riparian Vegetative Zone Width (a)	20-16	15-11	10-6	5-0
Habitat Assessment Score (b)				
	\checkmark			
	\downarrow			
	\downarrow			
	HABITAT ASSES	SMENT		
Percent Comparability of Study a Reference Site Habitat Assessment		Habitat	Condition Categ	jory
> 00		Eucollont (

Table 8.	Summary of	f Criteria Used to	Classify the H	abitat Conditions	of Sample Sites
1 0000 00	Summer y of	<i>Ci iici iii Ci iii i c</i>		women commons	of Sample Shes

HABITAT ASSESSMENT						
Percent Comparability of Study and Reference Site Habitat Assessment Scores	Habitat Condition Category					
>90 89-75 74-60 <60	Excellent (comparable to reference) Supporting Partially Supporting Nonsupporting					

(a) Combined score of each bank

(b) Habitat Assessment Score = Sum of Habitat Parameter Scores

The nonparametric trend test used in this study was the Seasonal Kendall Test, which is described by Bauer and others (1984) and Smith and others (1982). The Seasonal Kendall Test was used to detect the presence or absence of monotonic trends in the parameters described above. This test is useful for testing trends of quarterly water quality samples with seasonal variability, because seasonality is removed by comparing data points only within the same quarter for all years in the data set. Outliers also do not present a problem, because the test only considers differences in the data points. The Seasonal Kendall Test also can be used with missing and censored data.

Differences in flow also can produce trends in water quality. To adjust the concentrations to compensate for flow, a technique known as Locally Weighted Scatterplot Smoothing (LOWESS), described by Hirsch and others (1991), was used. This technique flow-adjusts the concentrations by using the residual, the result of the actual observation minus the expected observation. The residuals were tested for trends using the Seasonal Kendall Test. Detailed descriptions of the procedures for Seasonal Kendall Test and LOWESS can be found in Trends in Nitrogen, Phosphorus, and Suspended Sediment in the Susquehanna River Basin, 1974-93 (Edwards, 1995).

RESULTS

Water Quality

During fiscal year 2001, water quality in approximately half of the Group 1 and Group 2 interstate streams continued to meet designated use classes and water quality standards (Table 9, Appendix D). Fifteen out of the 31 sites had parameters exceeding water quality standards. The parameters that most frequently exceeded water quality standards were pH and dissolved oxygen (Table 10, Figure 5). Most of these exceedances in pH and dissolved oxygen standards occurred in the river sites. Only 38 out of 3,008 total observations exceeded water quality standards.

Biological Communities and Physical Habitat

RBP III biological data for New York-Pennsylvania, Pennsylvania-Maryland, river sites, and Group 3 streams are summarized in Tables 11 through 14, respectively. A high rapid bioassessment protocol score indicates a low degree of impairment and a healthy macroinvertebrate population. RBP III results for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 48.

RBP III physical habitat data for New York-Pennsylvania, Pennsylvania-Maryland, river sites, and Group 3 streams are presented in Tables 15 through 18, respectively. A high score indicates a high-quality physical habitat. RBP III physical habitat and biological data are summarized in Figures 6 through 9.

New York-Pennsylvania streams

New York-Pennsylvania sampling stations consisted of 13 sites located near or on the New York-Pennsylvania border. The biological communities of five (38.5 percent) of these streams were nonimpaired. Six streams were slightly impaired (46.2 percent), and two streams were moderately impaired (15.4 percent). Five of the New York-Pennsylvania sites had excellent habitats (38.5 percent). Eight sites (61.5 percent) had supporting habitats, and no sites had partially supporting or nonsupporting habitat. Holden Creek was not sampled due to drought conditions.

Pennsylvania-Maryland streams

The Pennsylvania - Maryland interstate streams included nine stations located on or near the Pennsylvania-Maryland border. Two (22 2 percent) streams were designated nonimpaired, using RBP III protocol designations. Five sites (55.5 percent) were slightly impaired, and of the remaining two sites one (11.1 percent) was moderately impaired and the other was designated severely impaired (11.1 percent). Four (44.4 percent) of the Pennsylvania-Maryland border sites had excellent habitats.

Stream	Pa. Classification *	N.Y. Classification *
Apalachin Creek	CWF	С
Babcock Run	CWF	С
Bentley Creek	WWF	С
Bill Hess Creek	WWF	С
Bird Creek	CWF	C
Biscuit Hollow	CWF	C
Briggs Hollow	CWF	С
Bulkley Brook	WWF	C
Camp Brook	WWF	C
Cascade Creek	CWF	Č
Cayuta Creek	WWF	В
Chemung River	WWF	A
Choconut Creek	WWF	C
Cook Hollow	CWF	C
Cowanesque River	WWF	C
Deep Hollow Brook	CWF	C
Denton Creek	CWF	C
Dry Brook	WWF	C
Little Snake Creek	CWF	C
Little Wappasening Creek	WWF	C
North Fork Cowanesque River	CWF	C
Parks Creek	WWF	C
Prince Hollow Run	CWF	C
Red House Hollow	WWF	C
Russell Run	CWF	C
Sackett Creek	WWF	C
Seeley Creek	CWF	C (T)
Smith Creek	WWF	C (1)
Snake Creek	CWF	C
South Creek	CWF	C
Strait Creek	WWF	C
Susquehanna River @ Windsor	W W1	B
Susquehanna River @ Kirkwood	WWF	B
Susquehanna River @ Sayre	WWF	B
Tioga River	WWF	C
Trowbridge Creek	CWF	C
Troups Creek	CWF	C
Wappasening Creek	CWF	C
White Branch Cowanesque River	WWF	C
White Branch Cowanesque River	WWF WWF	C
		-
Stream	Pa. Classification	Md. Classification *
Big Branch Deer Creek	CWF	III-P
Conowingo Creek	CWF	I-P
Deer Creek	CWF	III-P
Ebaughs Creek	CWF	III-P
Falling Branch Deer Creek	CWF	IV-P
Long Arm Creek	WWF	I-P
Octoraro Creek	WWF-MF	IV-P
Scott Creek	TSF	I-P
South Branch Conewago Creek	WWF	I-P
Susquehanna River @ Marietta	WWF	
Susquehanna River @ Conowingo		I-P

Table 9.	Stream	Classifications
----------	--------	-----------------

* See Appendix D for stream classification descriptions

Parameter	Number of Observations	Number Exceeding Standards	Standard
Alkalinity	94	2	Pa. aquatic life
рН	59	8	N.Y. general
	94	2	Pa. aquatic life
Dissolved Oxygen	59	1	N.Y. trout waters
	92	3	Pa. aquatic life
	35	6	Md. aquatic life
Dissolved Iron	94	4	Pa. aquatic life
Total Iron	59	7	N.Y. aquatic (chronic)
Total Aluminum	59	3	N.Y. aquatic (chronic)
Sulfate	94	1	Pa. water supply
Total Nitrite	59	1	N.Y. aquatic (chronic)

 Table 10.
 Water Quality Standard Summary

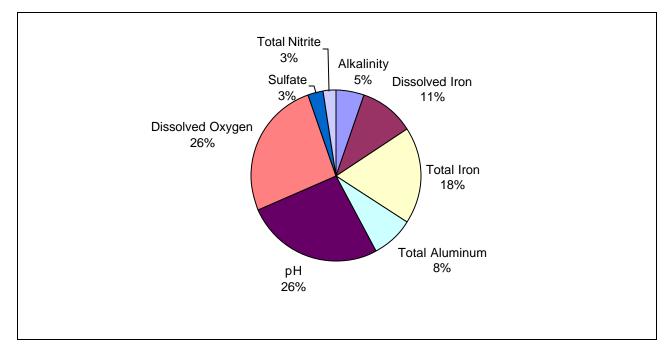


Figure 5. Parameters Exceeding Water Quality Standards

	SNAK 2.3	APAL 6.9	BNTY 0.9	CASC 1.6	CAYT 1.7	CHOC 9.1
Raw Summary	2.0	0.0	0.0	1.0		0.1
Number of Individuals	172	220	145	195	157	196
% Shredders	0	0.5	0.7	5.6	1.3	1.5
% Collector-Gatherers	42.4	12.3	46.2	39.5	49	36.7
% Filterer-Collectors	46.5	46.4	29	31.8	10.2	25
% Scrapers	5.8	29.5	13.1	3.6	36.3	25
% Predators	5.2	11.4	11	19.5	3.2	11.7
Number of EPT Taxa	14	12	15	16	10	10
Number of EPT Individuals	114	108	66	99	41	95
Metric Scores	•	•	•		•	
Taxonomic Richness	22	24	22	26	18	23
Shannon Diversity Index	2.4	2.6	2.2	2.4	2.1	2.6
Modified Hilsenhoff Biotic Index	4.2	4.5	4.9	4.3	5.1	4.5
EPT Index	14	12	15	16	10	10
Ratio EPT/Chironomids	2.8	4.9	1.3	1.4	0.7	2.4
Percent Dominant Taxa	23.8	18.2	35.2	35.9	35.7	19.9
Percent of Reference	•	•	•		•	
Taxonomic Richness	73.3	80	73.3	86.7	60	76.7
Shannon Diversity Index	89.1	94.8	80.6	88.3	76.4	96
Hilsenhoff Index	91.2	85.5	77.3	89.1	75.2	85.4
EPT Index	77.7	66.7	83.3	88.9	55.6	55.6
Ratio EPT/Chironomids	113.4	200.3	52.8	57.7	29.9	99.4
Percent Dominant Taxa	23.8	18.2	35.2	35.9	35.7	19.9
Biological Condition Scores	•	•	•		•	
Taxonomic Richness	4	6	4	6	4	4
Shannon Diversity Index	6	6	6	6	6	6
Hilsenhoff Index	6	6	4	6	4	6
EPT Index	2	0	4	4	0	0
Ratio EPT/Chironomids	6	6	4	4	2	6
Percent Dominant Taxa	4	6	2	2	2	6
Total Biological Score						
Total Biological Score	28	30	24	28	18	28
Biological % of Reference	82.4	88.2	70.6	82.4	52.9	82.4

Table 11. Summary of New York-Pennsylvania Border RBP III Biological Data

	LSNK 7.6	SEEL 10.3	SOUT 7.8	TROW 1.8	NFCR 7.6	TRUP 4.5	WAPP 2.6
Raw Summary	1.0	10.0	1.0	1.0	7.0		2.0
Number of Individuals	203	196	213	217	170	127	147
% Shredders	4.9	0	0.5	0.9	5.9	0	0
% Collector-Gatherers	30.5	51	38.5	66.8	53.5	17.3	57.1
% Filterer-Collectors	39.4	36.2	40.4	9.7	2.4	40.2	31.3
% Scrapers	7.4	2.6	16.9	7.8	16.5	16.5	7.5
% Predators	17.2	10.2	3.8	14.7	21.8	26	4.1
Number of EPT Taxa	18	8	10	14	13	10	11
Number of EPT Individuals	125	75	105	109	40	82	70
Metric Scores			•		•		•
Taxonomic Richness	30	16	18	22	26	20	17
Shannon Diversity Index	2.7	1.8	2.2	2.1	2.3	2.3	2
Modified Hilsenhoff Biotic Index	3.8	5.1	4.9	4.4	4.5	4.5	5
EPT Index	18	8	10	14	13	10	11
Ratio EPT/Chironomids	2.5	0.8	1.5	1.4	0.6	4.8	1.1
Percent Dominant Taxa	25.1	47.4	32.4	35.9	38.8	22.8	44.2
Percent of Reference					•		
Taxonomic Richness	100	53.3	60	73.3	86.7	66.7	56.7
Shannon Diversity Index	100	65.7	80.9	77.7	85.4	86	72.3
Hilsenhoff Index	100	74.3	77.3	87.5	85.4	84.2	75.7
EPT Index	100	44.4	55.6	77.8	72.2	55.6	61.1
Ratio EPT/Chironomids	100	32.9	62.1	57	24.7	196.8	43.9
Percent Dominant Taxa	25.1	47.4	32.4	35.9	38.8	22.8	44.2
Biological Condition Scores					•		
Taxonomic Richness	6	2	4	4	6	4	2
Shannon Diversity Index	6	4	6	6	6	6	4
Hilsenhoff Index	6	4	4	6	6	4	4
EPT Index	6	0	0	2	2	0	0
Ratio EPT/Chironomids	6	2	4	4	0	6	2
Percent Dominant Taxa	4	0	2	2	2	4	0
Total Biological Score				•			
Total Biological Score	34	12	20	24	22	24	12
Biological % of Reference	100	35.3	58.8	70.6	64.7	70.6	35.3

 Table 11.
 Summary of New York-Pennsylvania Border RBP III Biological Data — Continued

	BBDC	CNWG	DEER	EBAU	FBDC
	4.1	4.4	44.2	1.5	4.1
Raw Data Summary					
Number of Individuals	159	159	215	122	215
% Shredders	8.2	0	0	2.5	7.4
% Collector-Gatherers	22.6	13.2	34	32	32.1
% Filterer-Collectors	37.1	34.6	27.9	32.8	11.2
% Scrapers	18.9	44.7	29.8	30.3	28.8
% Predators	13.2	7.5	7.4	2.5	14.4
Number of EPT Taxa	15	9	10	7	17
Number of EPT Individuals	99	85	77	49	68
Metric Scores					
Taxonomic Richness	20	16	22	14	28
Shannon Diversity Index	2.5	2.2	2.5	2.1	2.5
Modified Hilsenhoff Biotic Index	3.3	4.7	4.7	4.7	4.2
EPT Index	15	9	10	7	17
Ratio EPT/Chironomids	4.3	12.1	1.7	1.8	1.3
Percent Dominant Taxa	18.2	33.3	20.9	25.4	25.1
Percent of Reference		•	·	·	•
Taxonomic Richness	100	80	110	70	140
Shannon Diversity Index					I.
Hilsenhoff Index	100	70.5	70	69.4	78
EPT Index	100	60	66.7	46.7	113.3
Ratio EPT/Chironomids	100	282.1	39.8	42.2	29.3
Percent Dominant Taxa	18.2	33.3	20.9	25.4	25.1
Biological Condition Scores					
Taxonomic Richness	6	6	6	4	6
Shannon Diversity Index	6	6	6	6	6
Hilsenhoff Index	6	4	4	2	4
EPT Index	6	0	0	0	6
Ratio EPT/Chironomids	6	6	2	2	2
Percent Dominant Taxa	6	2	4	4	4
Total Biological Score		•	·	·	
Total Biological Score	36	24	22	18	28
Biological % of Reference	100	66.7	61.1	50	77.8

Table 12. Summary of Pennsylvania-Maryland Border RBP III Biological Data

	LNGA 2.5	OCTO 6.6	SBCC 20.4	SCTT 3.0
	2.0	0.0	20.4	3.0
Raw Data Summary				
Number of Individuals	106	170	131	185
% Shredders	3.8	6.5	19.8	2.2
% Collector-Gatherers	12.3	16.5	20.6	82.2
% Filterer-Collectors	37.7	48.8	28.2	12.4
% Scrapers	35.8	27.6	6.9	0
% Predators	8.5	0.6	24.4	3.2
Number of EPT Taxa	7	13	9	1
Number of EPT Individuals	46	132	82	1
Metric Scores				
Taxonomic Richness	18	22	17	7
Shannon Diversity Index	2.5	2.4	2.3	0.8
Modified Hilsenhoff Biotic Index	4.4	4.4	2.1	6
EPT Index	7	13	9	1
Ratio EPT/Chironomids	7.7	12	3	0
Percent Dominant Taxa	20.8	24.7	24.4	78.4
Percent of Reference				
Taxonomic Richness	90	110	85	35
Shannon Diversity Index	96.9	95.9	89.1	32.1
Hilsenhoff Index	75.3	74.7	157	55
EPT Index	46.7	86.7	60	6.7
Ratio EPT/Chironomids	178.1	278.8	70.6	0.2
Percent Dominant Taxa	20.8	24.7	24.4	78.4
Biological Condition Scores				
Taxonomic Richness	6	6	6	0
Shannon Diversity Index	6	6	6	2
Hilsenhoff Index	4	4	6	2
EPT Index	0	4	0	0
Ratio EPT/Chironomids	6	6	4	0
Percent Dominant Taxa	4	4	4	0
Total Biological Score				
Total Biological Score	26	30	26	4
Biological % of Reference	72.2	83.3	72.2	11.1

Table 12. Summary of Pennsylvania-Maryland Border RBP III Biological Data—Continued

	SUSQ 365	CHEM 12.0	COWN 2.2	COWN 1.0
D C	305	12.0	2.2	1.0
Raw Summary			170	
Number of Individuals	115	174	172	155
% Shredders	2.6	0	25.6	12.3
% Collector-Gatherers	38.3	12.1	57	19.4
% Filterer-Collectors	6.1	70.1	17.4	38.7
% Scrapers	32.2	14.9	0	27.7
% Predators	20.9	2.9	0	1.9
Number of EPT Taxa	12	8	3	7
Number of EPT Individuals	54	127	19	72
Metric Scores				
Taxonomic Richness	20	18	7	16
Shannon Diversity Index	2.5	2.1	1.3	2.4
Modified Hilsenhoff Biotic Index	4.5	4.9	6	5.2
EPT Index	12	8	3	7
Ratio EPT/Chironomids	3.2	8.5	0.2	4.2
Percent Dominant Taxa	14.8	32.8	56.4	18.1
Percent of Reference				
Taxonomic Richness	83.3	75	29.2	66.7
Shannon Diversity Index	98.8	82.2	51.1	95
Hilsenhoff Index	99.4	91.2	75.2	86.2
EPT Index	70.6	47.1	17.6	41.2
Ratio EPT/Chironomids	15	39.9	0.9	20
Percent Dominant Taxa	14.8	32.8	56.4	18.1
Biological Condition Scores		I		
Taxonomic Richness	6	4	0	4
Shannon Diversity Index	6	6	4	6
Hilsenhoff Index	6	6	4	6
EPT Index	2	0	0	0
Ratio EPT/Chironomids	0	2	0	0
Percent Dominant Taxa	6	2	0	6
Total Biological Score		1		
Total Biological Score	26	20	8	22
Percent of Reference	72.2	55.6	22.2	61.1

Table 13. Summary of River RBP III Biological Data

	SUSQ 340	SUSQ 289.1	TIOG 10.8
D	340	289.1	10.8
Raw Summary			
Number of Individuals	144	153	160
% Shredders	0.7	2	0.6
% Collector-Gatherers	12.5	16.3	26.3
% Filterer-Collectors	37.5	49	63.8
% Scrapers	35.4	30.7	3.8
% Predators	13.2	2	5.6
Number of EPT Taxa	14	17	10
Number of EPT Individuals	78	106	106
Metric Scores			
Taxonomic Richness	22	24	18
Shannon Diversity Index	2.5	2.6	2.2
Modified Hilsenhoff Biotic Index	4.4	4.5	4.8
EPT Index	14	17	10
Ratio EPT/Chironomids	13	21.2	2.9
Percent Dominant Taxa	27.1	15	23.8
Percent of Reference			
Taxonomic Richness	91.7	100	75
Shannon Diversity Index	97.8	100	84.6
Hilsenhoff Index	101.8	100	94.1
EPT Index	82.4	100	58.8
Ratio EPT/Chironomids	61.3	100	13.5
Percent Dominant Taxa	27.1	15	23.8
Biological Condition Scores			
Taxonomic Richness	6	6	4
Shannon Diversity Index	6	6	6
Hilsenhoff Index	6	6	6
EPT Index	4	6	0
Ratio EPT/Chironomids	4	6	0
Percent Dominant Taxa	4	6	4
Total Biological Score			
Total Biological Score	30	36	20
Percent of Reference	83.3	100	55.6

Table 13. Summary of River RBP III Biological Data—Continued

	COOK	BABC	BILL	BIRD	BISC	BRIG
Raw Summary	•	•				•
Number of Individuals	149	211	142	128	140	145
% Shredders	3.4	20.9	9.2	5.5	1.4	2.8
% Collector-Gatherers	50.3	57.3	63.4	72.7	58.6	79.3
% Filterer-Collectors	4	0.5	3.5	0.8	3.6	0
% Scrapers	14.8	5.2	8.5	10.2	14.3	0
% Predators	27.5	16.1	15.5	10.9	22.1	17.9
Number of EPT Taxa	18	15	16	10	12	11
Number of EPT Individuals	101	139	109	62	94	69
Metric Scores	•	•				•
Taxonomic Richness	23	20	21	15	14	13
Shannon Diversity Index	2.4	2.3	2.6	1.8	2.1	1.5
Modified Hilsenhoff Biotic Index	2.6	3.1	2.8	3.2	2.7	3.2
EPT Index	18	15	16	10	12	11
Ratio EPT/Chironomids	2.4	2.1	7.3	1.1	2.1	1
Percent Dominant Taxa	28.2	30.8	21.8	42.2	32.1	49.7
Percent of Reference						
Taxonomic Richness	109.5	95.2	100	71.4	66.7	61.9
Shannon Diversity Index	91	86.3	100	70.7	78.7	58.3
Hilsenhoff Index	107.6	90.2	100	87.7	105.4	87.7
EPT Index	112.5	93.8	100	62.5	75	68.8
Ratio EPT/Chironomids	33.1	29.4	100	15.8	28.7	13.2
Percent Dominant Taxa	28.2	30.8	21.8	42.2	32.1	49.7
Biological Condition Scores						
Taxonomic Richness	6	6	6	4	4	4
Shannon Diversity Index	6	6	6	4	6	4
Hilsenhoff Index	6	6	6	6	6	6
EPT Index	6	6	6	0	2	0
Ratio EPT/Chironomids	2	2	6	0	2	0
Percent Dominant Taxa	4	2	4	0	2	0
Total Biological Score						
Total Biological Score	30	28	34	14	22	14
Biological % of Reference	88.2	82.4	100	41.2	64.7	41.2

Table 14. Summary of Group 3 Sites RBP III Biological Data

	BULK	CAMP	DEEP	LWAP
Raw Summary		•	•	
Number of Individuals	148	129	122	145
% Shredders	22.3	5.4	2.5	0.7
% Collector-Gatherers	49.3	40.3	59	75.2
% Filterer-Collectors	2.7	8.5	4.9	0
% Scrapers	4.7	11.6	7.4	9.7
% Predators	20.9	34.1	26.2	14.5
Number of EPT Taxa	12	15	14	12
Number of EPT Individuals	90	109	35	79
Metric Scores				
Taxonomic Richness	18	19	25	13
Shannon Diversity Index	2.2	2.4	2.3	1.8
Modified Hilsenhoff Biotic Index	3.1	1.7	4.2	3.5
EPT Index	12	15	14	12
Ratio EPT/Chironomids	1.8	54.5	0.7	1.2
Percent Dominant Taxa	33.8	30.2	43.4	45.5
Percent of Reference				
Taxonomic Richness	85.7	90.5	119	61.9
Shannon Diversity Index	84	90.1	89.5	67.4
Hilsenhoff Index	92.2	162.2	66.5	79.8
EPT Index	75	93.8	87.5	75
Ratio EPT/Chironomids	24.8	750	9.1	16.5
Percent Dominant Taxa	33.8	30.2	43.4	45.5
Biological Condition Scores				
Taxonomic Richness	6	6	6	4
Shannon Diversity Index	6	6	6	4
Hilsenhoff Index	6	6	2	4
EPT Index	2	6	4	2
Ratio EPT/Chironomids	0	6	0	0
Percent Dominant Taxa	2	4	0	0
Total Biological Score				
Total Biological Score	22	34	18	14
Biological % of Reference	64.7	100	52.9	41.2

Table 14. Summary of Group 3 Sites RBP III Biological Data — Continued

	PARK	PRIN	REDH	RUSS	SACK	SMIT
Raw Summary		•	•	•	•	•
Number of Individuals	141	119	151	138	121	132
% Shredders	6.4	4.2	7.9	8.7	2.5	6.8
% Collector-Gatherers	75.9	55.5	37.1	58	66.9	53
% Filterer-Collectors	3.5	16.8	14.6	2.9	4.1	3
% Scrapers	4.3	15.1	4.6	0	5.8	28
% Predators	9.9	8.4	35.8	30.4	20.7	9.1
Number of EPT Taxa	14	14	12	10	11	12
Number of EPT Individuals	62	50	83	78	91	31
Metric Scores						
Taxonomic Richness	17	20	17	13	14	19
Shannon Diversity Index	1.8	2.2	1.9	1.8	2.2	1.8
Modified Hilsenhoff Biotic Index	3.9	4.1	2.7	2.8	2	4.3
EPT Index	14	14	12	10	11	12
Ratio EPT/Chironomids	0.8	1.1	1.5	1.4	4.8	0.5
Percent Dominant Taxa	52.5	39.5	35.8	40.6	32.2	46.2
Percent of Reference		•		•	·	•
Taxonomic Richness	81	95.2	81	61.9	66.7	90.5
Shannon Diversity Index	68.1	84.8	73	70.2	84	69.8
Hilsenhoff Index	72.5	69.3	106.1	101.2	142.6	65
EPT Index	87.5	87.5	75	62.5	68.8	75
Ratio EPT/Chironomids	11.5	14.6	21.2	19.2	65.9	7
Percent Dominant Taxa	52.5	39.5	35.8	40.6	32.2	46.2
Biological Condition Scores						
Taxonomic Richness	6	6	6	4	4	6
Shannon Diversity Index	4	6	4	4	6	4
Hilsenhoff Index	4	2	6	6	6	2
EPT Index	4	4	2	0	0	2
Ratio EPT/Chironomids	0	0	0	0	4	0
Percent Dominant Taxa	0	2	2	0	2	0
Total Biological Score						
Total Biological Score	18	20	20	14	22	14
Biological % of Reference	52.9	58.8	58.8	41.2	64.7	41.2

 Table 14.
 Summary of Group 3 Sites RBP III Biological Data — Continued

	STRA	WBCO	WHIT
Raw Summary		-	<u>.</u>
Number of Individuals	153	119	138
% Shredders	5.2	1.7	17.4
% Collector-Gatherers	51.6	31.9	49.3
% Filterer-Collectors	8.5	61.3	2.2
% Scrapers	15.7	4.2	5.1
% Predators	19	0.8	26.1
Number of EPT Taxa	17	3	12
Number of EPT Individuals	104	36	104
Metric Scores		-	
Taxonomic Richness	22	12	17
Shannon Diversity Index	2.6	1.9	2.1
Modified Hilsenhoff Biotic Index	2.9	4.5	1.5
EPT Index	17	3	12
Ratio EPT/Chironomids	5.5	1.1	5.8
Percent Dominant Taxa	22.2	31.1	32.6
Percent of Reference		-	
Taxonomic Richness	104.8	57.1	81
Shannon Diversity Index	99.8	71	81.5
Hilsenhoff Index	96.6	62.1	185.1
EPT Index	106.3	18.8	75
Ratio EPT/Chironomids	75.3	15.5	79.5
Percent Dominant Taxa	22.2	31.1	32.6
Biological Condition Scores			
Taxonomic Richness	6	2	6
Shannon Diversity Index	6	4	6
Hilsenhoff Index	6	2	6
EPT Index	6	0	2
Ratio EPT/Chironomids	6	0	6
Percent Dominant Taxa	4	2	2
Total Biological Score			
Total Biological Score	34	10	28
Biological % of Reference	100	29.4	82.4

 Table 14.
 Summary of Group 3 Sites RBP III Biological Data — Continued

	SNAK 2.3	APAL 6.9	BNTY 0.9	CASC 1.6	CAYT 1.7	CHOC 9.1
Epifaunal Substrate	16	14	15	15	15	17
Instream Cover	15	13	10	17	14	14
Embeddedness/Pool Substrate	16	13	13	13	14	14
Velocity/Depth Regimes/Pool Variability	16	13	13	13	14	10
Sediment Deposition	15	12	10	12	12	14
Channel Flow Status	15	13	13	10	15	15
Channel Alteration	14	14	11	16	13	14
Frequency of Riffles/Channel Sinuosity	16	10	14	15	12	15
Condition of Banks	16	12	12	14	15	12
Left Bank	8	7	8	7	7	6
Right Bank	8	5	4	7	8	6
Vegetative Protective Cover	16	14	12	16	14	14
Left Bank	8	8	8	8	7	7
Right Bank	8	6	4	8	7	7
Riparian Vegetative Zone Width	10	8	14	14	7	9
Left Bank	5	4	7	9	2	5
Right Bank	5	4	7	5	5	4
Total Habitat Score						
Total Habitat Score	207	170	175	199	181	183
Habitat Percent of Reference	99.5	81.7	84.1	95.7	87	88

Table 15.Summary of New York-Pennsylvania Sites Physical Habitat Data

	LSNK 7.6	SEEL 10.3	SOUT 7.8	TROW 1.5	TRUP 4.5	NFCR 7.6	WAPP 2.6
Epifaunal Substrate	15	11	16	14	10	15	16
Instream Cover	14	9	11	13	9	14	15
Embeddedness/Pool Substrate	14	15	15	16	15	13	15
Velocity/Depth Regimes/Pool Variability	10	9	9	10	12	10	15
Sediment Deposition	14	11	15	15	14	13	15
Channel Flow Status	12	12	13	11	10	11	15
Channel Alteration	14	10	13	15	15	18	14
Frequency of Riffles/Channel Sinuosity	15	11	13	17	15	16	14
Condition of Banks	18	16	14	12	13	18	16
Left Bank	9	8	8	7	5	9	9
Right Bank	9	8	6	5	8	9	7
Vegetative Protective Cover	18	17	15	14	16	18	17
Left Bank	9	8	9	9	7	9	9
Right Bank	9	9	6	5	9	9	8
Riparian Vegetative Zone Width	14	7	7	10	7	15	14
Left Bank	7	3	4	8	3	10	7
Right Bank	7	4	3	2	4	5	7
Total Habitat Score	•	•	•	•		•	•
Total Habitat Score	208	168	177	183	172	212	213
Habitat Percent of Reference	100	80.7	85.1	88	82.7	101.9	102.4

	BBDC 4.1	CNWG 4.4	DEER 44.2	EBAU 1.5	FBDC 4.1
Epifaunal Substrate	16	16	14	15	14
Instream Cover	15	15	14	14	15
Embeddedness/Pool Substrate	15	10	13	12	12
Velocity/Depth Regimes/Pool Variability	12	16	13	10	10
Sediment Deposition	14	8	11	14	10
Channel Flow Status	18	15	15	18	15
Channel Alteration	14	16	14	14	14
Frequency of Riffles/Channel Sinuosity	16	15	13	15	13
Condition of Banks	16	14	8	14	16
Left Bank	7	6	2	6	8
Right Bank	9	8	6	8	8
Vegetative Protective Cover	17	15	12	16	16
Left Bank	8	7	6	8	9
Right Bank	9	8	6	8	7
Riparian Vegetative Zone Width	10	6	2	11	7
Left Bank	2	2	1	5	5
Right Bank	8	4	1	6	2
Total Habitat Score					
Total Habitat Score	206	181	151	194	181
Habitat Percent of Reference	100	87.9	73.3	94.2	87.9

Table 16.Summary of Pennsylvania-Maryland Sites Physical Habitat Data

	LNGA 2.5	OCTO 6.6	SBCC 20.4	SCTT 3.0
Epifaunal Substrate	11	15	17	14
Instream Cover	14	15	16	12
Embeddedness/Pool Substrate	10	14	15	10
Velocity/Depth Regimes/Pool Variability	12	16	14	10
Sediment Deposition	10	14	16	10
Channel Flow Status	18	16	16	13
Channel Alteration	18	14	15	13
Frequency of Riffles/Channel Sinuosity	10	15	16	13
Condition of Banks	12	14	16	14
Left Bank	9	8	8	6
Right Bank	3	6	8	8
Vegetative Protective Cover	11	16	17	16
Left Bank	8	8	8	8
Right Bank	3	8	9	8
Riparian Vegetative Zone Width	11	6	13	4
Left Bank	7	3	5	2
Right Bank	4	3	8	2
Total Habitat Score				·
Total Habitat Score	171	191	217	163
Habitat Percent of Reference	83.0	92.7	105.3	79.1

	SUSQ 365	CHEM 12.0	COWN 2.2	COWN 1.0
Epifaunal Substrate	15	14	8	15
Instream Cover	16	14	6	16
Embeddedness/Pool Substrate	14	13	13	14
Velocity/Depth Regimes/Pool Variability	17	16	8	16
Sediment Deposition	14	13	12	14
Channel Flow Status	15	13	16	15
Channel Alteration	15	13	11	17
Frequency of Riffles/Channel Sinuosity	16	11	6	11
Condition of Banks	14	15	18	14
Left Bank	8	7	9	9
Right Bank	6	8	9	5
Vegetative Protective Cover	18	16	16	16
Left Bank	9	7	8	9
Right Bank	9	9	8	7
Riparian Vegetative Zone Width	14	11	11	11
Left Bank	7	4	7	5
Right Bank	7	7	4	6
Total Habitat Score				
Total Habitat Score	214	191	170	200
Habitat Percent of Reference	107	95.5	85	100

 Table 17.
 Summary of River Sites Physical Habitat Data

	SUSQ 340	SUSQ 289.1	TIOG 10.8
Epifaunal Substrate	14	14	14
Instream Cover	14	14	14
Embeddedness/Pool Substrate	14	15	14
Velocity/Depth Regimes/Pool Variability	16	16	16
Sediment Deposition	14	13	12
Channel Flow Status	16	16	16
Channel Alteration	16	14	16
Frequency of Riffles/Channel Sinuosity	10	14	14
Condition of Banks	18	16	15
Left Bank	9	8	8
Right Bank	9	8	7
Vegetative Protective Cover	18	16	15
Left Bank	9	8	8
Right Bank	9	8	7
Riparian Vegetative Zone Width	12	10	12
Left Bank	6	7	6
Right Bank	б	3	6
Total Habitat Score			
Total Habitat Score	210	200	200
Habitat Percent of Reference	105	100	100

	COOK	BABC	BILL	BIRD	BISC	BRIG
Epifaunal Substrate	15	15	15	15	10	12
Instream Cover	15	15	16	15	10	8
Embeddedness/Pool Substrate	17	16	17	16	11	11
Velocity/Depth Regimes/Pool Variability	10	10	10	10	9	8
Sediment Deposition	17	16	17	17	10	8
Channel Flow Status	12	11	12	12	9	13
Channel Alteration	16	16	17	14	16	14
Frequency of Riffles/Channel Sinuosity	16	16	17	17	12	15
Condition of Banks	15	13	14	7	11	9
Left Bank	7	8	7	3	7	5
Right Bank	8	5	7	4	4	4
Vegetative Protective Cover	18	11	15	5	10	11
Left Bank	9	4	8	2	5	6
Right Bank	9	7	7	3	5	5
Riparian Vegetative Zone Width	15	15	15	12	4	9
Left Bank	8	7	7	7	2	5
Right Bank	7	8	8	5	2	4
Total Habitat Score						
Total Habitat Score	202	171	209	164	137	147
Habitat Percent of Reference	96.7	81.8	100.0	78.5	65.6	70.3

Table 18. Summary of Group 3 Sites Physical Habitat Data

	BULK	CAMP	DEEP	LWAP
Epifaunal Substrate	18	14	16	15
Instream Cover	17	12	16	12
Embeddedness/Pool Substrate	16	16	15	16
Velocity/Depth Regimes/Pool Variability	10	8	10	7
Sediment Deposition	16	16	16	16
Channel Flow Status	14	11	15	9
Channel Alteration	17	11	17	2
Frequency of Riffles/Channel Sinuosity	17	15	17	13
Condition of Banks	15	10	15	4
Left Bank	8	5	8	2
Right Bank	7	5	7	2
Vegetative Protective Cover	17	9	17	4
Left Bank	9	5	9	2
Right Bank	8	4	8	2
Riparian Vegetative Zone Width	18	7	15	5
Left Bank	9	3	9	3
Right Bank	9	4	6	2
Total Habitat Score				
Total Habitat Score	198	155	216	116
Habitat Percent of Reference	94.7	74.2	103.3	55.5

	PARK	PRIN	REDH	RUSS	SACK	SMIT
Epifaunal Substrate	14	11	15	10	16	17
Instream Cover	14	14	16	10	15	16
Embeddedness/Pool Substrate	16	14	16	14	16	16
Velocity/Depth Regimes/Pool Variability	8	9	10	6	9	8
Sediment Deposition	10	11	17	12	16	16
Channel Flow Status	9	6	11	8	14	12
Channel Alteration	3	12	17	5	15	13
Frequency of Riffles/Channel Sinuosity	16	15	16	11	17	15
Condition of Banks	4	10	12	5	11	15
Left Bank	2	6	6	2	6	7
Right Bank	2	4	6	3	5	8
Vegetative Protective Cover	4	10	13	5	12	14
Left Bank	2	7	6	2	6	7
Right Bank	2	3	7	3	6	7
Riparian Vegetative Zone Width	8	5	16	6	11	11
Left Bank	3	3	8	3	6	6
Right Bank	5	2	8	3	5	5
Total Habitat Score						
Total Habitat Score	122	142	200	108	186	176
Habitat Percent of Reference	58.4	67.9	95.7	51.7	89.0	84.2

Table 18. Summary of Group 3 Sites Physical Habitat Data – continued.

	STRA	WBCO	WHIT
Epifaunal Substrate	15	16	15
Instream Cover	13	15	13
Embeddedness/Pool Substrate	16	16	16
Velocity/Depth Regimes/Pool Variability	9	10	10
Sediment Deposition	15	13	16
Channel Flow Status	13	15	11
Channel Alteration	10	10	12
Frequency of Riffles/Channel Sinuosity	16	16	16
Condition of Banks	5	15	10
Left Bank	3	8	5
Right Bank	2	7	5
Vegetative Protective Cover	6	10	9
Left Bank	3	5	4
Right Bank	3	5	5
Riparian Vegetative Zone Width	5	4	11
Left Bank	2	2	4
Right Bank	3	2	7
Total Habitat Score			
Total Habitat Score	126	169	169
Habitat Percent of Reference	60.3	80.9	80.9

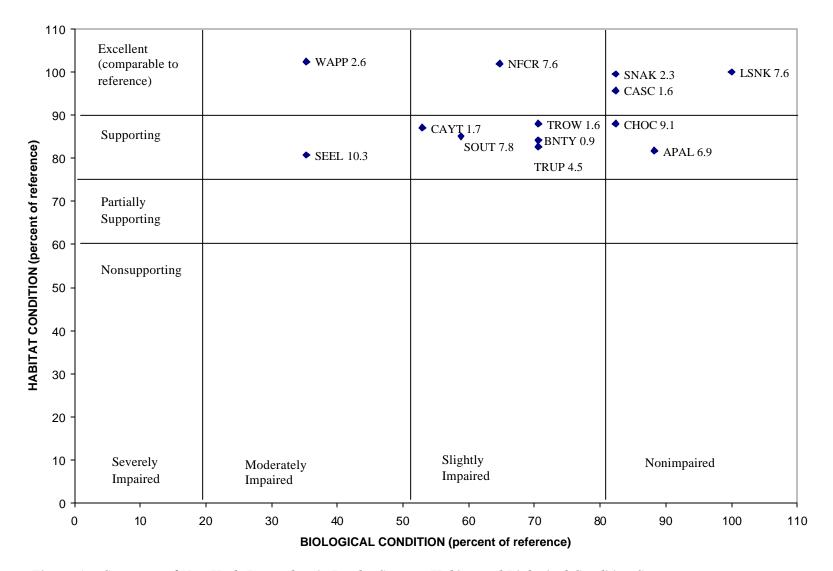


Figure 6. Summary of New York-Pennsylvania Border Streams Habitat and Biological Condition Scores

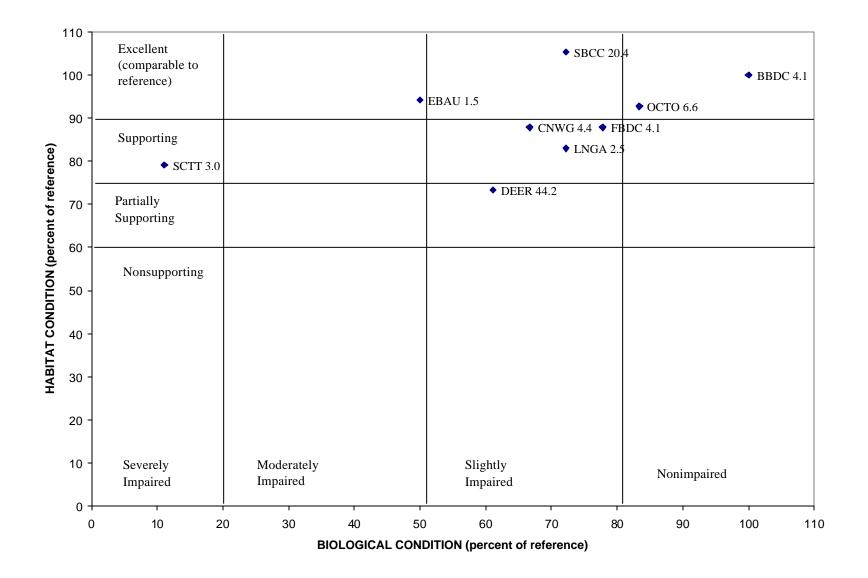


Figure 7. Summary of Pennsylvania-Maryland Border Streams Habitat and Biological Condition Scores

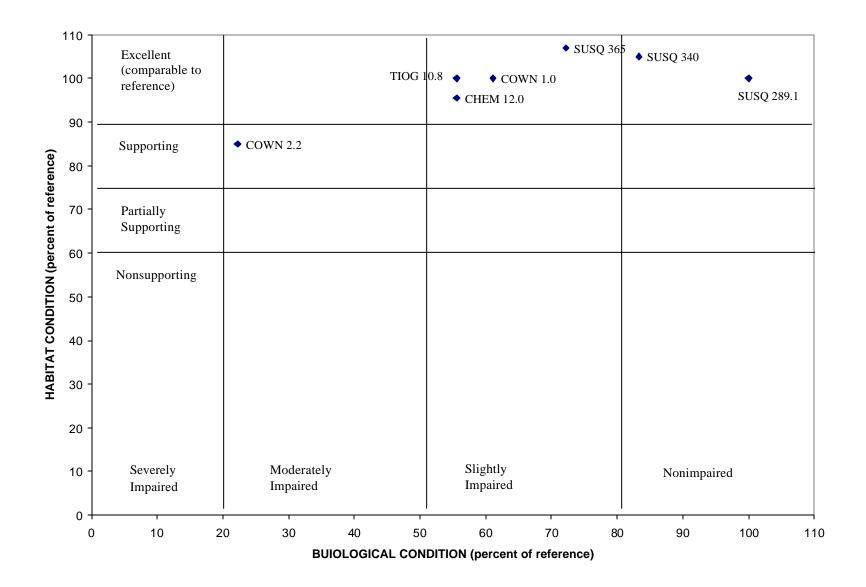


Figure 8. Summary of River Habitat and Biological Condition Scores

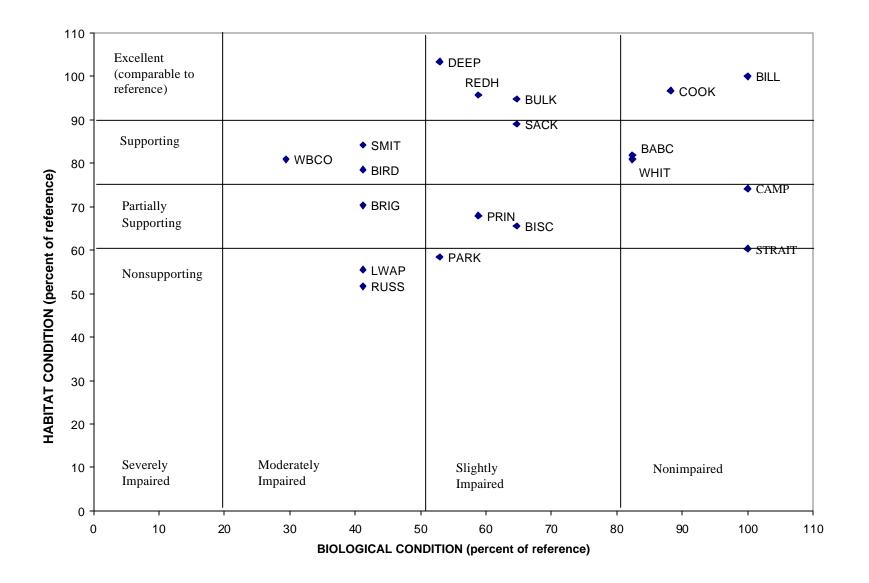


Figure 9. Summary of Group 3 Streams Habitat and Biological Condition Scores

Four sites (44.4 percent) had supporting habitats, and one site (11.1 percent) had partially supporting habitats. None of the sites was designated nonsupporting in habitat. Island Branch is not sampled due to its small size.

River sites

River sites consisted of nine stations the Susquehanna. located on Chemung. Cowanesque, and Tioga Rivers. Two stations (SUSQ 10.0, SUSQ 44.5) were not sampled for macroinvertebrates due to deep water and a lack of riffle habitat at the sites. The biological communities of two out of seven sites (28.5 percent) were nonimpaired, four sites (57 percent) were slightly impaired, and one site (14.3 percent) was moderately impaired. Six of the seven sites (85.7 percent) had excellent habitats. The remaining site (14.3 percent) was supporting.

Group 3 Sites

Group 3 sampling stations consisted of 21 sites on small streams located along the New York-Pennsylvania border. Two of these sites (DENT, DRYB) were dry at the time of sampling. Six of the 19 sites sampled (31.6 percent) had nonimpaired biological conditions. Seven sites (36.8 percent) were slightly impaired, and six sites (31.6 percent) were moderately impaired. Five (26.3 percent) of the Group 3 sites had excellent Six sites (31.6 percent) had habitat scores. Five sites supporting habitat conditions. (26.3 percent) partially were designated supporting, and the remaining three sites (15.8 percent) were nonsupporting.

Trends Analysis

A summary of trend statistics is presented in Table 19. The statistical trends were simplified into trend categories: a highly significant (p<0.05) trend that was increasing (INC) or decreasing (DEC); a significant (p<0.10) trend that was increasing (inc) or decreasing (dec); or no trend (0). The trend categories are presented for both the concentration and the flow-adjusted concentrations. In Tables 20 and 21, weighted values were assigned for each station, and an average weighted value was calculated to indicate the strength of an overall trend for each variable. Each category was given a value: -2 for DEC, -1 for dec, 0 for 0, +1 for inc, and +2 for INC. An average value was calculated for each parameter. An analysis of "strong decreasing trend" required an average weighted value of less than -1.50. An analysis of "decreasing trend" required an average value between -1.00 and -1.50. An analysis of no trend was indicated by a value of -1.00 to +1.00.

Detailed results of the Seasonal Kendall Test are presented in Appendix E, Tables E1-E8. The statistics include the probability, (P), slope estimate (b), Kendall's Tau median, and percent slope. The median was calculated from the median of the entire quarterly time series. The percent slope was expressed in percent of the median concentration per year and was calculated by dividing the slope (b) by the median and multiplying by 100. The percent slope identifies those stations for which trend slope (b) is large with respect to the median value. Table 54 provides a summary of detected trends and overall direction.

Total suspended solids

Trend analysis results for total suspended solids are presented in Appendix E, Table E1. Concentration values at the stations showed one decreasing trend at Tioga River, and no trends for flow-adjusted concentration analysis (Table 19). There was no overall trend, indicated by a weighted average value of -0.07 for unadjusted concentrations and zero for flow-adjusted concentrations (Tables 20 and 21, respectively).

Total ammonia

Total ammonia trend analysis results are presented in Appendix E. Table E2. Concentration values showed strongly decreasing values at Cayuta Creek, Chemung River, Deer Creek, Ebaughs Creek, Octoraro Creek, Tioga River, and Susquehanna River sites 44.5, 289.1, 340, and 365, and decreasing trends at Conowingo Creek and Susquehanna River site 10.0 Flow adjusted concentrations (Table 19). indicated strongly decreasing trends at Cayuta Creek, Chemung River, Tioga River, and

Susquehanna River sites 289.1, 340, and 365, and decreasing trends at Ebaughs Creek and Susquehanna River site 44.5 (Table 19). There was an overall decreasing trend in concentration with a weighted value of -1.47 (Table 20), but a weighted value of -0.93 indicates that there was no overall trend in flow-adjusted concentrations (Table 21). This indicates this decreasing trend may be due to flow or climatic patterns.

<u>Total nitrogen</u>

The results of trend analysis for total nitrogen are presented in Appendix E, Table E3. Concentration values at the Group 1 stations showed strongly decreasing trends at Chemung River, Cowanesque River, Tioga River, Troups Creek, and Susquehanna River sites 289.1, 340, and 365, decreasing trends at Cayuta Creek and Susquehanna River site 10.0, and a strongly increasing trend at Conowingo Creek (Table 19). Flow adjusted concentrations indicated strongly decreasing trends at Cayuta Creek, Chemung River, Cowanesque River, Tioga River, and Susquehanna River sites 10.0, 289.1, 340, and 365. A decreasing trend was found at Scott Creek. A strongly increasing trend occurred at Conowingo Creek (Table 19). Overall, there was no trend in concentration, and a decreasing trend in flow-adjusted concentrations, with average weighted values of -0.93 and -1.00, respectively (Tables 20 and 21). Note that an increasing trend for total nitrogen was found only in Conowingo Creek, which is a Pennsylvania-Maryland border site heavily influenced by agriculture.

Total phosphorus

Trend analysis results for total phosphorus are Appendix presented in E. Table E4. Concentration values showed strongly decreasing trends at Susquehanna River sites 10, 289.1, 340, and 365, Conowingo Creek, Deer Creek, Octoraro Creek, and Tioga River, decreasing trends at Cayuta Creek and Susquehanna River 44.5, and an increasing trend at Troups Creek (Table 19). Flow-adjusted concentrations showed strongly decreasing trends at Susquehanna River sites 289.1, 340, and 365, Conowingo Creek, and Deer Creek. Decreasing trends were found at Cayuta Creek, Tioga River, and Susquehanna River site 44.5 (Table 19). Overall, there was a decreasing trend in unadjusted phosphorus concentrations (average value = -1.13) but no trend in flow-adjusted concentration (average value = -0.87) (Tables 20 and 21). The decreasing trend may have been due to a decrease of phosphates in detergents, to the application of agricultural Best Management Practices (BMPs), and to the upgrade of wastewater treatment plants.

Total chloride

The results of trend analysis for total chloride are presented in Appendix E, Table E5. Concentration values showed strongly increasing trends in Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, Octoraro Creek, and Susquehanna River sites 44.5, 289.1, 340, and 365 (Table 19). Flow-adjusted concentrations indicated strongly increasing trends at Chemung River, Conowingo Creek, Deer Creek, Octoraro Creek, and Susquehanna River sites 44.5, 289.1, 340, and 365, and an increasing trend at Ebaughs Creek (Table 19). Overall, there was an increasing trend in both concentration and flowadjusted concentrations, with average weighted values of 1.20 and 1.13, respectively (Tables 20 and 21).

Total sulfate

Trend analysis results for total sulfate are presented in Appendix E. Table E6. Concentration values at the stations showed strongly decreasing trends at Cayuta Creek, Chemung River, Cowanesque River, Tioga River, and Troups Creek, a decreasing trend at Scott Creek, and an increasing trend at Deer Creek (Table 19). Strongly decreasing trends were found at Cayuta Creek, Chemung River, Susquehanna River site 289.1, Tioga River, and Troups Creek, and decreasing trends at Cowanesque River and Susquehanna River 44.5, bv flow-adjusted concentrations indicated (Table 19). There were no overall trends in concentrations and flow-adjusted concentrations, with weighted values of -0.67 and -0.80, respectively (Tables 20 and 21).

	Total Solids			Total Ammonia		Total Nitrogen		Total Phosphorus		Total Chloride	
Site	CONC	FAC	CONC	FAC	CONC	FAC	CONC	FAC	CONC	FAC	
Cayuta Creek	0	0	DEC	DEC	dec	DEC	dec	dec	0	0	
Chemung River	0	0	DEC	DEC	DEC	DEC	0	0	INC	INC	
Conowingo Creek	0	0	dec	0	INC	INC	DEC	DEC	INC	INC	
Cowanesque River	0	0	0	0	DEC	DEC	0	0	0	0	
Deer Creek	0	0	DEC	0	0	0	DEC	DEC	INC	INC	
Ebaughs Creek	0	0	DEC	dec	0	0	0	0	INC	inc	
Octoraro Creek	0	0	DEC	0	0	0	DEC	0	INC	INC	
Scott Creek	0	0	0	0	0	dec	0	0	0	0	
Susquehanna River 10.0	0	0	dec	0	dec	DEC	DEC	0	0	0	
Susquehanna River 44.5	0	0	DEC	dec	0	0	dec	dec	INC	INC	
Susquehanna River 289.1	0	0	DEC	DEC	DEC	DEC	DEC	DEC	INC	INC	
Susquehanna River 340	0	0	DEC	DEC	DEC	DEC	DEC	DEC	INC	INC	
Susquehanna River 365	0	0	DEC	DEC	DEC	DEC	DEC	DEC	INC	INC	
Tioga River	dec	0	DEC	DEC	DEC	DEC	DEC	dec	0	0	
Troups Creek	0	0	0	0	DEC	0	inc	0	0	0	

 Table 19.
 Trend Summary of Selected Parameters for Group 1 Streams, 1986-2001

	Total S	Sulfate	Tota	l Iron	Total Al	uminum	Total Ma	nganese	WQI	
Site	CONC	FAC	CONC	FAC	CONC	FAC	CONC	FAC	CONC	FAC
Cayuta Creek	DEC	DEC	DEC	0	0	0	DEC	DEC	0	0
Chemung River	DEC	DEC	DEC	DEC	0	0	DEC	DEC	0	0
Conowingo Creek	0	0	DEC	DEC	DEC	DEC	dec	0	DEC	0
Cowanesque River	DEC	dec	0	0	0	0	INC	0	0	0
Deer Creek	inc	0	DEC	DEC	dec	0	DEC	0	0	0
Ebaughs Creek	0	0	DEC	DEC	0	0	0	0	0	0
Octoraro Creek	0	0	DEC	0	dec	0	DEC	0	dec	0
Scott Creek	dec	0	0	0	0	0	dec	0	0	0
Susquehanna River 10.0	0	0	DEC	DEC	dec	DEC	DEC	DEC	0	0
Susquehanna River 44.5	0	dec	DEC	DEC	DEC	DEC	DEC	DEC	0	0
Susquehanna River 289.1	0	DEC	DEC	DEC	dec	DEC	DEC	DEC	0	0
Susquehanna River 340	0	0	DEC	DEC	0	0	0	0	0	0
Susquehanna River 365	0	0	DEC	DEC	0	dec	0	0	0	0
Tioga River	DEC	DEC	dec	0	0	inc	DEC	DEC	0	0
Troups Creek	DEC	DEC	0	0	0	0	0	0	0	0

INC Strong, Significant Increasing Trend; Probability < 5 %

Significant Increasing Trend; 5 % < Probability < 10 % inc

No Significant Trend; Probability > 10% 0

dec

Significant Decreasing Trend; 5 % < Probability < 10 % Strong, Significant Decreasing Trend; Probability < 5 % DEC

CONC Concentrations

FAC Flow-Adjusted Concentrations

		Trend Category Count								
Concentration	DEC	dec	0	inc	INC	Total				
Total Solids	0	1	14	0	0	15				
Total Ammonia	10	2	3	0	0	15				
Total Nitrogen	7	2	5	0	1	15				
Total Phosphorus	8	2	4	1	0	15				
Total Chlorides	0	0	6	0	9	15				
Total Sulfate	5	1	8	1	0	15				
Total Iron	11	1	3	0	0	15				
Total Aluminum	2	4	9	0	0	15				
Total Manganese	8	2	4	0	1	15				
Water Quality Index	1	1	13	0	0	15				

Table 20. Trend Category Counts and Weighted Values of Concentrations for Group 1 Streams

			W	eighted Valu	es		
Concentration	DEC	dec	о	inc	INC	Sum	Average Value*
Total Solids	0	-1	0	0	0	-1	-0.07
Total Ammonia	-20	-2	0	0	0	-22	-1.47
Total Nitrogen	-14	-2	0	0	2	-14	-0.93
Total Phosphorus	-16	-2	0	1	0	-17	-1.13
Total Chlorides	0	0	0	0	18	18	1.20
Total Sulfate	-10	-1	0	1	0	-10	-0.67
Total Iron	-22	-1	0	0	0	-23	-1.53
Total Aluminum	-4	-4	0	0	0	-8	-0.53
Total Manganese	-16	-2	0	0	2	-16	-1.07
Water Quality Index	-2	-1	0	0	0	-3	-0.20

DEC = -2 eachdec = -1 each0 = 0 eachinc = 1 each

INC = $2 \operatorname{each}$

*Average Value

- < 1.50 -1.5 to -1.00 -1.00 to 1.00
- 1.00 to 1.50
 - >1.50 St

Strong Decreasing Trend Decreasing Trend

No Trend

) Increasing Trend

0 Strong Increasing Trend

Table 21.	Trend Category Counts and Weighted Values of Flow-Adjusted Concentrations for
	Group 1 Streams

	Trend Category Count									
Concentration	DEC	dec	0	inc	INC	Total				
Total Solids	0	0	15	0	0	15				
Total Ammonia	6	2	7	0	0	15				
Total Nitrogen	8	1	5	0	1	15				
Total Phosphorus	5	3	7	0	0	15				
Total Chlorides	0	0	6	1	8	15				
Total Sulfate	5	2	8	0	0	15				
Total Iron	9	0	6	0	0	15				
Total Aluminum	4	1	9	1	0	15				
Total Manganese	6	0	9	0	0	15				
Water Quality Index	0	0	15	0	0	15				

		Weighted Values									
Concentration	DEC	dec	ο	inc	INC	Sum	Average Value*				
Total Solids	0	0	0	0	0	0	0				
Total Ammonia	-12	-2	0	0	0	-14	-0.93				
Total Nitrogen	-16	-1	0	0	2	-15	-1.00				
Total Phosphorus	-10	-3	0	0	0	-13	-0.87				
Total Chlorides	0	0	0	1	16	17	1.13				
Total Sulfate	-10	-2	0	0	0	-12	-0.80				
Total Iron	-18	0	0	0	0	-18	-1.20				
Total Aluminum	-8	-1	0	1	0	-8	-0.53				
Total Manganese	-12	0	0	0	0	-12	-0.80				
Water Quality Index	0	0	0	0	0	0	0				

 $\begin{array}{l} \text{DEC} = -2 \text{ each} \\ \text{dec} = -1 \text{ each} \end{array}$ 0 = 0 each inc = 1 each INC = 2 each

- *Average Value < 1.50
 - -1.5 to -1.00
 - -1.00 to 1.00 1.00 to 1.50
 - >1.50
- Strong Decreasing Trend Decreasing Trend No Trend Increasing Trend Strong Increasing Trend

Total iron

Total iron trend analysis results are found in Appendix E, Table E7. Group 1 concentration values showed strongly decreasing trends at all Susquehanna River sites, Cayuta Creek, Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, and Octoraro Creek, and a decreasing trend at Tioga River (Table 19). Flow-adjusted concentrations indicated similar results, with strongly decreasing trends at Chemung River, Conowingo Creek, Deer Creek, Ebaughs Creek, and all Susquehanna River sites (Table 19). Overall, there was a strongly decreasing trend in unadjusted concentrations (average value = -1.53), and a decreasing trend in flow-adjusted concentrations for iron (average value = -1.20) (Tables 20 and 21).

Total aluminum

The results of trend analysis for total aluminum are presented in Appendix E, Table E8. Concentration values at the Group 1 stations showed strongly decreasing trends at Conowingo Creek and Susquehanna River site 44.5, and a decreasing trend at Deer Creek, Octoraro Creek, and Susquehanna River sites 10.0 and 289.1 (Table 19). Flow adjusted concentration values showed strongly decreasing trends at Conowingo Creek, and Susquehanna River sites 10.0, 44.5, and 289.1, a decreasing trend at Susquehanna River site 365, and an increasing trend at Tioga River (Table 19). There was no overall trend, indicated by a weighted value of -0.53 for both concentrations the and flow-adjusted concentrations (Tables 20 and 21).

Total manganese

Trend analysis results for total manganese are presented in Appendix E. Table E9. Concentration values showed strongly decreasing trends at Cayuta Creek, Chemung River, Deer Creek, Octoraro Creek, Susquehanna River sites 10.0, 44.5, and 289.1, and Tioga River, decreasing trends at Conowingo Creek and Scott Creek, and a strongly increasing trend at Cowanesque River (Table 19). Flow-adjusted concentrations showed strongly decreasing tends at Cayuta Creek, Chemung River, Susquehanna River sites 10.0,

44.5, and 289.1, and Tioga River (Table 19). Overall, there was a decreasing trend in unadjusted manganese concentrations (average value = -1.07), but not flow adjusted concentrations with a value of -0.80 (Tables 20 and 21).

Water quality index

Trend analysis results for the water quality index are presented in Appendix E, Table E10. Concentration values at the stations showed a strongly decreasing trend at Conowingo Creek. A decreasing trend was found at Octoraro Creek (Table 19). Flow-adjusted concentrations had no trends (Table 19). There were no overall trends for WQI values with an average weighted value of -0.20 for concentrations and an average weighted value of zero for flow-adjusted concentrations (Tables 20 and 21).

BIOASSESSMENT OF INTERSTATE STREAMS

Abbreviations for water quality standards are provided in Table 22. Summaries of all stations include WQI scores, parameters that exceeded water quality standards, and parameters that exceeded the 90th percentile at each station. RBP III biological and habitat data also are provided, along with graphs depicting historical water quality and biological conditions over the past five years. A white bar indicates fiscal year 2001 WQI scores, and black bars in all WQI graphs indicate previous WQI scores.

New York-Pennsylvania Border Streams

Apalachin Creek (APAL 6.9)

Apalachin Creek at Little Meadows, Pa., (APAL 6.9) showed a nonimpaired biological community during fiscal year 2001, increased from a moderately impaired designation the previous year. The ratio of EPT/Chironomids (4.91) was the highest and the percent dominant taxa value (18.2) was the lowest of all the New York-Pennsylvania border streams.

Abbreviation	Parameter
ALK	Alkalinity
COND	Conductivity
DAI	Dissolved Aluminum
TAI	Total Aluminum
TCa	Total Calcium
TCl	Total Chloride
DFe	Dissolved Iron
TFe	Total Iron
TMg	Total Magnesium
DMn	Dissolved Manganese
TMn	Total Manganese
DNH3	Dissolved Ammonia
TNH3	Total Ammonia
DNO2	Dissolved Nitrite
TNO2	Total Nitrite
DNO3	Dissolved Nitrate
TNO3	Total Nitrate
DN	Dissolved Nitrogen
TN	Total Nitrogen
DO	Dissolved Oxygen
DP	Dissolved Phosphorus
TP	Total Phosphorus
DPO4	Dissolved Orthophosphate
TPO4	Total Orthophosphate
DS	Dissolved Solids
TS	Total Solids
TSO4	Total Sulfate
TOC	Total Organic Carbon
TURB	Turbidity
WQI	Water Quality Index
RBP	Rapid Bioassessment Protocol

Table 22. Abbreviations Used in Tables 23 Through 53

Total iron exceeded water quality standards during July 2000, as in July 1999. Turbidity also exceeded the 90th percentile, and the water quality index increased slightly from the previous year as it has done over the past five years (Table 23).

Bentley Creek (BNTY 0.9)

A slightly impaired biological community existed at Bentley Creek at Wellsburg, N.Y. (BNTY 0.9). Biological conditions at BNTY 0.9 have been impaired for the past 10 years. This could be due to heavy disturbance in this stream due to dredging and the unstable nature of this stream. Even though the habitat has been rated as nonsupporting in the past years, the current assessment occurred in a relatively stable portion of the stream, earning it a much higher rating. Furthermore, the Bradford County Conservation District and the United States Fish and Wildlife Service are conducting a stream stabilization project on this stream. Rock structures, such as cross vanes and single rock vanes, have been constructed into portions of the stream to redirect the force of the flow and create a more stable channel.

During fiscal year 2000, water quality sampling at BNTY 0.9 was increased to quarterly sampling, and the stream was added to the Group 1 stations. Total iron concentrations exceeded New York standards during February and May 2000, but no exceedances were found in fiscal year 2001. Additionally, total ammonia, dissolved oxygen, and total orthophosphates exceeded the 90th percentile during the 1999–2000 sampling period, but no parameters exceeded the 90th percentile in the 2000–2001 sampling period (Table 24).

Cascade Creek (CASC 1.6)

Despite high levels of iron, Cascade Creek at Lanesboro, Pa., (CASC 1.6) showed a nonimpaired macroinvertebrate community compared to the other New York-Pennsylvania border streams. There were 14 organic pollutionintolerant taxa located at CASC 1.6 including Dicranota and Hexatoma (Diptera: Tipulidae): (Ephemeroptera: Epeorus and Stenonema Heptageniidae); Isonychia (Ephemeroptera: Isonychiidae); Nigronia (Megaloptera: Corydalidae); Boyeria (Odonata: Aeshnidae); Haploperla, Suwallia, and Sweltsa (Plecoptera: Chloroperlidae); (Plecoptera: Acroneuria Perlidae); **Pteronarcys** (Plecoptera: Pteronarcyidae); and Dolophilodes and Wormaldia (Trichoptera: Philopotamidae). The habitat was excellent and consisted of approximately 50 percent coniferous forest with numerous fallen trees in the stream.

Cascade Creek was added to the Group 1 streams during the 2000 sampling season to monitor conditions in the stream during the winter months. Water quality standards for total iron, dissolved iron, and alkalinity were exceeded during the 2000-2001 sampling period (Table 25). Values of pH had improved from the previous year and no longer exceeded the standards. Iron values fluctuated throughout the year and were highest during the low flow seasons.

Cayuta Creek (CAYT 1.7)

Biological conditions of Cayuta Creek at Waverly, N.Y., (CAYT 1.7) were designated slightly impaired, same as the previous year. The water quality conditions appear to have degraded over the past five years and were best during the years when the biological condition was nonimpaired (1996 and 1998). Water quality standards for pH were exceeded at CAYT 1.7. Many parameters exceeded the 90th percentile including conductivity, total and dissolved nitrates, total and dissolved phosphorus, total and dissolved orthophosphate, total chloride, total and dissolved nitrogen, total and dissolved solids, and total and dissolved nitrites (Table 26).

Poor water quality conditions may be due to a variety of causes, including wastewater discharges from the Waverly sewage treatment facility, runoff from the city of Waverly, failure of upstream septic systems, or agriculture. More detailed studies would need to be performed in order to determine the cause of impairment.

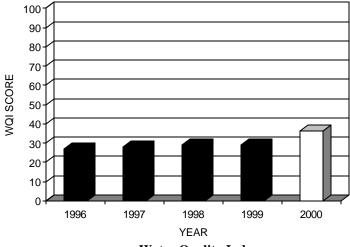
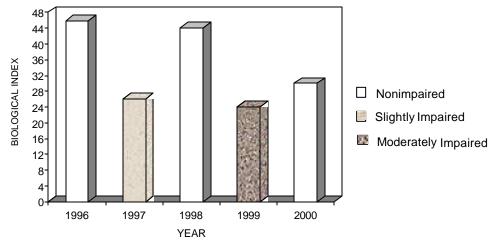

Cayuta Creek showed several downward trends for total concentrations. Total nitrogen and total phosphorus showed a significant decreasing trend (0.05 , while strong, significant

Table 23.	Water Quality Summary Apalachin Creek at Little Meadows, Pa.
-----------	--


Parameters Exceeding Standards						
Parameter Date Value Standard State						
TFe 07/26/00 567 μg/l 300 μg/l N.Y. aquatic (chronic)						

Date	WQI	Parameters Exceeding 90 th Percentile							
07/26/00	36.5	TURB							

Biological and Habitat Summary					
Number of Taxa	24				
Diversity Index	2.6				
RBP Score	30				
RBP Condition	Nonimpaired				
Total Habitat Score	170				
Habitat Condition Category	Supporting				

Water Quality Index

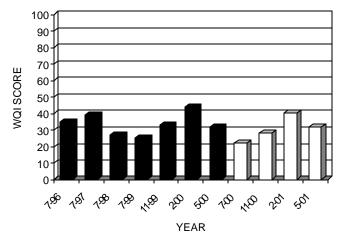
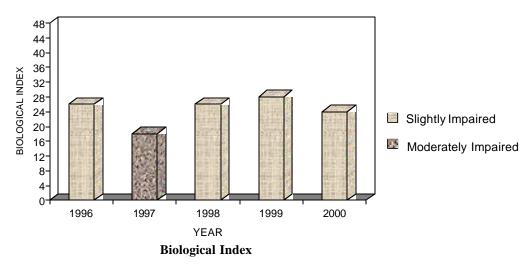
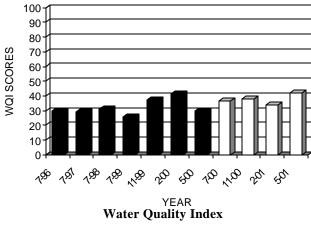

Biological Index

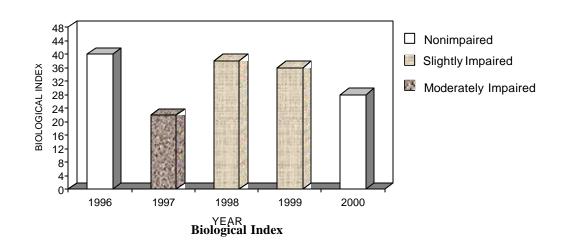
Table 24. Water Quality Summary Bentley Creek at Wellsburg, N.Y.


Parameters Exceeding Standards							
Parameter	ameter Date Value Standard State						
None							

Date	WQI	Parameters Exceeding 90 th Percentile						
07/25/00	22.2	None						
11/07/00	28	None						
02/07/01	40.2	None						
05/08/01	31.8	None						

Biological and Habitat Summary						
Number of Taxa 22						
Diversity Index	2.2					
RBP III Score	24					
RBP III Condition	Slightly Impaired					
Total Habitat Score	208					
Habitat Condition Category	Excellent					

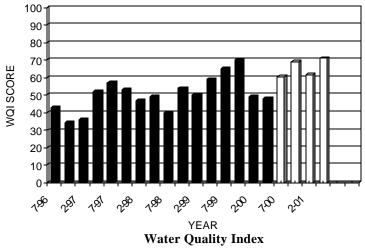

Water Quality Index

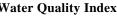


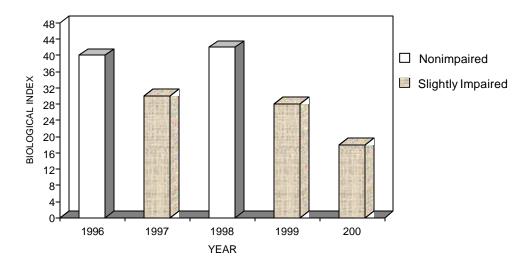
Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State				
TFe	07/26/00	811 μg/l l	300 μg/l	N.Y. aquatic (chronic)				
DFe	07/26/00	467 µg/l	300 µg/l	Pa. aquatic life				
TFe	11/06/00	608 µg/l l	300 µg/l	N.Y. aquatic (chronic)				
ALK	02/06/01	10 mg/l	20 mg/l	Pa. aquatic life				
TFe	05/07/01	500 μg/l	300 µg/l	N.Y. aquatic (chronic)				
DFe	05/07/01	301 µg/l	300 µg/l	Pa. aquatic life				

Date	WQI		Parameters Exceeding 90 th Percentile						
07/26/00	36.3	TURB	TFe	DFe					
11/06/00	38.2	TURB	TFe	DFe					
02/06/01	33.9	DFe							
05/07/01	42.1	TFe	DFe	DO					

Biological and Habitat Summary					
Number of Taxa 26					
Diversity Index	2.4				
RBP III Score	28				
RBP III Condition	Nonimpaired				
Total Habitat Score	199				
Habitat Condition Category	Excellent				




Table 26.	Water Quality	Summary	Cayuta	Creek at	Waverly, N.Y.


Parameters Exceeding Standards						
Parameter	Date Value Standard State					
pН	11/06/00	9.0	6.5-8.5	N.Y. general		

Date	WQI		Parameters Exceeding 90 th Percentile						
7/25/00	60.6	COND	TNO3	DNO3	TP	DP	TPO4	DPO4	TCl
		TN	DN						
11/06/00	69	COND	DS	TNO3	DNO3	TP	DP	TPO4	DPO4
		TCl	TN	DN					
02/06/01	61.7	TNO2	DNO2						
05/08/01	71.1	COND	TS	DS	TNO2	TNO3	TP	DP	TPO4
		DPO4	TCl	TN					

Biological and Habitat Summary						
Number of Taxa	18					
Diversity Index	2.1					
RBP Score	18					
RBP Condition	Slightly Impaired					
Total Habitat Score	181					
Habitat Condition Category	Supporting					

Biological Index

decreasing trends (p<0.05) were observed for total ammonia, total sulfate, total iron, and total manganese (Table 19). When flow-adjusted concentrations were calculated, total phosphorus showed a significant decreasing trend, while total ammonia, total nitrogen, total sulfate, and total manganese showed strong, significant decreasing trends (Table 19).

Choconut Creek (CHOC 9.1)

During fiscal year 2001, the biological community of Choconut Creek at Vestal Center, N.Y., (CHOC 9.1) was designated nonimpaired for the fourth consecutive year. CHOC 9.1 had pollution-intolerant several organic taxa. including Atherix (Diptera: Athericidae), Antocha (Diptera: Tipulidae), Dicranota, Hexatoma, Stenonema, Isonychia, Nigronia, Ophiogomphus (Odonata: Gomphidae). Sweltsa. Leuctra (Plecoptera: Leuctridae), Acroneuria, and Agnetina (Plecoptera: Perlidae).

No parameters exceeded standards during July 2000, and water quality analysis indicated that water quality conditions were comparable to the reference site. No parameters exceeded the 90th percentile (Table 27). Impairment during 1996 may have been due to rechannelization as evidenced by large amounts of riprap at the site.

Little Snake Creek (LSNK 7.6)

Little Snake Creek at Brackney, Pa., (LSNK 7.6) showed a nonimpaired biological community in July 2000, and served as the reference site for New York-Pennsylvania border streams. This site was chosen as the reference site since it had the best values in taxonomic richness, EPT, Shannon-Weaver Diversity Index, and Hilsenhoff Biotic Index metrics, and had a high habitat score. This sample had many taxa scoring a three or lower in the Hilsenhoff Biotic Index, including Atherix, Dicranota, Isonychia, Nigronia, Boyeria, Sweltsa, Leuctra, Acroneuria, Paragnetina (Plecoptera: Perlidae). Pteronarcys, Dolophilodes, and Wormaldia.

Even though a healthy macroinvertebrate community exists at this sampling site, the water quality exceeds standards in iron, aluminum, and alkalinity (Table 28). This suggests that the water quality fluctuates or the particular species that are present are tolerant of these conditions. The WQI was higher than it was in previous years, so the water samples may have been taken during poor water quality episodes or the condition of this stream is degrading. The habitat at this site was largely forested with a beaver dam located approximately 75 yards upstream.

Seeley Creek (SEEL 10.3)

Seeley Creek at Seeley Creek, N.Y., (SEEL 10.3) contained a moderately impaired biological community for the past four years. In July 2000, this site scored the worst of the New York-Pennsylvania border streams in taxonomic richness, EPT Index, percent dominant taxa, Shannon-Weaver Diversity Index, and Hilsenhoff Biotic Index metrics. Chironomidae (Diptera) heavily dominated this site. During the 1999-2000 sampling season, Seeley Creek was added to the Group 1 streams in the ISWQN. Water quality analysis indicated fairly good water quality conditions in the stream with no parameters exceeding standards and only dissolved oxygen and total sulfate exceeding the 90th percentile (Table 29).

Habitat conditions appear to be a possible cause for the moderately impaired macroinvertebrate community. New York State Department of Conservation (NYSDEC) listed Seeley Creek as "threatened" in their publication, The 1998 Chemung River Basin Waterbody Inventory and Priority Waterbodies List (NYSDEC, 1998). According to this publication, the stream is threatened by habitat alteration, streambank erosion, and instability of the stream channel. SRBC staff saw evidence of dredging and noted unstable substrate in the habitat assessment.

Snake Creek (SNAK 2.3)

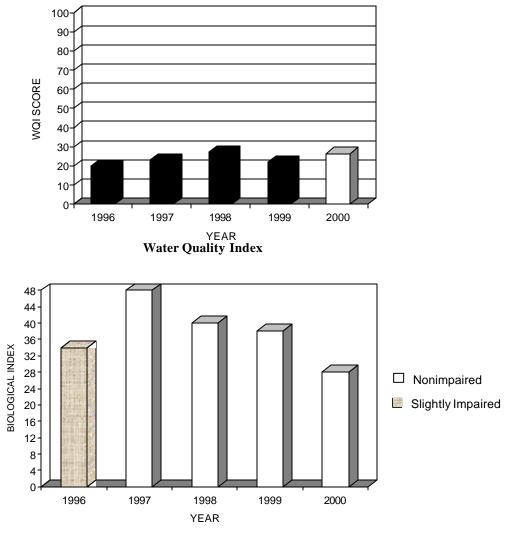
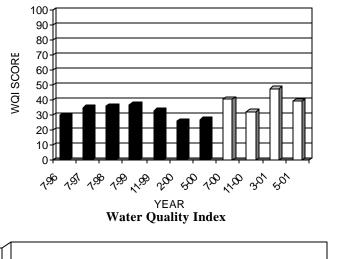

Snake Creek at Brookdale, Pa., (SNAK 2.3) had a nonimpaired biological community and excellent physical habitat, with a relatively low WQI score (Table 30). The biological community has remained nonimpaired for at least the past five years, and this site has served as a reference site in

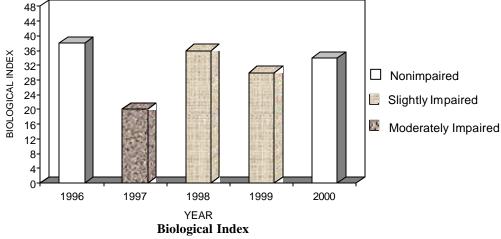
Table 27.	Water Oud	ility Summary	, Choconut	Creek at	Vestal Cer	nter. N.Y.

Parameters Exceeding Standards							
Parameter	Date	Date Value Standard State					
None							

Date	WQI		Parameters Exceeding 90 th Percentile						
07/26/00	26.4	None							

Biological and Habitat Summary						
Number of Taxa	23					
Diversity Index	2.6					
RBP Score	28					
RBP Condition	Nonimpaired					
Total Habitat Score	183					
Habitat Condition Category	Supporting					

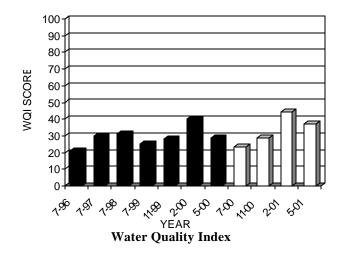


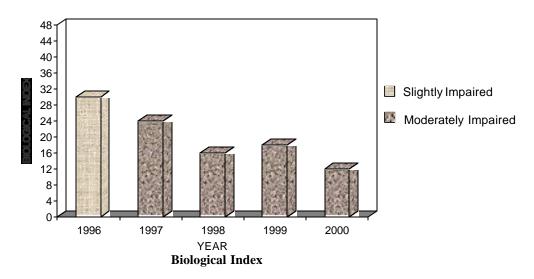

Biological Index

Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State			
TFe	07/26/00	781 µg/l	300 µg/l	N.Y. aquatic (chronic)			
DFe	07/26/00	307 µg/l	300 µg/l	Pa. aquatic life			
TFe	03/13/01	484 µg/l	300 µg/l	N.Y. aquatic (chronic)			
TAl	03/13/01	308 µg/l	100 µg/l	N.Y. aquatic (chronic)			
ALK	03/13/01	12 mg/l	20 mg/l	Pa. aquatic life			
TFe	05/08/01	351 µg/l	300 µg/l	N.Y. aquatic (chronic)			

Date	WQI	Parameters Exceeding 90 th Percentile						
07/26/00	40.6	TFe	DMn					
11/06/00	32.5	None						
03/13/01	47.6	TFe	DFe	TAl	TURB			
05/08/01	39.3	None						

Biological and Habitat Summary					
Number of Taxa	30				
Diversity Index	2.7				
RBP III Score	34				
RBP III Condition	Reference				
Total Habitat Score	208				
Habitat Condition Category	Reference				




Table 29.	Water Ouality	Summary Seeley	Creek at Seelev	Creek, N.Y.

Parameters Exceeding Standards						
Parameter	Date	Value	Standard	State		
None						

Date	WQI	Parameters Exceeding 90 th Percentile						
07/25/00	23.6	None						
11/07/00	29	DO						
02/07/01	44.1	DO						
05/08/01	37	TSO4						

Biological and Habitat Summary				
Number of Taxa	16			
Diversity Index	1.8			
RBP III Score	12			
RBP III Condition	Moderately Impaired			
Total Habitat Score	168			
Habitat Condition Category	Supporting			

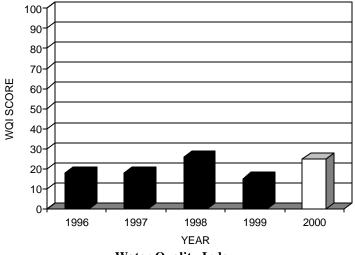
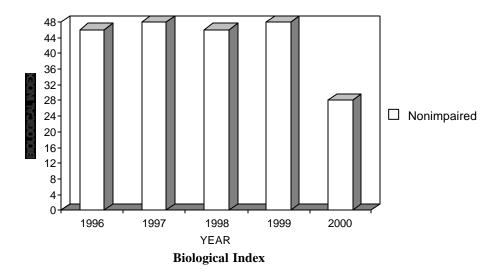


Table 30. Water Quality Summary Snake Creek at Brookdale, Pa.


Parameters Exceeding Standards						
Parameter	Date	Value	Standard	State		
None						

Date	WQI		Parameters Exceeding 90 th Percentile						
07/26/00	24.8	None							

Biological and Habitat Summary					
Number of Taxa	22				
Diversity Index	2.4				
RBP III Score	28				
RBP III Condition	Nonimpaired				
Total Habitat Score	207				
Habitat Condition Category	Excellent				

Water Quality Index

previous reports. Snake Creek supported many pollution-intolerant taxa, including *Atherix*, *Stenonema*, *Isonychia*, *Nigronia*, *Acroneuria*, *Paragnetina*, and *Dolophilodes*. The sampling site was in a predominantly forested area with sufficient amounts of shade provided to the stream.

SRBC staff conducted a small watershed study on the Snake Creek Watershed during the second year of the Upper Susquehanna Subbasin Survey (Diehl and Sitlinger, 2001). Ten sites in the Snake Creek Watershed and three sites on the Little Snake Creek Watershed were monitored during low and high flow for water quality, macroinvertebrates, and physical habitat. It was concluded that the Snake Creek Watershed was healthy, and it was recommended that this watershed be protected. The Little Snake Creek Watershed showed signs of heavy dredging and it was recommended that the riparian vegetation along areas of the stream be reestablished.

South Creek (SOUT 7.8)

During fiscal year 2001, South Creek at Fassett, Pa., (SOUT 7.8) showed a slightly impaired biological community. The macroinvertebrate community at this site has fluctuated in its degree of impairment throughout the past five years between moderately impaired, slightly impaired, and nonimpaired. However, for the years prior to 1996, a slightly to moderately impaired macroinvertebrate population had inhabited this site.

Water quality at SOUT 7.8 was fair for a Group 2 New York-Pennsylvania stream, with no parameters exceeding standards or the 90th percentile (Table 31). No parameters were exceeded in the previous year either and the WQI remained relatively the same, only increasing slightly. Impairment of the biological community at this site may be due to periodic drying of the streambed or to poor habitat diversity.

Troups Creek (TRUP 4.5)

Troups Creek at Austinburg, Pa., (TRUP 4.5) had a slightly impaired biological community.

This site also has fluctuated in its degree of impairment between moderately impaired, slightly impaired, and nonimpaired. Total aluminum and pH exceeded the New York standards. The only parameters to exceed the 90th percentile were dissolved nitrate and turbidity. The WQI seems to have improved from previous years (Table 32).

Troups Creek showed a strong, significant decreasing trend in total sulfate in both concentrations and flow-adjusted concentrations. The stream also showed a strong, significant decreasing trend in total nitrogen, and a significant increasing trend in total phosphorus unadjusted concentrations (Table 19).

Trowbridge Creek (TROW 1.8)

Despite good water quality, Trowbridge Creek at Great Bend, Pa., (TROW 1.8) had a slightly impaired biological community. Impaired biological conditions at this site may be due to low flow conditions at the time of sampling or poor water quality episodes during other seasons of the year. The location of the site also may contribute to the impaired designation of the site. TROW 1.8 is located directly adjacent to a road and near a dump pile, which may lead to an influx of pollutants. In the past, chemically treated grass clippings were deposited in the stream, as reported by local residents.

During the time of sampling, TROW 1.8 had the lowest WQI score (20.9) of the New York-Pennsylvania border streams in 2000, as in previous years (Table 33). No parameters exceeded water quality standards or the 90th percentile.

Wappasening Creek (WAPP 2.6)

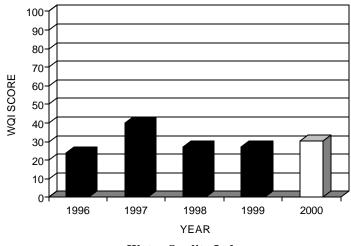
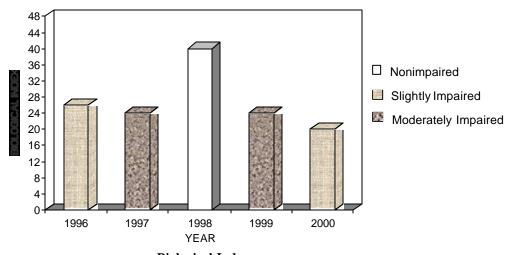

The biological index rating for Wappasening Creek at Nichols, N.Y., (WAPP 2.6) decreased from slightly impaired to moderately impaired during fiscal year 2001. The past three years have shown an increase in impairment at WAPP 2.6 (Table 34). This site scored poorly in many of the metrics, in particular taxonomic richness, percent dominant taxa, and Shannon-Weaver Diversity Index.

Table 31. Water Quality Summary South Creek at Fassett, Pa	Table 31.	Water Ouality	Summary South	Creek at Fassett, Pa.
--	-----------	---------------	---------------	-----------------------


Parameters Exceeding Standards						
Parameter	Date	Value	Standard	State		
None						

Date	WQI	Parameters Exceeding 90 th Percentile							
07/25/00	30.5	None				-	-		

Biological and Habitat Summary				
Number of Taxa	18			
Diversity Index	2.2			
RBP III Score	20			
RBP III Condition	Slightly Impaired			
Total Habitat Score	177			
Habitat Condition Category	Supporting			

Water Quality Index

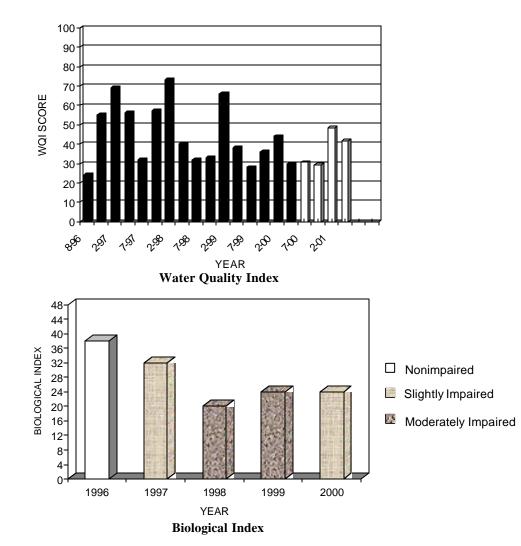
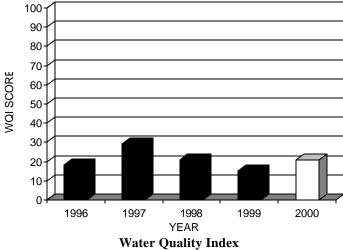

Biological Index

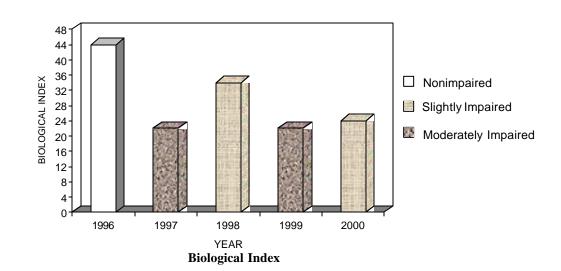
Table 32.	Water Quality	Summary Troups	Creek at Austinburg, Pa.

Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State				
TAl	02/07/01	237 μg/l	100 µg/l	N.Y. aquatic (chronic)				
pН	05/09/01	8.8	6.5 – 8.5	N.Y. general				

Date	WQI	Parameters Exceeding 90 th Percentile						
07/24/00	30.6	DNO3						
11/07/00	29.4	None						
02/07/01	48.2	None						
05/09/01	41.8	TURB						

Biological and Habitat Summary					
Number of Taxa	20				
Diversity Index	2.3				
RBP Score	24				
RBP Condition	Slightly Impaired				
Total Habitat Score	172				
Habitat Condition Category	Supporting				

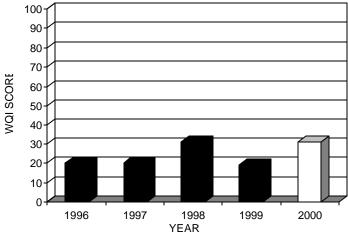


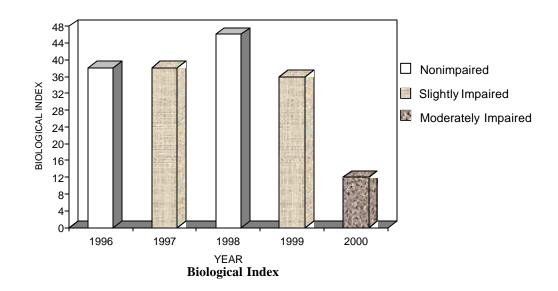

Table 33. Water Quality Summary Trowbridge Creek at Great Bend, Pa.

Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State			
None							

Date	WQI		Parameters Exceeding 90 th Percentile						
0726/00	20.9	None							

Biological and Habitat Summary						
Number of Taxa	22					
Diversity Index	2.1					
RBP III Score	24					
RBP III Condition	Slightly Impaired					
Total Habitat Score	183					
Habitat Condition Category	Supporting					




Table 34.	Water Quality	Summary Wa	ppasening Cre	ek at Nichols, N.Y.

Parameters Exceeding Standards								
D	ate Value Standard				Sta	State		
None								
					u eeth p			
WQI			Param	eters Exceed	ding 90 th Per	centile		
31								
-	D	Date WQI 31 DNO3	Date Value WQI	Date Value State WQI Param	Date Value Standard WQI Parameters Exceed	WQI Parameters Exceeding 90 th Per	Date Value Standard Standard WQI Parameters Exceeding 90 th Percentile	Date Value Standard State WQI Parameters Exceeding 90 th Percentile

Biological and Habitat Summary						
Number of Taxa	17					
Diversity Index	2.0					
RBP Score	12					
RBP Condition	Moderately Impaired					
Total Habitat Score	213					
Habitat Condition Category	Excellent					

Water Quality Index

The water quality does not show significant evidence of degradation. No parameters exceeded water quality standards and dissolved nitrate was the only parameter that exceeded the 90th percentile.

North Fork Cowanesque River (NFCR 7.6)

A slightly impaired biological community was present at North Fork Cowanesque River at North Fork, Pa., (NFCR 7.6) in July 2000. The EPT/Chironomidae ratio for this sample was the lowest of the New York-Pennsylvania border streams. SRBC resumed sampling at NFCR 7.6 only recently in 1998 after terminating sampling in July 1992. In 1992, NFCR 7.6 had a nonimpaired biological community; however, the samples in 1998 and 2000 were slightly impaired. NFCR 7.6 was not sampled in 1999 due to drought conditions.

Total aluminum was high in July 2000 and exceeded New York water quality standards. In 1998, levels of iron had exceeded New York water quality standards. The parameters that exceeded the 90th percentile were total and dissolved nitrate, total aluminum, and total and dissolved nitrogen (Table 35). This site was located at a pipeline and adjacent to a cornfield, which may be subject to occasional spraying of herbicides and pesticides.

Pennsylvania-Maryland Streams

Big Branch Deer Creek (BBDC 4.1)

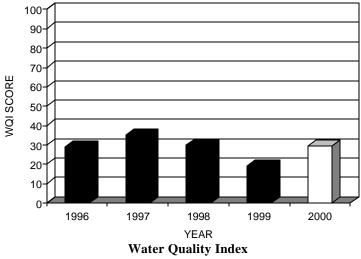
Big Branch Deer Creek at Fawn Grove, Pa., (BBDC 4.1) served as the reference site for the Pennsylvania-Maryland border streams during August 2000. This site had the best combination of biological community and physical habitat of the Pennsylvania-Maryland streams. BBDC 4.1 had the best values for percent dominant taxa and Shannon-Weaver Diversity Index metrics. А large number of organic pollution intolerant taxa inhabited this site including Antocha. Centroptilum (Ephemeroptera: Baetidae), *Serratella* (Ephemeroptera: Ephemerellidae), *Epeorus, Stenonema, Isonychia, Nigronia, Leuctra, Acroneuria, Agnetina, Dolophilodes,* and *Rhyacophila* (Trichoptera: Rhyacophilidae). The biological community has been nonimpaired for the past five years. Water quality was good in Big Branch Deer Creek in August 2000 as in previous years, with no parameters exceeding standards or the 90th percentile (Table 36). The land use for this site is predominantly forest.

Conowingo Creek (CNWG 4.4)

Conowingo Creek at Pleasant Grove, Pa., (CNWG 4.4) had a slightly impaired community although the EPT/Chironomidae ratio was the highest at CNWG 4.4 of all the Pennsylvania-This watershed is in an Maryland streams. agricultural area and the habitat at this site was considered supporting. Dissolved oxygen values for August 2000 were below both Pennsylvania and Maryland standards for aquatic life. Water quality analysis indicated that nitrates, aluminum, turbidity, nitrogen, nitrite, solids, manganese, and total sulfates were elevated and dissolved oxygen was reduced (Table 37). As agriculture is the area's prevalent land use, it appears that the stream was enriched by agricultural runoff.

Conowingo Creek had a variety of upward and downward trends. Strong significant increasing trends occurred for total nitrogen and total chloride in both unadjusted and flowadjusted concentrations. Strong, significant decreasing trends for both unadjusted and flowadjusted concentrations were found for total phosphorus, total iron, and total aluminum. A strong, significant decreasing trend occurred for unadiusted WOI values. and significant decreasing trends occurred for unadjusted concentrations of total ammonia and total manganese (Table 19).

			Paran	neters Exc	eeding Sta	andards]	
Parameter	Da		Value	St	andard		State		
TAl	07/2	4/00	599 µg/l	00 µg/l	N.Y. aquatic (chronic)				
Date	WQI	-				ceeding 90 th P	ercentile		
07/24/00	46.9	TNO3	DNO3	TAl	TN	DN			
	WOISCORE	Num Dive RBF Tota Hab		bgical and tegory		26 2.3 22 Slightly Impair 212 Excellent			
				Water Q	uality Ind	lex			
		48- 44- 36- 32- 28- 24- 20- 16- 12- 8- 4- 0-	1996 19		1998 YEAR	1999 ex	2000	Slightly Impaired	


Table 35.	Water Ouality Summary	North Fork Cowanesque	River at North Fork. Pa.
	2	· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·

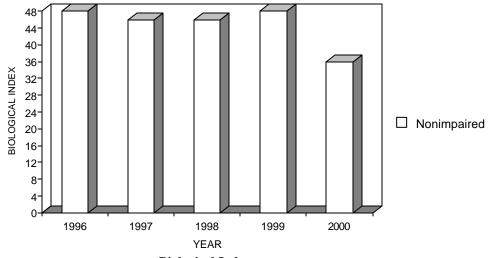
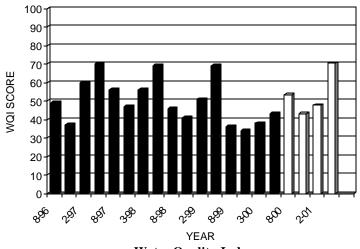

Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State				
None								

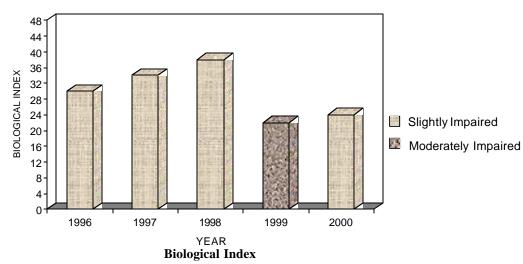
Table 36.	Water Ouality	Summary Big	Branch Deer	Creek at Fawn	Grove, Pa.

Date	WQI		Parameters Exceeding 90 th Percentile						
08/01/00	29.5	None							

Biological and Habitat Summary						
Number of Taxa	20					
Diversity Index	2.5					
RBP Score	36					
RBP Condition	Reference					
Total Habitat Score	206					
Habitat Condition Category	Reference					


Biological Index

Parameters Exceeding Standards								
Parameter	Parameter Date Value Standard State							
DO	08/03/00	4.79 mg/l	5.0 mg/l	Pa. aquatic life				
DO	08/03/00	4.79 mg/l	5.0 mg/l	Md. aquatic life				


Table 37.	Water Quality Sum	nary Conowingo	Creek at Pleasant	Grove, Pa.

Date	WQI		Parameters Exceeding 90 th Percentile						
08/03/00	53.6	TNO3	DNO3	TAI	TURB	TN	DN		
11/15/00	43.3	TNO3	DNO3	TN	DN				
02/19/01	47.7	DO	TNO3	DNO3	TSO4	TN	DN		
05/14/01	70.4	TS	DS	TNO2	DNO2	TNO3	DNO3	DMN	TN
		DN							

Biological and Habitat Summary						
Number of Taxa	16					
Diversity Index	2.2					
RBP III Score	24					
RBP III Condition	Slightly Impaired					
Total Habitat Score	181					
Habitat Condition Category	Supporting					

Water Quality Index

Deer Creek (DEER 44.2)

Deer Creek at Gorsuch Mills. Md. (DEER 44.2) had a slightly impaired macroinvertebrate community for the third consecutive year after having a nonimpaired community for two years. Habitat conditions at the site were considered partially supporting since the sampling site is located adjacent to agricultural activities, which may affect the biological community at DEER 44.2. Water quality at this site was good (Table 38), although dissolved nitrite and dissolved oxygen exceeded the 90th percentile in August 2000 and February 2001, respectively. Deer Creek harbored a diverse macroinvertebrate community including pollution-intolerant taxa such as Atherix, Antocha, Epeorus, Isonychia, Nigronia, and Acroneuria.

Deer Creek showed a mixture of increasing and decreasing trends during the period between 1986 and 2001. Strong, significant upward trends were found for flow-adjusted and unadjusted concentrations of total chloride. Significant increasing trends also occurred in unadjusted concentrations of total sulfate. Strong, significant decreasing trends occurred in both unadjusted and flow-adjusted total phosphorus and total iron and unadjusted total ammonia and total manganese. Signific ant decreasing trends also were found in unadjusted total aluminum (Table 19).

Ebaughs Creek (EBAU 1.5)

Ebaughs Creek at Stewartstown, Pa., (EBAU 1.5) had a moderately impaired biological community in August 2000 and had overall poor scores in the biological metrics. For 12 years this site has had either a slightly or moderately impaired biological condition.

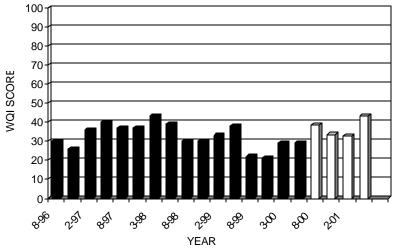
Although no parameters exceeded water quality standards, Ebaughs Creek had elevated concentrations of total and dissolved nitrites, dissolved phosphorus, dissolved iron, and dissolved orthophosphates, and low dissolved oxygen (Table 39). The relatively high WQI, low RBP III scores, and the chemical analysis suggested that wastewater discharges might have affected the water quality and the biological community at this site.

Ebaughs Creek had upward and downward water quality trends. Strong, significant increasing trends occurred for unadjusted total chloride, and significant increasing trends occurred for flow-adjusted concentrations of total chloride. Strong, significant decreasing trends were found for both unadjusted and flow-adjusted total iron and unadjusted total ammonia. A significant decreasing trend also was found for flow-adjusted total ammonia (Table 19).

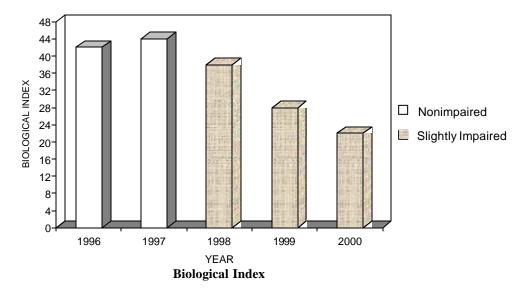
Falling Branch Deer Creek (FBDC 4.1)

The biological community of Falling Branch Deer Creek at Fawn Grove, Pa., (FBDC 4.1) was designated slightly impaired, an increase from moderately impaired the previous year. This site scored highest in taxonomic richness and EPT Index of all the Pennsylvania-Maryland sites; however, the EPT score was mostly due to numerous Trichopteran taxa. The macroinvertebrate sample was dominated mostly by Chironomidae and Optioservus (Coleoptera: Elmidae). There is a large amount of agricultural activity in this small watershed; however, water quality appeared to be good with no parameters exceeding standards or the 90th percentile (Table 40).

Long Arm Creek (LNGA 2.5)


For the sixth consecutive year, Long Arm Creek at Bandanna, Pa., (LNGA 2.5) had a slightly impaired biological community. LNGA 2.5 was located adjacent to agricultural activities, which may have been the source of impairment at this site. The previous habitat assessments noted livestock in the stream, which may have affected the biological community. However, the situation was expected to improve as an organic farm with fewer livestock and reduced access to the stream replaced the previous operation. Significant improvements have not been noted yet. The streambanks were heavily eroded, and heavy amounts of mud and silt were noted in the stream during the July 2000 habitat assessment.

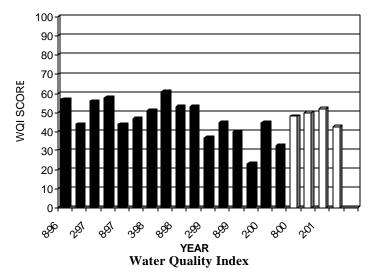
Parameters Exceeding Standards								
Parameter	Date Value Standard State							
None								

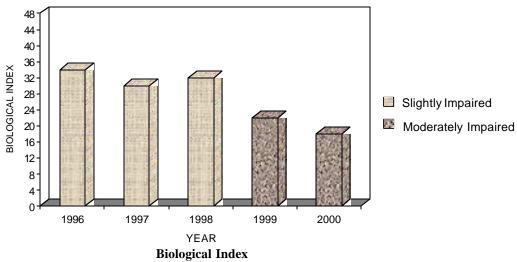

Table 38. Water Quality Summary Deer Creek at Gorsuch Mills,	Md.
--	-----

Date	WQI	Parameters Exceeding 90 th Percentile						
08/03/00	38.3	DNO2						
11/14/00	33.5	None						
02/19/01	32.5	DO						
05/14/01	43.2	None						

Biological and Habitat Summary						
Number of Taxa	22					
Diversity Index	2.5					
RBP Score	22					
RBP Condition	Slightly Impaired					
Total Habitat Score	151					
Habitat Condition Category	Partially Supporting					

Water Quality Index




Table 39.	Water	Quality	Summary	Ebaughs	Creek at	Stewartstown, Pa.

Parameters Exceeding Standards								
Parameter	Date Value Standard State							
None								

Date	WQI		Parameters Exceeding 90 th Percentile						
08/01/00	48.2	DP	DFe						
11/14/00	50.1	DP	DPO4						
02/20/01	52	DO	TNO2	DNO2					
05/14/01	42.5	None							

Biological and Habitat Summary						
Number of Taxa	14					
Diversity Index	2.1					
RBP Score	18					
RBP Condition	Moderately Impaired					
Total Habitat Score	194					
Habitat Condition Category	Excellent					

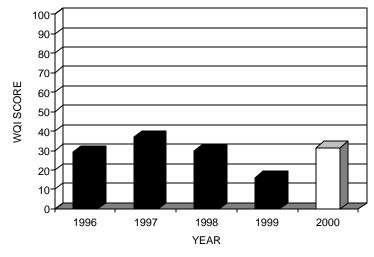
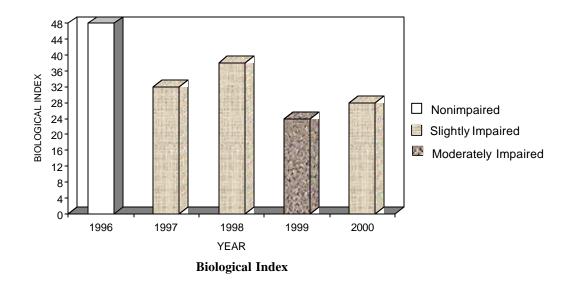


Table 40. Water Quality Summary Falling Branch Deer Creek at Fawn Grove, Pa.


Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State			
None							

Date	WQI		Parameters Exceeding 90 th Percentile					
08/01/00	31.5	None						

Biological and Habitat Summary					
Number of Taxa	28				
Diversity Index	2.5				
RBP Score	28				
RBP Condition	Slightly Impaired				
Total Habitat Score	181				
Habitat Condition Category	Supporting				

Water Quality Index

During the 2000 sampling season, Long Arm Creek was elevated to a Group 1 stream. LNGA 2.5 showed elevated nitrogen values, as did most of the streams in this region. Although no water quality standards were exceeded, total aluminum, dissolved oxygen, dissolved manganese, and turbidity exceeded the 90th percentile at this site (Table 41).

Octoraro Creek (OCTO 6.6)

Although Octoraro Creek at Rising Sun, Md., (OCTO 6.6) had a nonimpaired biological community in August 2000, the water quality evaluation had more parameters exceeding the 90th percentile than the previous year. The February 2001 sample had numerous parameters exceeding the 90th percentile including dissolved oxygen, total and dissolved ammonia, total and dissolved phosphorus, total and dissolved orthophosphate, total organic carbon, dissolved iron, total aluminum, and turbidity (Table 42). The May 2001 sample had total and dissolved solids, and dissolved manganese values that exceeded the 90th percentile. These exceedances may be due to significant agricultural activities and Octoraro Lake located upstream of this site. The WQI bar graph indicates that the WOI for winter (February or March) sampling usually has been higher than the other seasons.

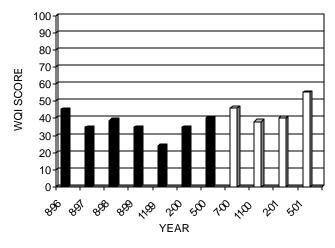
Increasing and decreasing trends were found at OCTO 6.6. Strong, significant increasing trends only occurred for total chloride in both unadjusted and flow-adjusted concentrations. Strong, significant decreasing trends were found in unadjusted total ammonia, total phosphorus, total iron, and total manganese. Significant decreasing trends were evident in total aluminum unadjusted concentrations and unadjusted WQI values (Table 19).

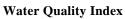
Scott Creek (SCTT 3.0)

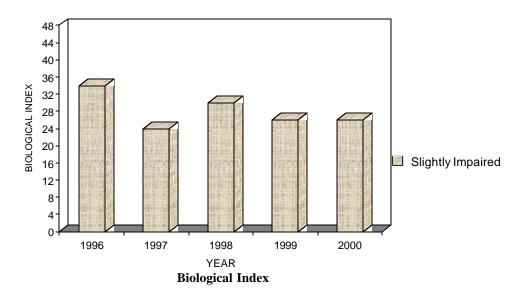
For the twelfth consecutive year, Scott Creek at Delta, Pa., (SCTT 3.0) had a moderately to severely impaired biological community. During fiscal year 2001, Scott Creek had a severely impaired macroinvertebrate community, with the worst score in all of the metrics for the Pennsylvania-Maryland border streams. There were only seven taxa at SCTT 3.0, and the diversity index value was only 0.8. Chironomidae heavily dominated this sample. Habitat at this site also was nonsupporting.

In January 1998, a fuel spill occurred on Scott Creek in Cardiff, Md. Four to five thousand gallons of home heating fuel spilled into Scott Creek when an attempt was made to steal the fuel. The spill also resulted in a fish kill. Although the fuel spill probably adversely affected the aquatic inhabitants of the stream, Scott Creek has been impaired for many years. A feed mill is located just upstream of SCTT 3.0, and the smell of sewage and anaerobic conditions were noted in the habitat assessment.

SCTT 3.0 appeared to improve in water quality from the previous year. Dissolved oxygen, total iron, dissolved iron, total manganese, and pH exceeded water quality standards numerous times during 1999-2000. In 2000-2001, only dissolved oxygen and dissolved iron exceeded the standards. Dissolved oxygen exceeded Maryland aquatic life standards in August 2000, and Maryland and Pennsylvania aquatic life standards in May 2001. Dissolved iron exceeded Pennsylvania aquatic life standards in May 2001. Additional water quality analysis indicated that Scott Creek had elevated conductivity, ammonia, nitrites, phosphorus, orthophosphates, total organic carbon, total chloride, iron, manganese, solids, and turbidity, and reduced dissolved oxygen (Table 43).


Scott Creek had only significant decreasing trends during fiscal year 2001. Those decreasing trends were in unadjusted concentrations of total sulfate and total manganese, and flow-adjusted concentrations of total nitrogen (Table 19).


Table 41.	Water Quality S	Summary Long A	Arm Creek at Bandanna, Pa.


Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State			
None							

Date	WQI		Parameters Exceeding 90 th Percentile					
07/31/00	45.9	TAI						
11/14/00	38.2	None						
02/20/01	39.9	DO						
05/14/01	55	DMn	TURB					

Biological and Habitat Summary					
Number of Taxa	18				
Diversity Index	2.5				
RBP III Score	26				
RBP III Condition	Slightly Impaired				
Total Habitat Score	171				
Habitat Condition Category	Supporting				

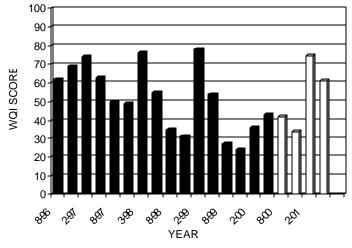
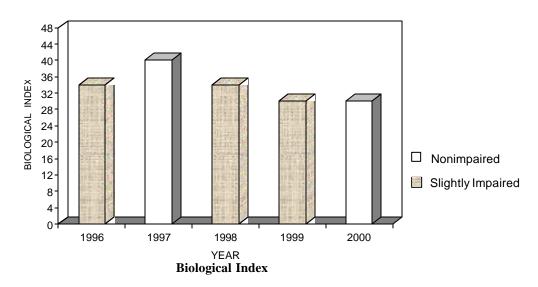


Table 42. Water Quality Summary Octoraro Creek at Rising Sun, Md.


Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State			
None							

Date	WQI	Parameters Exceeding 90 [™] Percentile							
08/02/00	41.8	None							
11/15/00	34.1	None							
02/19/01	74.4	DO	TNH3	DNH3	TP	DP	TPO4	DPO4	TOC
		DFe	TAl	TURB					
05/14/01	61.1	TS	DS	DMn					

Biological and Habitat Summary				
Number of Taxa	22			
Diversity Index	2.4			
RBP III Score	30			
RBP III Condition	Nonimpaired			
Total Habitat Score	191			
Habitat Condition Category	Excellent			

Water Quality Index

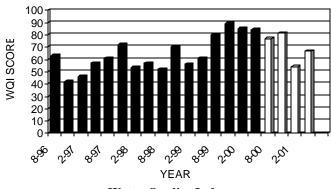
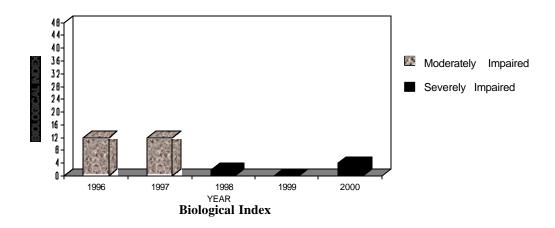


Table 43.	Water Ouality	Summary Scott	Creek at Delta, Pa.


	Parameters Exceeding Standards							
Parameter	Date	Value	Standard	State				
DO	08/02/00	4.22 mg/l	5.0 mg/l	Md. aquatic life				
DO	5/14/01	4.47 mg/l	5.0 mg/l	Md. aquatic life				
DO	5/14/01	4.47 mg/l	5.0 mg/l	Pa. aquatic life				
DFe	5/14/01	411 µg/l	300 µg/l	Pa. aquatic life				

Date	WQI		Parameters Exceeding 90 th Percentile							
08/02/00	76.7	COND	TNH3	DNH3	TNO2	TP	TPO4	DPO4	TOC	TCl
		TFe	DFe	TMn	DMn					
11/14/00	81.2	DO	TS	DS	TNH3	DNH3	TNO2	DNO2	TP	DP
		TPO4	DPO4	TOC	TC1	TFe	DFe	TMn	DMn	TURB
02/20/01	53.8	DO	COND	TS	DS	TCl	TMn	DMn		
05/14/01	66.6	DO	TNH3	DNH3	TP	DP	TPO4	DPO4	TCl	TFe
		DFe								

Biological and Habitat Summary					
Number of Taxa	7				
Diversity Index	0.8				
RBP III Score	4				
RBP III Condition	Severely Impaired				
Total Habitat Score	163				
Habitat Condition Category	Supporting				

Water Quality Index

The water quality results from 2000-2001 indicate that the sewage treatment plant (downstream of SCTT 3.0) that was constructed to serve the Cardiff-Delta area is helping to reduce some of the pollution problems in this stream. Dissolved oxygen continues to be a problem in this stream, although the values have improved from as low as 2.88 mg/l and 3.36 mg/l in 1999-2000 sampling season to 4.22 mg/l and 4.46 mg/l in 2000-20001. SCTT 3.0 still had the highest individual WQI (81.2) of the streams in this region; however, the WQI values were lower than the previous year. Despite these water quality improvements, the macroinvertebrate population has not yet shown improvement.

South Branch Conewago Creek (SBCC 20.4)

South Branch Conewago Creek near Bandanna, Pa., (SBCC 20.4) contained a slightly impaired biological community for the fourth consecutive year. Before this stream was slightly impaired it had served as the Pennsylvania-Maryland reference site for several years. SBCC 20.4 had the best Hilsenhoff score of all the Pennsylvania-Maryland border streams in July Several pollution-intolerant taxa still 2000. inhabited SBCC 20.4, including *Atherix*, Stenonema, Nigronia, Leuctra, Hexatoma, Tallaperla (Plecoptera: Peltoperlidae), Acroneuria, Isoperla (Plecoptera: Perlodidae), (Trichoptera: Hydropsychidae), *Diplectrona* Dolophilodes, and Rhyacophila.

SBCC 20.4 had a low WQI score, and no parameters exceeded standards or the 90th percentile at South Branch Conewago Creek (Table 44). The habitat was rated excellent. The stream was considerably shaded and scored well in epifaunal substrate and vegetated protective cover.

River Sites

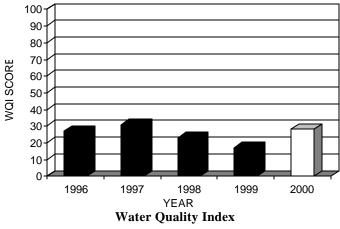
Chemung River (CHEM 12.0)

A slightly impaired biological community existed in the Chemung River at Chemung, N.Y., (CHEM 12.0). During the past four years, this site has fluctuated from moderately impaired, to slightly impaired, to nonimpaired. The physical habitat was considered excellent despite the presence of rip-rap and a bridge located upstream.

The only parameter to exceed water quality standards in 2000-2001 was pH. It exceeded New York State standards in July and November. Overall, water quality was relatively poor. Analysis indicated that dissolved oxygen was depressed while conductivity, total sulfate, solids, chloride, phosphorus, nitrogen, nitrites, and nitrates were elevated at CHEM 12.0 (Table 45).

Unadjusted and flow-adjusted total chloride showed a strong, significant increasing trend. All other parameters significantly decreased over the period involved. Strong, significant decreasing trends were found for unadjusted and flowadjusted total ammonia, total nitrogen, total sulfate, total iron, and total manganese (Table 19).

Cowanesque River (COWN 2.2)


Moderately impaired biological conditions existed on the Cowanesque River downstream of the Cowanesque Reservoir at Lawrenceville, Pa., (COWN 2.2). Moderately to severely impaired conditions have existed at this site for the past nine years of sampling. In the past, increased phytoplankton production in the Cowanesque Reservoir may have caused a shift in the macroinvertebrate community, resulting in a biological population dominated by filter-feeding organisms. Additionally, the bottom discharge dam depressed oxygen levels in the Cowanesque River downstream of the outflow. During July 2000, the site was dominated bv Chironomidae, and the rest of the sample consisted of other organic pollution-tolerant taxa Caecidotea (Isopoda: Asellidae), such as Gammarus (Amphipoda: Gammaridae), Simulium (Diptera: Simuliidae), Caenis (Ephemeroptera: Caenidae), Ceratopsyche (Trichoptera: Hydropsychidae), and Cheumatopsyche (Trichoptera: Hydropsychidae). COWN 2.2 had the worst scores in all the metrics for the river sites. There were only seven taxa in July 2000, and a diversity index of 1.3. The RBP condition score (10) was the lowest of the river sites.

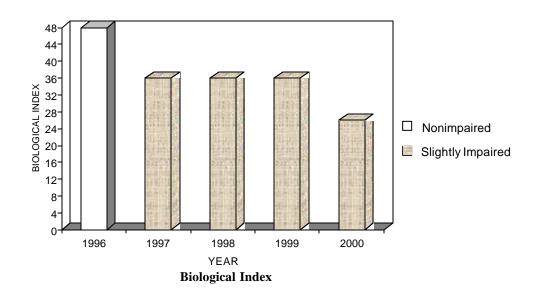
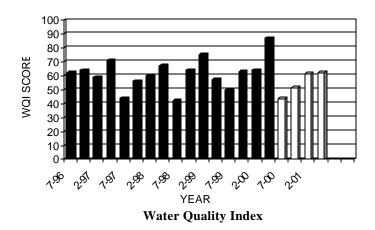
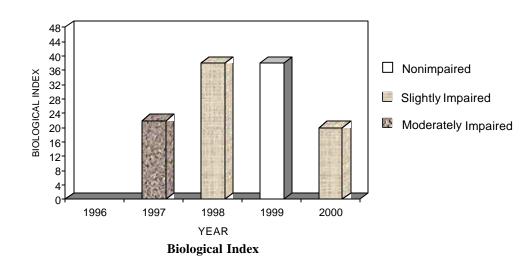

Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State				
None								

Table 44.	Water Ouality	Summarv	South Branch	Conewago	Creek at	Bandanna, Pa.

Date	WQI		Parameters Exceeding 90 th Percentile							
07/31/00	28.2	None								

Biological and Habitat Summary						
Number of Taxa	17					
Diversity Index	2.3					
RBP III Score	26					
RBP III Condition	Slightly Impaired					
Total Habitat Score	217					
Habitat Condition Category	Excellent					




Table 45.	Water Quality Summary Chemung River at Chemung, N.Y.
	Parameters Exceeding Standards

	Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State					
pН	07/25/00	8.6	6.5 - 8.5	N.Y. general					
pН	11/07/00	8.8	6.5 – 8.5	N.Y. general					

Date	WQI		Parameters Exceeding 90 th Percentile							
07/25/00	43.6	COND	TCl	TSO4						
11/07/00	51.4	COND	TS	DS	DNO2	TCl				
02/07/01	61.6	COND	TS	DS	TNO3	DNO3	TCl	TN	DN	
05/08/01	62.2	DO	TS	DS	TP					

Biological and Habitat Summary						
Number of Taxa	18					
Diversity Index	2.1					
RBP Score	20					
RBP Condition	Slightly Impaired					
Total Habitat Score	191					
Habitat Condition Category	Excellent					

Values for dissolved oxygen and pH exceeded New York water quality standards. Also, dissolved oxygen, ammonia, total organic carbon, manganese, and turbidity exceeded the 90th percentile (Table 46). Total organic carbon exceeded the 90th percentile every season.

A strong, significant increasing trend was found for unadjusted total manganese. Strong, significant decreasing trends occurred for unadjusted and flow-adjusted total nitrogen and unadjusted total sulfate, and a significant downward trend was found for flow-adjusted total sulfate (Table 19).

Cowanesque River (COWN 1.0)

A new site was added on the Cowanesque River near the mouth of the stream (COWN 1.0) during the 1999-2000 sampling season to determine the extent of impairment in the river. For the second year, a slightly impaired biological community existed at COWN 1.0. The macroinvertebrate population was slightly improved at COWN 1.0 compared to COWN 2.2. Slightly more sensitive macroinvertebrates were present, although the only organic pollution intolerant taxa present was Stenonema. Habitat conditions were considered excellent. Fallen trees and submerged logs were noted in this section.

The pH was high at this site, exceeding the New York and Pennsylvania water quality standards. Total nitrite also exceeded the New York standard in November. Parameters that exceeded the 90th percentile were total organic carbon, total and dissolved nitrite, total and dissolved ammonia, and turbidity (Table 47). The Cowanesque Reservoir and a wastewater treatment plant discharge are located upstream of COWN 1.0.

Susquehanna River at Windsor, N.Y. (SUSQ 365.0)

Susquehanna River at Windsor, N.Y. (SUSQ 365.0) was rated as slightly impaired after being rated as nonimpaired in previous years. However, SUSQ 365.0 had the lowest percent dominant score of all the river sites. The habitat of the river

had changed from the previous sampling year due to heavy flooding. This could have affected the biological community.

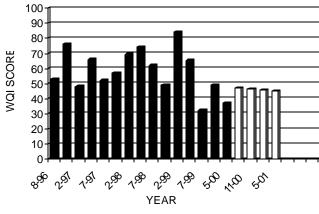
No water quality standards were exceeded during the sampling at SUSQ 365 in fiscal year 2001. However, solids, phosphorus, orthophosphates, total sulfate, and nitrates were elevated (Table 48) at this site.

Several strong, significant decreasing trends occurred at SUSQ 365.0. These downward trends included both unadjusted and flow-adjusted concentrations of total ammonia, total nitrogen, total phosphorus, and total iron. A significant decreasing trend also occurred for flow-adjusted total aluminum. Strong, significant increasing trends also occurred at this site in unadjusted and flow-adjusted concentrations of total chloride (Table 19).

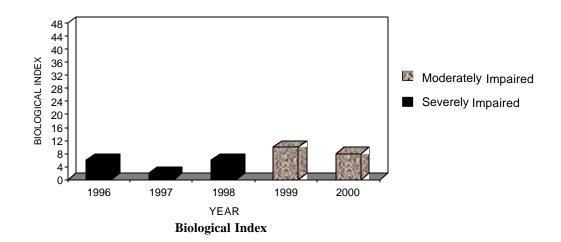
Susquehanna River at Kirkwood, N.Y. (SUSQ 340.0)

Nonimpaired conditions existed at Susquehanna River at Kirkwood, N.Y., (SUSQ 340.0) for the third consecutive year. This site had the lowest Hilsenhoff Biological Index score Organic pollution-intolerant of the river sites taxa present at this river site were Atherix, Stenonema, Isonychia, Ephoron (Ephemeroptera: Polymitarcyidae), Acroneuria, Agnetina, Macrostemum (Trichoptera: Hydropsychidae), and Psychomyia (Trichoptera: Psychomyiidae). Habitat conditions also were considered excellent.

A high pH (9.1) exceeded both New York and Pennsvlvania water quality standards in November 2000. Additional water quality analysis indicated that turbidity was elevated 2000. dissolved iron during July was during 2001. relativelyhigh February and dissolved oxygen was depressed during May 2001 (Table 49).


Strong, significant downward trends occurred at SUSQ 340 for several parameters including unadjusted and flow-adjusted concentrations of total ammonia, total nitrogen, total phosphorus, and total iron. However, both unadjusted and

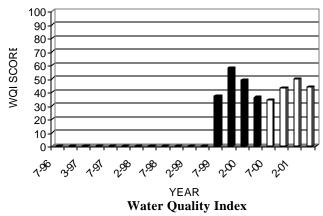
Parameters Exceeding Standards								
Parameter	Date	Value	Standard	State				
DO	07/24/00	4.29 mg/l	5.0 mg/l	N.Y. trout waters				
pН	05/09/01	8.7	6.5 - 8.5	N.Y. general				

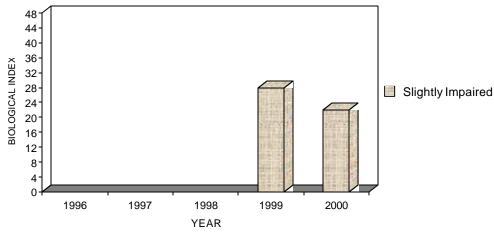

Table 46.	Water Quality	Summary Cowanesq	ue River ((COWN 2.2) at Lawrenceville.	, Pa .

Date	WQI		Parameters Exceeding 90 th Percentile								
07/24/00	47	DO	TNH3	DNH3	TOC	TMn	DMn				
11/07/00	46.4	DO	TNH3	DNH3	TOC	TMn	DMn	TURB			
02/07/01	45.6	TOC									
05/09/01	45.1	TOC									

Biological and Habitat Summary						
Number of Taxa	7					
Diversity Index	1.3					
RBP Score	8					
RBP Condition	Moderately Impaired					
Total Habitat Score	170					
Habitat Condition Category	Supporting					

Water Quality Index

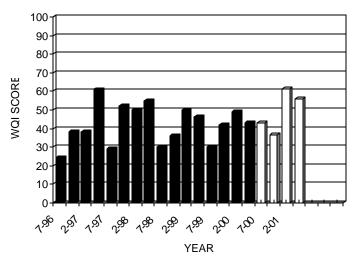

81


	Table 47.	Water Ouality	Summary Cowanesque	River (COWN 1.0) at Lawrenceville, Pa.
--	-----------	---------------	--------------------	-----------------	-------------------------

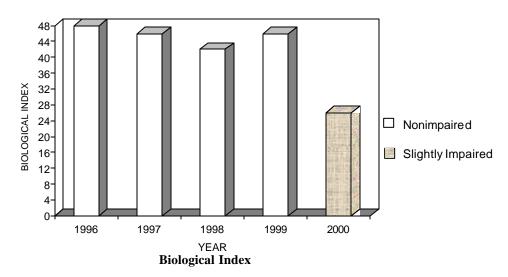
	Parameters Exceeding Standards									
Parameter Date Value Standard State										
TNO2	11/07/00	0.2 mg/l	0.02 mg/l	N.Y. aquatic (chronic)						
pН	05/09/01	9.5	6.5 - 8.5	N.Y. general						
pН	05/09/01	9.5	6.0 – 9.0	Pa. aquatic life						

Date	WQI		Parameters Exceeding 90 th Percentile							
07/25/00	34.1	TOC								
11/07/00	42.9	TNO2	DNO2	TOC						
02/07/01	49.5	TNH3	DNH3	TOC						
05/09/01	43.5	TOC	TURB							

Biological and Habitat Summary						
Number of Taxa	16					
Diversity Index	2.4					
RBP Score	22					
RBP Condition	Slightly Impaired					
Total Habitat Score	200					
Habitat Condition Category	Excellent					


Biological Index

Parameters Exceeding Standards									
Parameter	Date	Value	Standard	State					
None									
			·	•					


 Table 48.
 Water Quality Summary Susquehanna River at Windsor, N.Y.

Date	WQI		Parameters Exceeding 90 th Percentile							
07/26/00	42.8	TS	DS							
11/06/00	36.5	None								
02/06/01	61.2	TP	DP	TPO4	DPO4	TSO4				
05/07/01	56.1	TNO3	DNO3							

Biological and Habitat Summary						
Number of Taxa	20					
Diversity Index	2.5					
RBP Score	26					
RBP Condition	Slightly Impaired					
Total Habitat Score	214					
Habitat Condition Category	Excellent					

Water Quality Index

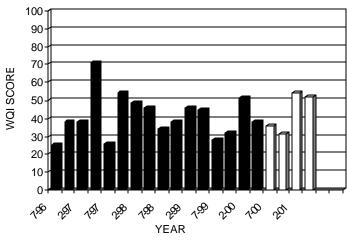
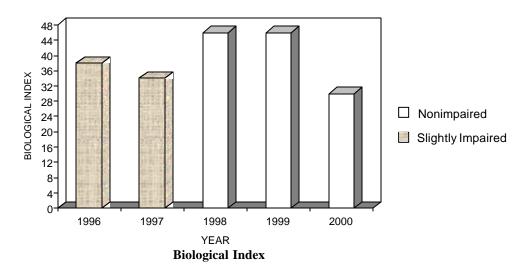


Table 49.	Water Quality Summary	Susquehanna River	at Kirkwood, N.Y.
-----------	-----------------------	-------------------	-------------------


	Parameters Exceeding Standards								
Parameter Date Value Standard State									
pН	11/06/00	9.1	6.5 – 8.5	N.Y. general					
pН	11/06/00	9.1	6.0 – 9.0	Pa. aquatic life					

Date	WQI		Parameters Exceeding 90 th Percentile							
07/26/00	35.7	TURB								
11/06/00	31.6	None								
02/06/01	53.8	DFe								
05/08/01	51.8	DO								

Biological and Habitat Summary					
Number of Taxa	22				
Diversity Index	2.5				
RBP Score	30				
RBP Condition	Nonimpaired				
Total Habitat Score	210				
Habitat Condition Category	Excellent				

Water Quality Index

flow-adjusted total chloride showed a strong, significant increasing trend for the time period (Table 19).

Susquehanna River at Sayre, Pa. (SUSQ 289.1)

The Susquehanna River at Sayre, Pa., (SUSQ 289.1) served as the reference site for the river stations in fiscal year 2001. The biological community was nonimpaired, and SUSQ 289.1 had the highest values in taxonomic richness, EPT Index, EPT/Chironomidae ratio, and Shannon-Weaver Diversity Index.

The pH value for November exceeded the New York standards, and additional water quality analysis indicated that nitrogen, nitrites, nitrates, orthophosphates, and turbidity were elevated at this site, while dissolved oxygen was reduced (Table 50).

Strong, significant decreasing trends were found for several parameters at SUSQ 289.1 including both unadjusted and flow-adjusted concentrations of total ammonia, total nitrogen, total phosphorus, total manganese, and total iron, and flow-adjusted total sulfate and total aluminum. Significant decreasing trends occurred for unadjusted concentrations of total aluminum. Also, strong, significant increasing trends occurred for unadjusted and flow-adjusted total chloride (Table 19).

Susquehanna River at Marietta, Pa. (SUSQ 44.5)

The Susquehanna River at Marietta, Pa., (SUSQ 44.5) had a nonimpaired biological community in August 1999; however, the flow was too high to safely collect a macroinvertebrate sample on August 3, 2000. Dissolved oxygen was lower than the Maryland water quality standard for aquatic life in August 2000, and total sulfate exceeded the Pennsylvania standard for water supply in November 2000. Water quality analysis indicated that conductivity, solids, sulfate, total iron, total manganese, total phosphorus, total organic carbon, total aluminum. total

orthophosphates, and turbidity were elevated at this station (Table 51).

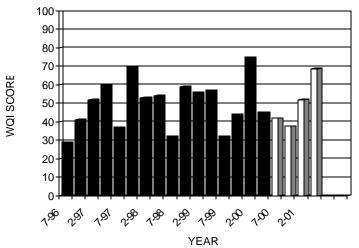
The only increasing trend on this section of the river was a strong, significant trend in unadjusted and flow-adjusted total chloride. Strong, significant downward trends occurred for unadjusted total ammonia and unadjusted and flow-adjusted total iron, total aluminum, and total manganese. Significant decreasing trends were found for flow-adjusted total ammonia, both unadjusted and flow-adjusted total phosphorus, and flow-adjusted total sulfate (Table 19).

Susquehanna River at Conowingo, Md. (SUSQ 10.0)

No macroinvertebrate sampling was performed in the Susquehanna River at Conowingo, Md., (SUSQ 10.0) due to deep waters and a lack of riffle habitat. Water quality did not exceed standards at SUSQ 10.0 in fiscal year 2000; however, dissolved oxygen values were lower than Pennsylvania and Maryland standards for aquatic life in August 2000, and values were lower than Maryland standards in May 2001. Dissolved oxygen also exceeded the 90th percentile in addition to conductivity, dissolved solids, total sulfate, and total manganese (Table 52).

At SUSQ 10.0, only downward trends were observed. Significant decreasing trends were found for unadjusted ammonia, nitrogen, and aluminum. Strong, significant downward trends occurred in flow-adjusted total nitrogen and aluminum, unadjusted total phosphorus, and both unadjusted and flow-adjusted total iron and total manganese (Table 19).

Tioga River (TIOG 10.8)


The Tioga River at Lindley, N.Y., (TIOG 10.8) had a slightly impaired biological community during July 2000, and habitat conditions were considered excellent. No parameters exceeded water quality standards; however, total sulfate, dissolved oxygen, total and dissolved manganese, and turbidity exceeded the 90th percentile (Table 53).

Parameters Exceeding Standards								
Parameter Date Value Standard State								
pН	11/06/00	8.9	6.5 - 8.5	N.Y. general				

Table 50.	Water	Quality	Summary	Susquehanna	River a	t Sayre, Pa.
-----------	-------	---------	---------	-------------	---------	--------------

Date	WQI	Parameters Exceeding 90 th Percentile							
07/25/00	42	DN							
11/06/00	37.5	None							
02/06/01	51.9	TNO3	DNO3	TN	DN				
05/08/01	68.6	DO	TNO2	DNO2	TNO3	DNO3	TPO4	TURB	TN
		DN							

Biological and Habitat Summary					
Number of Taxa	24				
Diversity Index	2.6				
RBP Score	36				
RBP Condition	Reference				
Total Habitat Score	200				
Habitat Condition Category	Reference				

Water Quality Index

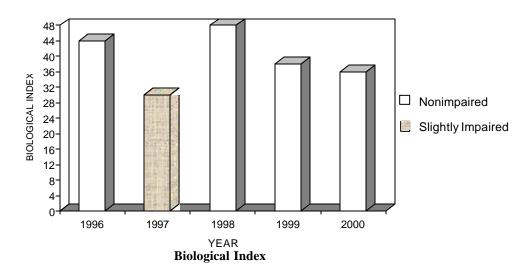
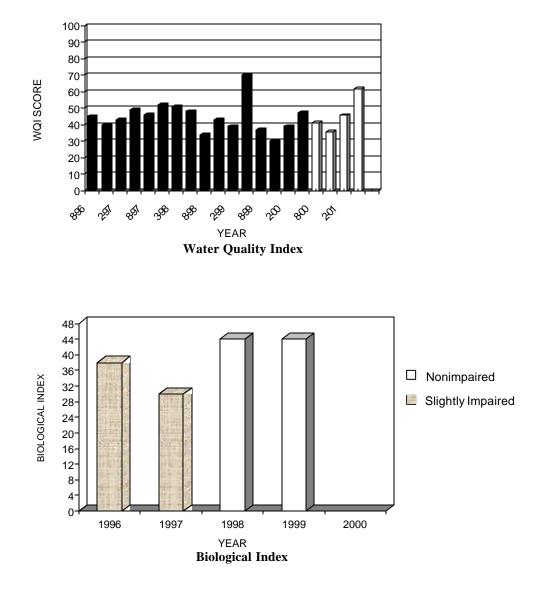



Table 51. Water Quality Summary Susquehanna River at Marietta, Pa.

Parameters Exceeding Standards										
Parameter	Date	Value	Standard	State						
DO	08/03/00	4.46 mg/l	5.0 mg/l	Md. aquatic life						
TSO4	11/13/00	622 mg/l	250 mg/l	Pa. water supply						

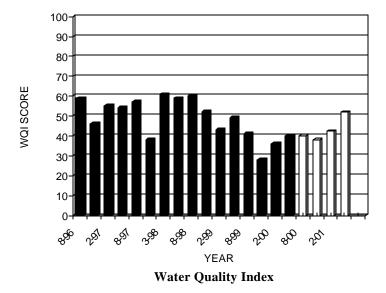

Date	WQI		Parameters Exceeding 90 th Percentile						
08/03/00	41.1	COND	TS	DS	TSO4				
11/13/00	35.6	COND	TSO4						
02/12/01	45.7	TS	DS	TFe	TMn				
05/14/01	61.5	COND	TS	DS	TP	TOC	TSO4	TMn	TAI
		TPO4	TURB						

Table 52. Water Quality Summary Susquehanna River at Conowingo, M	Table 52.	Water Qua lity	Summary S	Susquehanna	River at	Conowingo, M	d.
---	-----------	----------------	-----------	-------------	----------	--------------	----

Parameters Exceeding Standards										
Parameter	Date	Value	Standard	State						
DO	08/02/00	3.46 mg/l	4.0 mg/l	Pa. aquatic life						
DO	08/02/00	3.46 mg/l	5.0 mg/l	Md. aquatic life						
DO	05/14/01	4.08 mg/l	5.0 mg/l	Md. aquatic life						

Date	WQI	Parameters Exceeding 90 th Percentile						
08/02/00	40.2	DO	COND	DS	TSO4			
11/15/00	38.2	None						
02/19/01	42.3	DO	TMn					
05/14/01	51.9	DO	TSO4					

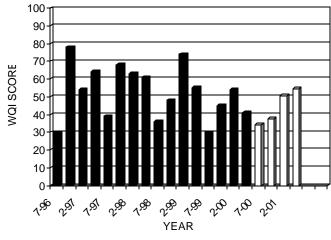
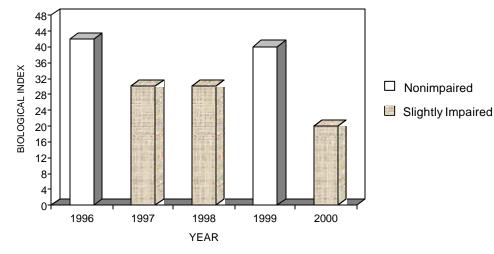


Table 53.	Water Qu	ality Sun	nmary Tioga	River at	Lindley, N.Y.
1 4010 55.	mail 21	uny sun	111111 y 1105u	mirer ai	Linuicy, 11.1.


Parameters Exceeding Standards								
Parameter	Date	Value	State					
None								

Date	WQI	Parameters Exceeding 90 th Percentile							
07/25/00	34.2	TSO4							
11/07/00	37.6	DO	TSO4						
02/07/01	50.4	TMn	DMn						
05/09/01	54.6	TMn	DMn	TURB					

Biological and Habitat Summary					
Number of Taxa	18				
Diversity Index	2.2				
RBP III Score	20				
RBP III Condition	Slightly Impaired				
Total Habitat Score	200				
Habitat Condition Category	Excellent				

Water Quality Index

Biological Index

Poor water quality at this site may have been due to acid mine drainage in the headwaters of the Tioga River. The Tioga-Hammond Reservoir, located upstream of TIOG 10.8, alleviated some of the effects of acid mine drainage by buffering the outflow of Tioga Lake with alkaline waters stored in Hammond Lake. However, the effects of the acid mine drainage may still be observed downstream. Poor quality water from the Cowanesque River also may affect the Tioga River downstream of their confluence.

TIOG 10.8 had only one increasing trend and numerous decreasing trends. A significant increase was evident in flow-adjusted aluminum. Strong, significant decreasing trends were found for adjusted and unadjusted total ammonia, total nitrogen, total sulfate, and total manganese, and for unadjusted total phosphorus. A significant decreasing trend occurred in unadjusted total solids and total iron, as well as flow-adjusted total phosphorus (Table 19).

Group 3 Sites

Babcock Run (BABC)

During the 2000-2001 sampling season, the macroinvertebrate community of Babcock Run near Cadis, Pa., was designated nonimpaired. Several pollution-intolerant taxa were present in Babcock Run including Hexatoma, Centroptilum, Ephemerella (Ephemeroptera: Ephemerellidae), Leucrocuta (Ephemeroptera: Epeorus, Heptageniidae), Stenonema, Paraleptophlebia (Ephemeroptera: Paraleptophlebiidae), Haploperla, Sweltsa, Amphinemura (Plecoptera: Nemouridae), Leuctra, and Isoperla. Physical habitat conditions were designated supporting. and all field chemistry parameters were normal. The streambed was almost dry at the time of sampling.

Bill Hess Creek (BILL)

Bill Hess Creek near Nelson, Pa., served as the reference site for the Group 3 streams. The sample taken at Bill Hess Creek had the lowest percent dominant taxa and the highest Shannon-Weaver Diversity Index value of the Group 3 streams. This site also scored high on the EPT Index and the EPT/Chironomidae ratio. Organic pollution-intolerant taxa in the sample were Hexatoma. Ameletus (Ephemeroptera: Ephemerella, Ameletidae). Centroptilum. Paraleptophlebia, Stenonema, Epeorus, Haploperla, Amphinemura, Leuctra, Acroneuria, Agnetina, and Isoperla. All field chemistry parameters were within acceptable limits, although conductivity (283 umhos/cm) was the highest of the Group 3 streams.

Bird Creek (BIRD)

Bird Creek near Webb Mills, N.Y., was designated moderately impaired. This site had a low EPT Index value due to low numbers of Plecoteran taxa and no Trichopteran taxa. The stream did have several Ephemeropteran taxa including *Ameletus, Baetis* (Ephemeroptera: Baetidae), *Drunella* (Ephemeroptera: Ephemerellidae), *Ephemerella, Epeorus*, and *Leucrocuta*. The habitat was designated supporting. All field chemistry parameters fell within acceptable ranges.

Biscuit Hollow (BISC)

Slightly impaired biological conditions existed at Biscuit Hollow near Austinburg, Pa., during this survey. The most abundant taxa present at this site were Chironomidae. The physical habitat at this site was considered partially supporting, with a poor riparian vegetative zone width. Field chemistry parameters were within normal ranges.

Briggs Hollow Run (BRIG)

Briggs Hollow Run near Nichols, N.Y., was designated moderately impared during the 2001 sampling season. It had the lowest overall Shannon-Weaver Diversity value (1.52) of all sampling sites. This site had low taxonomic richness (13) and had a high percent dominant taxa value (50 percent) compared to the other sites. The site is dominated by the pollutiontolerant taxa Chironomidae. The physical habitat was designated partially supporting with instream cover, velocity depth regimes, and sediment deposition obtaining the lowest scores. All field chemistry parameters were within acceptable limits.

Bulkley Brook (BULK)

Bulkley Brook near Knoxville, Pa., had a slightly impaired biological community and excellent habitat conditions during the 2000-2001 sampling season. The epifaunal substrate and the riparian vegetative zone width received the highest ratings in the habitat assessment. Several pollution intolerant taxa existed at Bulkley Brook including Ameletus. Epeorus, Leucrocuta. Stenonema, Paraleptophlebia, Nigronia, Sweltsa, Amphinemura, Leuctra, Acroneuria, Isoperla, Dolophilodes, and Rhyacophila. Field chemistry indicated that all parameters were within acceptable limits.

Camp Brook (CAMP)

Camp Brook near Osceola, Pa., had a nonimpaired biological community during the 2001 sampling season. This site had the highest EPT/Chironomidae ratio of all the Group 3 sites (54.5 percent), and the most abundant taxa were *Epeorus*. The physical habitat of the stream was designated partially supporting with poor riparian conditions and velocity/depth regimes. All field chemistry parameters were normal.

Cook Hollow (COOK)

Cook Hollow near Austinburg, Pa., had a nonimpaired biological community. This site scored well in all the metrics and had the highest EPT Index value (18). A number of pollution intolerant taxa existed at this site including Hexatoma, Ameletus, Centroptilum, Ephemerella, Leucrocuta. Epeorus. Stenonema. Paraleptophlebia, Ophiogomphus, Sweltsa. Leuctra, Amphinemura, Acroneuria, Isoperla, Dolophilodes, and Rhyacophila. The habitat was excellent with good vegetative protective cover. Field chemistry parameters were all within acceptable limits.

Deep Hollow Brook (DEEP)

The biological community of Deep Hollow Brook near Danville, N.Y., was designated slightly impaired with an excellent physical habitat. This site had the highest number of taxa (25) of all Group 3 sampling sites, although its EPT/Chironomidae ratio value was low (0.66). A beaver dam was located upstream of the sampling site on Deep Hollow Brook, and flows were very low at the time of sampling. Algae covered the streambed, and the dissolved oxygen value was low (4.99 mg/l). Furthermore, the temperature was the highest of all the Group 3 sites (18.2 degrees Celsius), and alkalinity was extremely low with a value of 8 mg/l.

Denton Creek (DENT)

Denton Creek near Hickory Grove, Pa., was dry during May 2001. This site is located downstream of Hawkins Pond in New York State.

Dry Brook (DRYB)

Dry Brook at Waverly, N.Y., also was dry during May 2001. This stream runs directly through residential and commercial areas in the town of Waverly.

Little Wappasening Creek (LWAP)

biological community of Little The Wappasening Creek near Nichols, N.Y., was designated moderately impaired during the 2001 sampling season. The site had low taxonomic richness (13) and Shannon-Weaver Diversity Index (1.76) compared to other Group 3 sites. There were no Trichopteran taxa, although the EPT Index value was moderate due to eight Ephemeropteran taxa and four Plecopteran taxa. The physical habitat was designated nonsupporting due to a heavily altered channel, a large amount of streambank erosion, lack of vegetative protective cover, and a poor riparian vegetative zone. In fact, dredging equipment was found in the stream and timber was being removed from the stream banks. All field chemistry parameters were normal.

Parks Creek (PARK)

Parks Creek near Litchfield, N.Y., had a slightly impaired biological community during the 2001 sampling season. The highest percent dominant value of the Group 3 sites was for Parks Creek. The site was dominated by Chironomidae. A number of pollution intolerant taxa existed at the Parks Creek sampling site though, including *Hexatoma*, *Ameletus*, *Centroptilum*, *Ephemerella*, *Epeorus*, *Leucrocuta*, *Haploperla*, *Sweltsa*, *Leuctra*, *Amphinemura*, and *Isoperla*. The site had a nonsupporting habitat due to heavy channel alteration, condition of the banks, lack of vegetative protective cover on the banks, and poor riparian vegetative zone. All field chemistry parameters were within acceptable ranges.

Prince Hollow Run (PRIN)

The biological community of Prince Hollow Run near Cadis, Pa., was designated slightly impaired with a partially supporting habitat. The stream was channelized upstream of the site and the riparian zone was poor. Staff also noted a strong manure smell, the stream bottom was covered in algae, and the stream was almost dry at the time of sampling. The stream still contained a number of taxa with a Hilsenhoff tolerance value of three or less including *Hexatoma*, *Ameletus*, *Ephemerella*, *Epeorus*, *Leucrocuta*, *Isonychia*, *Paraleptophlebia*, *Ophiogomphus*, *Haploperla*, *Sweltsa*, *Amphinemura*, and *Isoperla*. The pH was high (9.30) and the alkalinity was 0 mg/l.

Red House/Beagle Hollow Run (REDH)

Slightly impaired biological conditions existed at Red House/Beagle Hollow Run near Osceola, Pa., during May 2001. Habitat conditions were considered excellent, and all field chemistry parameters were within normal ranges.

Russell Run (RUSS)

The biological community of Russell Run near Windham, Pa., was designated moderately impaired with a nonsupporting habitat. The EPT Index (10) and taxa richness (13) at this site were somewhat low. The habitat was nonsupporting due to heavy channel alteration, condition of the banks, lack of vegetative protective cover, and poor riparian zone. The stream had been channelized and the right bank timbered recently. All field chemistry parameters were normal.

Sackett Creek (SACK)

The biological condition of Sackett Creek near Nichols, N.Y., was designated slightly impaired and the physical habitat was supporting. The most abundant taxa at this site was the organic pollution intolerant *Epeorus* (39). Cows had access to the stream below the site, so there may be more organic pollution downstream. All field chemistry parameters were within normal ranges.

Smith Creek (SMIT)

The biological conditions at Smith Creek near East Lawrence, Pa., were designated moderately impaired while the stream had supporting habitat conditions. This site had the lowest EPT/Chironomidae ratio (0.51), a relatively high percent dominant taxa value (46.2), and a high Hilsenhoff Biotic Index value (4.33). The dominant taxa were Chironomidae. The stream was almost dry at the time of sampling. There were no extreme values in the field chemistry parameters.

Strait Creek (STRA)

A nonimpaired biological community existed at Strait Creek near Nelson, Pa. This site scored well in EPT Index, percent dominant taxa, and Shannon-Weaver Diversity Index metrics, and the most abundant taxa was *Paraleptophlebia*. The physical habitat was designated partially supporting due to channelization, condition of banks, lack of vegetative cover on the banks, and poor riparian conditions. All field chemistry parameters were within normal limits.

White Branch Cowanesque River (WBCO)

During May 2001, moderately impaired conditions existed at White Branch Cowanesque River near North Fork, Pa. This site had been nonimpaired in May 2000 with a number of pollution-intolerant taxa. The May 2001 sample had the lowest value for taxonomic richness (12) and EPT Index (3), and had the highest value for the Hilsenhoff Biotic Index of all the Group 3 streams. It only had two taxa with Hilsenhoff tolerance values of three or less. Those two taxa were *Prosimulium* (Diptera: Simuliidae) and *Antocha*. The physical habitat was degraded also from excellent to supporting, with low values for riparian vegetative zone. Extensive grazing and feeding were reported upstream in 2001, where cows had direct access to the stream. Also, it appeared that work was being done on the dam located upstream of this site. Despite these disturbances, field chemistry measurements were within acceptable ranges.

White Hollow (WHIT)

White Hollow near Wellsburg, N.Y., had a nonimpaired biological community during May 2001. This site had the lowest Hilsenhoff Biotic Index value (1.52). Macroinvertebrate taxa with a Hilsenhoff tolerance value of three or less included Prosimulium, Hexatoma, Ameletus, Centroptilum, Epeorus, Leucrocuta, Sweltsa, Amphinemura, Nemoura (Plecoptera: Nemouridae), Leuctra. (Plecoptera: Diura Periodidae), Isoperla, and Dolophilodes. Large numbers of organic pollution intolerant Epeorus were found in this sample. The physical habitat was designated supporting, and all water chemistry parameters were normal.

MANAGEMENT IMPLICATIONS

To establish water quality trends and understand biological conditions, long-term studies of this nature are critical. Unfortunately, short-term monitoring studies are too often the rule, due to time and monetary constraints. However, to effectively manage the resources, officials and local interest groups must have a true picture of ecological dynamics and possible problem areas, which can only be obtained through long-term studies such as this one.

Several management implications can be extracted from the chemical water quality, macroinvertebrate community, and physical habitat data collected from sampling areas. A Pearson Product Moment Correlation was performed for each reference category for average WQI score, RBP III score, and physical habitat score. Statistically significant relationships (p<0.05) observed among the chemical characteristics, the biological communities, and physical habitats of the interstate streams are described below. These observations, although based on a small sample size, are presented as possible subject areas for future research and as issues to be considered by aquatic resource managers, local interest groups, elected officials, and other policy-makers.

New York – Pennsylvania Sites

The sites in this reference category have shown and continue to show a large degree of variability in water quality. There was no significant correlation between RBP III score and water chemistry (WQI score), and no significant correlation between RBP III score and habitat. The two previous years showed a significant (p<0.05) positive correlation between RBP III score and habitat score; however, that correlation was not observed in the data for 2000-2001. The habitat in the New York-Pennsylvania border streams often is noted to be unstable due to the glacial history of these streams.

Pennsylvania – Maryland Sites

There was a significant (p<0.05) negative correlation between biological score and WQI for the nine Pennsylvania-Maryland border sites from 2000-2001. There were no significant correlations noted during fiscal year 2000; however, during the 1999 fiscal year, a significant negative correlation also existed between the RBP III score and the water chemistry score. Since a high WQI score denotes poor water quality, this indicates that those sites with degraded water quality also had degraded biological communities.

The area surrounding the Pennsylvania-Maryland border sites is largely agricultural. Heavy agricultural activities without proper best management practices often result in streambank erosion and sedimentation, contributing to poor instream habitat quality and to nutrient enrichment. Additionally, nutrient enrichment encourages excessive plant growth, which can depress dissolved oxygen levels during decomposition.

River Sites

For the seven river sites, there was a significant positive correlation between physical habitat and RBP III scores, indicating that better physical habitats supported better macroinvertebrate communities. There also was a significant positive correlation between physical habitat and RBP III scores in fiscal year 2000. There was no significant correlation between WQI score and total biological scores for the river sites. However, during the fiscal year 1999, a negative correlation existed between WQI score and biological score.

Group 3 Streams

Only physical habitat and biological scores were considered in the correlation analysis of Group 3 streams, as extensive water quality information was not collected during this There was no significant sampling season. correlation between physical habitat and biological community for the Group 3 sites. A large number of the Group 3 streams tend to dry up during the summers, due to their small size. This may especially be the case in recent years due to a multi-year drought that affected most of the Susquehanna River Basin. Dry conditions may adversely affect the stream and probably caused much of the impairment seen throughout these Group 3 sites.

Future Study

Future study and remediation efforts should focus on those streams that had severely or moderately impaired macroinvertebrate communities, increasing trends, or exceeded water quality standards. SCTT 3.0 was the only site to have a severely impaired macroinvertebrate Moderately impaired biological community. conditions were found at Russell Run, Bird Creek, Little Wappasening Creek, Smith Creek, Briggs Hollow Run, White Branch Cowanesque River, Ebaughs Creek, Wappasening Creek, Seeley Creek, and the Cowanesque River. Bird Creek is a tributary to Seeley Creek, and Russell Run and Briggs Hollow Run are tributaries to Wappasening Creek. Furthermore, Little Wappasening is located adjacent to Wappasening Creek. Therefore, the watersheds of Seeley Creek and Wappasening Creek should be investigated further.

Increasing trends were noted at sites on the Chemung River (chloride), Conowingo Creek (nitrogen and chloride), Cowanesque River (manganese), Deer Creek (chloride and sulfate), Ebaughs Creek (chloride), Octoraro Creek (chloride), the Susquehanna River (chloride), Tioga River (aluminum), and Troups Creek (phosphorus). These sites should be investigated as to the source of these parameters. It especially should be noted that chloride trends were increasing at numerous sites, and no decreasing trends for this parameter were found. Efforts should be made to determine why chloride trends are increasing.

Those streams that exceeded water quality standards, Apalachin Creek, Cascade Creek, Cayuta Creek, Little Snake Creek, Troups Creek, North Fork Cowanesque River, Conowingo Creek, Scott Creek, Chemung River, Cowanesque River, and the Susquehanna River, should be monitored for future violations. Furthermore, the source of these pollutants should be identified. It is evident that whether water quality standards are exceeded varies across state lines. Problems may arise when the source of these pollutants is in another state.

CONCLUSIONS

Fifteen (31 percent) of the 48 interstate macroinvertebrate sampling sites contained nonimpaired biological communities. Biological conditions at another 22 sites (46 percent) were slightly impaired, while 10 sites (21 percent) were moderately impaired. One site (2 percent), Scott Creek, was designated severely impaired. Four sites (SUSQ 10.0, SUSQ 44.5, DENT, DRYB) were not sampled using RBP III techniques and, thus, were not averaged into the final scores. Twenty sites (42 percent) had excellent labitats. Nineteen of the sites (40 percent) had supporting habitats, and six sites (12 percent) had partially supporting habitats. Three sites (6 percent) had nonsupporting habitats: Russell Run, Little Wappasening Creek, and Parks Creek.

Overall, interstate streams seemed to achieve their designated uses, and only 38 observations (1.3 percent) of water chemistry parameters exceeded state standards. Dissolved oxygen and pH exceeded standards most frequently with ten violations (26 percent) each. The pH values were all greater than 8.5 or 9.0; none of the violations were for low pH values. Iron also was a significant problem in the interstate streams. Total iron and dissolved iron combined constituted 29 percent of the number exceeding standards. Previous reports have indicated that iron is elevated in the interstate streams. In 1999-2000, total iron was the most frequently exceeded parameter.

Of the New York-Pennsylvania border streams, the biological communities of five (38.5 percent) of these streams were nonimpaired. Six sites (46.2 percent) in the New York-Pennsylvania reference category were slightly impaired, and two streams (15.4 percent) were moderately impaired. Five sites had excellent habitats (38.5 percent) and eight sites (61.5 percent) had supporting habitats. High metal concentrations, particularly total iron, appeared to be the largest source of water quality degradation in this region. The parameters that exceeded New York and Pennsylvania state standards were iron, aluminum, pH, and Iron standards were exceeded at alkalinity. Cascade Creek, Apalachin Creek, and Little Snake Creek. Aluminum standards were exceeded at North Fork Cowanesque River, Troups Creek, and Little Snake Creek. Troups Creek and Cayuta Creek exceeded pH standards, and Cascade Creek and Little Snake Creek exceeded alkalinity standards. Rechannelization of the streambed and removal of instream habitat may have resulted in poor conditions for macroinvertebrate colonization in several streams, including Bentley Creek and Seeley Creek. Wappasening Creek has shown a decreasing biological condition over the past three years. Consideration should be given to changing this stream to a Group 1 stream so it can be more closely monitored for impairment in water quality.

Nonimpaired biological conditions existed at two (22.2 percent) of the nine Pennsylvania-Maryland interstate streams. Of the remaining seven sites, five sites (55.6 percent) were slightly impaired, one site (11.1 percent) was moderately impaired, and one site (11.1 percent) was designated severely impaired. Four (44.4 percent) of the Pennsylvania-Maryland border sites had excellent habitats, and four sites (44.4 percent) had supporting habitats. One site (11.1 percent) had a partially supporting habitat. Elevated nutrient levels, possibly due to agricultural runoff, appeared to affect the water quality of the streams in this region, particularly the levels of dissolved The parameters that exceeded oxvgen. Pennsylvania and Maryland water quality standards were dissolved oxygen and iron at Conowingo Creek and Scott Creek. WQI score and RBP III scores showed a significant negative correlation for the Pennsylvania-Maryland border sties, meaning that streams in this region that had higher quality water also had the better biological condition and streams that had worse water quality had degraded biological conditions. The stream (BBDC 4.1) with the highest biological condition score (36) had one of the lowest WQI scores (29.5). Also, the stream (SCTT 3.0) with the lowest biological condition score (4) had the highest WQI score (76.7). Streambank erosion and sedimentation were a problem in the instream habitat for this region.

River sites consisted of nine stations located on the Susquehanna River, Chemung River, Cowanesque River, and Tioga River. One station 10.0) is never sampled (SUSO for macroinvertebrates due to a lack of riffle habitat at the site. SUSQ 44.5 was not sampled for macroinvertebrates in fiscal year 2001 due to high flow conditions. The biological communities of two sites (28.6 percent) were nonimpaired, four sites (57.1 percent) were slightly impaired, and one site (14.3 percent) was moderately impaired. Six of the sites (85.7 percent) had excellent habitats, and one site (14.3 percent) had supporting habitat. Water quality parameters that exceeded state standards were pH, dissolved oxygen, total nitrite, and total sulfate. The only sites that did not exceed standards were SUSO 365 and TIOG 10.8. Physical habitat scores and RBP III scores were significantly correlated for the river stations, indicating that those streams with better habitat had better macroinvertebrate populations.

Of the 21 Group 3 sites, two sites (DENT and DRYB) were dry and were not sampled in May 2001. Of the remaining 19 sites, six stations (31.6 percent) were designated nonimpaired. Seven sites (36.8 percent) had slightly impaired biological communities, while six stations (31.6 percent) had moderately impaired conditions. Five (26.3 percent) of the 19 stations sampled had excellent habitat conditions, six (31.6 percent) had supporting habitats, five sites (26.3 percent) had partially supporting habitats, and three sites (15.8 percent) had nonsupporting habitats. There was no significant correlation between physical habitat and biological score during this sampling season.

The Seasonal Kendall nonparametric test for trend was applied to observed concentration and flow-adjusted concentration. Trends were detected (p<0.10) for several parameters at individual stations. For each parameter, an overall weighted value was calculated to indicate the strength of the trend in the Susquehanna River Basin over the period 1986 through 2001. Table 54 provides a summary of detected trends and overall direction. The only overall increasing trend was in concentrations of total chlorides. This could be the result of applying salt to remove ice from roads or from the use of chlorine in wastewater treatment and water treatment plants. No overall trends in either unadjusted or flowadjusted concentrations were evident in total suspended solids, total sulfate, total aluminum, and WQI. All other parameters showed a decreasing trend in either unadjusted or flowadjusted concentrations. These decreasing trends suggest an improvement in water quality. Total iron showed a particularly strong decreasing trend. Increased efforts have been made in the Susquehanna River Basin over the past few years to remediate abandoned mine drainage problems, a source of iron in streamwater.

The current and historical data contained in this report provide a database that enables SRBC staff and others to better manage water quality, water quantity, and biological resources of interstate streams in the Susquehanna River Basin. The data can be used by SRBC's member states and local interest groups to gain a better understanding of water quality in upstream and downstream areas outside of their jurisdiction. Information in this report can also serve as a starting point for more detailed assessments and remediation efforts that may be planned on these streams.

	Detected Trends						
Parameter	Concentration		Flow-Adjusted Concentration		Overall Direction of Concentration Trend	Overall Direction of Flow - Adjusted	
	+ - + -			Concentration Trend			
Total Suspended Solids	0	1	0	0	None	None	
Total Ammonia	0	12	0	8	Decreasing	None	
Total Nitrogen	1	9	1	9	None	Decreasing	
Total Phosphorus	1	10	0	8	Decreasing	None	
Total Chloride	9	0	9	0	Increasing	Increasing	
Total Sulfate	1	6	0	7	None	None	
Total Iron	0	12	0	9	Decreasing	Decreasing	
Total Aluminum	0	6	1	5	None	None	
Total Manganese	1	10	0	6	Decreasing	None	
Water Quality Index	0	2	0	0	None	None	

Table 54. Summary of Overall Direction of Trends

REFERENCES

- Aroner, E.R. 1994. WQHYDRO—Water Quality/Hydrology/Graphics/Analysis System User's Manual. WQHYDRO Consulting, Portland, Oregon.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C., USA.
- Bauer, K.M., W.D. Glove, and J.D. Flodo. 1984. Methodologies for Determining Trends in Water Quality Data. Industrial Research Laboratories, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.
- Bollinger, S.W. 1991. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #4, Water Year 1990. Susquehanna River Basin Commission (Publication No. 140), Harrisburg, Pennsylvania.
- ——. 1992. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #5, October 1, 1990-June 30, 1991. Susquehanna River Basin Commission (Publication No. 146), Harrisburg, Pennsylvania.
- ——. 1993. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #6, July 1, 1991-June 30, 1992. Susquehanna River Basin Commission (Publication No. 151), Harrisburg, Pennsylvania.
- ——. 1994. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #7, July 1, 1992-June 30, 1993. Susquehanna River Basin Commission (Publication No. 160), Harrisburg, Pennsylvania.
- ——. 1995. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #8, July 1, 1993-June 30, 1994. Susquehanna River Basin Commission (Publication No. 165), Harrisburg, Pennsylvania.
- Bollinger, S.W. and D.L. Sitlinger. 1996. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #9, July 1, 1994-June 30, 1995. Susquehanna River Basin Commission (Publication No. 173), Harrisburg, Pennsylvania.
- 1997. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #10, July 1, 1995-June 30, 1996. Susquehanna River Basin Commission (Publication No. 185), Harrisburg, Pennsylvania.
- Diehl, D.L. and D.L. Sitlinger. 2001. Upper Susquehanna Subbasin Survey: Small Watershed Study, Monitoring Report #1A, October 1, 1999-August 31, 2000. Susquehanna River Basin Commission (Publication No. 213), Harrisburg, Pennsylvania.
- Edwards, R.E. 1995. Trends in Nitrogen, Phosphorus, and Suspended Sediment in the Susquehanna River Basin, 1974-1993. Susquehanna River Basin Commission (Publication No. 163), Harrisburg, Pennsylvania.

- Hirsch, R.M., R.B. Alexander, and R.A. Smith. 1991. Selection of Methods for the Detection and Estimation of Trends in Water Quality. *Water Resources Research* 27(5): 803-813.
- Klemm, D. J., P. A. Lewis, F. Fulk, and J. M. Lazorchak. 1990. Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
- Kovach, W.I. 1993. A Multivariate Statistical Package for IBM-PC's, Version 2.1. Kovach Computing Services, Pentraeth, Wales, U.K., 55 pp.
- Maryland Department of the Environment. 1993. Water Quality Regulations for Designated Uses, COMAR 26.08.02. Annapolis, Maryland.
- McMorran, C.P. 1988. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report for 1986 and 1987 Water Years. Susquehanna River Basin Commission (Publication No. 118), Harrisburg, Pennsylvania.
- McMorran, C.P. and S.W. Bollinger. 1989. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #2, 1988 Water Year. Susquehanna River Basin Commission (Publication No. 122), Harrisburg, Pennsylvania.
- ——. 1990. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #3, 1989 Water Year. Susquehanna River Basin Commission (Publication No. 131), Harrisburg, Pennsylvania.
- Merrit, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America (3rd ed.). Kendall/Hunt Publishing Company, Dubuque, Iowa, 862 pp.
- New York State Department of Environmental Conservation. 1998. The 1998 Chemung River Basin Waterbody Inventory and Priority Waterbodies List. Division of Water, Albany, New York.
- ——. 1992. Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705. Division of Water, Albany, New York.
- Ohio River Valley Water Sanitation Commission. 1990. Water Quality Trends Ohio River and Its Tributaries. Water Quality Assessment Program, Cincinnati, Ohio.
- Omernik, J.M. 1987. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geograph. 77(1): 118-125.
- Peckarsky, B.L., P.R. Fraissinet, M.J. Penton, and D.J. Conklin, Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York.
- Pennsylvania Department of Environmental Resources. 1989. Water Quality Standards of the Department's Rules and Regulations, 25 Pa. Code, Chapter 93.3-5. Division of Water Quality, Harrisburg, Pennsylvania.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. U.S. Environmental Protection Agency, Office of Water, Document No. EPA/444/4-89-001, Washington, D.C.

- Smith, R.A., R.M. Hirsch, and J.R. Slack. 1982. A Study of Trends in Total Phosphorus Measurements at Stations in the NASQAN Network. U.S. Geological Survey, Water Supply Paper 2254.
- Traver, C.L. 1998. Water Quality and Biological Assessment of the Chemung Subbasin. Susquehanna River Basin Commission (Publication No. 198), Harrisburg, Pennsylvania.
- U.S. Environmental Protection Agency. 1990. Freshwater Macroinvertebrate Species List Including Tolerance Values and Functional Feeding Group Designations for Use in Rapid Bioassessment Protocols. Assessment and Watershed Protection Division, Report No. 11075.05, Washington, D.C.

Appendix A

WATER QUALITY DATA FOR INTERSTATE STREAMS CROSSING THE NEW YORK-PENNSYLVANIA AND PENNSYLVANIA-MARYLAND BORDERS

Parameter	Units	APAL 6.9	BNTY 0.9	BNTY 0.9	BNTY 0.9	BNTY 0.9	CASC1.6	CASC 1.6	CASC 1.6
Date	yyyymmdd	20000726	20000725	20001107	20010207	20010508	20000726	20001106	20010206
Time	hhmm	930	1200	905	920	1220	1530	1040	1115
Discharge	cfs	1.87	3.411	2.396	3.78	2.804	NA	0.173	2.115
Temperature	degree C	18.5	21.9	4.3	1.8	13.8	18.5	4.1	0.9
Conductance	umhos/cm	108	242	244	197	174	73	72	48
Dissolved Oxygen	mg/l	5.2	6.95	7.98	7.73	6.19	5.38	8.42	8.25
рН		6.9	8	8.25	7.8	8.15	7.2	7.6	7.2
Alkalinity	mg/l	28	88	100	92	92	26	26	10
Acidity	mg/l	8	4	2	6	2	4	6	4
Solids, Total	mg/l	86	158	192	172	108	168	66	64
Solids, Dissolved	mg/l	68	138	168	142	108	142	66	64
Ammonia, Total	mg/l	0.04	< 0.02	< 0.02	0.07	< 0.02	< 0.02	< 0.02	0.02
Ammonia, Dissolved	mg/l	0.04	< 0.02	< 0.02	0.08	< 0.02	< 0.02	< 0.02	0.02
Nitrite, Total	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrate, Total	mg/l	0.17	< 0.04	0.19	0.75	< 0.04	0.09	< 0.04	0.23
Nitrate, Dissolved	mg/l	0.17	< 0.04	0.18	0.74	0.08	0.08	0.05	0.22
Nitrogen, Total	mg/l	0.54	0.27	0.14	1.14	0.21	0.37	0.27	0.48
Nitrogen Dissolved	mg/l	0.48	0.29	0.16	1.07	0.21	0.37	0.18	0.4
Phosphorus, Total	mg/l	0.04	0.02	< 0.01	0.03	< 0.01	0.03	0.03	0.1
Phosphorus, Dissolved	mg/l	0.015	0.016	< 0.01	0.027	< 0.01	0.022	0.01	0.087
Orthophosphate, Total	mg/l	0.014	0.018	< 0.01	0.024	< 0.01	0.015	0.015	0.072
Orthophosphate, Dissolved	mg/l	0.01	0.014	< 0.01	0.023	< 0.01	0.017	< 0.01	0.076
Organic Carbon, Total	mg/l	2.2	2.1	1.7	2.1	2.1	2.7	2.2	1.7
Calcium	mg/l	9.72	27.3	29.4	22.7	18.9	7.29	7.33	4.22
Magnesium	mg/l	3.1	6.12	6.46	5.09	3.96	2.1	2.07	1.46
Chloride	mg/l	5	15	17	17	10	2	3	4
Sulfate	mg/l	<20	<20	<20	24	<20	<20	<20	<20
Turbidity	ntu	5.07	<1	<1	<1	<1	4.7	2.82	2.51
Iron, Total	µg/l	567	<20	<20	39	87	811	608	181
Iron, Dissolved	µg/l	150	<20	25	<20	<20	467	275	108
Manganese, Total	µg/l	115	<10	<10	<10	<10	98	101	<10
Manganese, Dissolved	µg/l	90	<10	<10	<10	<10	48	91	<10
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

Table A1. Water Quality Data for New York-Pennsylvania Border Streams

Parameter	Units	CASC 1.6	CAYT 1.7	CAYT 1.7	CAYT 1.7	CAYT 1.7	CHEM 12.0	CHEM 12.0	CHEM 12.0
Date	yyyymmdd	20010507	20000725	20001106	20010206	20010508	20000725	20001107	20010207
Time	hhmm	1535	1400	1505	1455	1050	1300	755	830
Discharge	cfs	4.052	32.055	29.704	57.967	19.415	407	352	752
Temperature	degree C	20.6	21.6	8.2	2.6	13.3	23.4	7.9	1.8
Conductance	umhos/cm	62	465	429	324	402	435	464	388
Dissolved Oxygen	mg/l	5.15	7.09	9.53	8.32	7.02	7.75	8.57	7.76
pH		6.85	8.2	9	8.35	8.3	8.55	8.8	8.05
Alkalinity	mg/l	20	124	148	136	140	120	100	76
Acidity	mg/l	2	2	0	0	0	NA	0	2
Solids, Total	mg/l	54	244	292	212	250	306	330	282
Solids, Dissolved	mg/l	42	222	282	206	234	280	300	278
Ammonia, Total	mg/l	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	0.06
Ammonia, Dissolved	mg/l	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	0.08
Nitrite, Total	mg/l	< 0.01	< 0.01	0.01	0.02	0.02	< 0.01	0.02	0.01
Nitrite, Dissolved	mg/l	< 0.01	0.01	0.01	0.02	0.01	< 0.01	0.02	0.01
Nitrate, Total	mg/l	< 0.04	1	1.4	0.79	0.67	0.19	0.68	0.98
Nitrate, Dissolved	mg/l	< 0.04	0.82	1.41	0.82	0.66	0.55	0.76	0.98
Nitrogen, Total	mg/l	< 0.064	1.49	1.79	1.15	1.18	0.93	0.86	1.44
Nitrogen Dissolved	mg/l	< 0.064	1.39	1.78	1.12	0.99	1.01	0.85	1.44
Phosphorus, Total	mg/l	0.02	0.22	0.3	0.17	0.04	0.06	0.08	0.12
Phosphorus, Dissolved	mg/l	< 0.01	0.18	0.29	0.17	0.025	0.058	0.072	0.1
Orthophosphate, Total	mg/l	0.013	0.19	0.29	0.16	0.026	0.026	0.07	0.087
Orthophosphate, Dissolved	mg/l	< 0.01	0.16	0.29	0.15	0.024	0.012	0.07	0.08
Organic Carbon, Total	mg/l	2.5	2.5	2.7	2.3	2.8	4.2	3.2	3.1
Calcium	mg/l	5.61	39.1	43.9	30.9	37.3	41.1	48.8	40.9
Magnesium	mg/l	1.67	8.34	8.2	6.61	6.43	10.6	12.4	9.44
Chloride	mg/l	2	55	50	40	49	51	54	47
Sulfate	mg/l	<20	22	31	39	22.4	27	27	38
Turbidity	ntu	1.58	<1	1.84	1.39	<1	2.47	1.3	1.55
Iron, Total	µg/l	500	78	78	123	66	115	67	129
Iron, Dissolved	μg/l	301	<20	<20	39	<20	<20	31	39
Manganes e, Total	µg/l	86	10	<10	11	<10	62	<10	26
Manganese, Dissolved	μg/l	66	<10	<10	<10	<10	<10	<10	22
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	CHEM 12.0	CHOC 9.1	COWN 2.2	COWN 2.2	COWN 2.2	COWN 2.2	COWN 1.0	COWN 1.0
Date	yyyymmdd	20010508	20000726	20000724	20001107	20010207	20010509	20000725	20001107
Time	hhmm	1130	1030	1400	1235	1515	815	900	1200
Discharge	cfs	978	6.796	NA	NA	NA	NA	31	27
Temperature	degree C	16.2	17.3	22.1	10.7	4.2	18.4	19.1	8.8
Conductance	umhos/cm	350	100	182	220	242	149	195	223
Dissolved Oxygen	mg/l	5.5	6.02	4.29	6.56	7.29	6.13	5.36	7.58
pH		8.35	7	7.65	7.6	7.6	8.7	7.25	8.15
Alkalinity	mg/l	86	28	66	44	40	88	64	58
Acidity	mg/l	0	4	8	4	4	0	8	2
Solids, Total	mg/l	252	84	154	162	196	98	152	164
Solids, Dissolved	mg/l	238	56	134	162	156	98	128	160
Ammonia, Total	mg/l	< 0.02	< 0.02	0.08	0.03	0.08	0.02	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	< 0.02	< 0.02	0.08	0.03	0.08	< 0.02	< 0.02	< 0.02
Nitrite, Total	mg/l	0.01	< 0.01	0.01	0.01	< 0.01	0.01	0.01	0.2
Nitrite, Dissolved	mg/l	0.01	< 0.01	0.01	0.01	< 0.01	0.01	< 0.01	0.02
Nitrate, Total	mg/l	0.46	0.23	0.12	0.17	0.57	0.26	0.29	0.15
Nitrate, Dissolved	mg/l	0.43	0.24	0.12	0.17	0.57	0.26	0.24	0.3
Nitrogen, Total	mg/l	0.67	0.56	0.86	0.4	1.09	0.64	0.85	0.48
Nitrogen Dissolved	mg/l	0.9	0.59	0.72	0.34	1.04	0.59	0.74	0.46
Phosphorus, Total	mg/l	0.04	0.02	0.04	0.01	0.07	0.02	0.04	0.03
Phosphorus, Dissolved	mg/l	0.015	0.022	0.018	< 0.01	0.061	< 0.01	0.017	0.02
Orthophosphate, Total	mg/l	0.021	0.036	0.019	0.011	0.054	0.016	0.013	0.022
Orthophosphate, Dissolved	mg/l	0.013	0.018	0.012	< 0.01	0.048	< 0.01	0.012	0.017
Organic Carbon, Total	mg/l	3.4	2.1	5.3	4.5	3.5	4.1	5.3	4.6
Calcium	mg/l	35.2	8.9	19.3	24.2	26.5	16	20.5	24.2
Magnesium	mg/l	7.89	2.8	4.5	5.13	5.39	3.18	4.72	5.28
Chloride	mg/l	39	7	10	15	21	10	10	17
Sulfate	mg/l	<20	<20	<20	30	22	26	23	22
Turbidity	ntu	1.97	1.78	3.83	2.74	1.69	2.02	2.95	2.02
Iron, Total	µg/l	137	162	109	166	109	147	87	119
Iron, Dissolved	μg/1	<20	45	<20	24	28	<20	24	24
Manganese, Total	µg/l	38	42	300	168	21	45	90	59
Manganese, Dissolved	μg/1	<10	29	137	114	<10	17	21	30
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	μg/1	<200	<200	<200	<200	<200	<200	<200	<200

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	COWN 1.0	COWN 1.0	LSNK 7.6	LSNK 7.6	LSNK 7.6	LSNK 7.6	NFCR 7.6	SEEL 10.3
Date	yyyymmdd	20010207	20010509	20000726	20001106	20010313	20010508	20000724	20000725
Time	hhmm	1300	915	1130	1255	1450	800	1115	1000
Discharge	cfs	90	85	0.706	0.621	9.401	4.484	0.358	6.646
Temperature	degree C	3.7	19.2	19	5.3	1.9	9.7	16.2	18.1
Conductance	umhos/cm	234	147	131	145	160	114	166	298
Dissolved Oxygen	mg/l	8.22	7.99	5.39	8.04	9.08	6.04	5.47	6.31
pH		8.05	9.5	6.95	7.65	6.5	7	7.25	7.6
Alkalinity	mg/l	52	72	34	36	12	36	50	118
Acidity	mg/l	2	0	8	6	4	8	8	10
Solids, Total	mg/l	156	56	106	104	116	94	166	190
Solids, Dissolved	mg/l	108	56	84	100	106	94	152	180
Ammonia, Total	mg/l	0.27	< 0.02	0.02	< 0.02	0.05	< 0.02	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	0.2	< 0.02	0.02	< 0.02	0.05	< 0.02	< 0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrate, Total	mg/l	0.59	0.22	< 0.04	< 0.04	0.46	< 0.04	0.94	0.06
Nitrate, Dissolved	mg/l	0.59	0.23	0.04	< 0.04	0.46	< 0.04	0.83	0.05
Nitrogen, Total	mg/l	1.07	0.66	0.43	0.21	0.77	< 0.064	1.42	0.3
Nitrogen Dissolved	mg/l	1.06	0.66	0.45	0.18	0.83	< 0.064	1.46	0.37
Phosphorus, Total	mg/l	0.07	0.02	0.05	< 0.01	0.03	0.01	0.09	0.02
Phosphorus, Dissolved	mg/l	0.057	0.01	0.039	< 0.01	< 0.01	< 0.01	0.047	0.011
Orthophosphate, Total	mg/l	0.052	0.016	0.023	< 0.01	0.019	0.012	0.061	0.016
Orthophosphate, Dissolved	mg/l	0.049	0.01	0.018	< 0.01	< 0.01	< 0.01	0.02	0.013
Organic Carbon, Total	mg/l	3.5	4.4	4.2	2.7	2.6	2.6	3.5	2
Calcium	mg/l	26.6	14.3	11.7	9.4	9.88	8.37	15.8	39.4
Magnesium	mg/l	5.18	2.94	3.06	2.38	2.65	2.48	5.56	6.74
Chloride	mg/l	21	9	13	23	32	12	9	13
Sulfate	mg/l	24	41	<20	<20	<20	<20	<20	<20
Turbidity	ntu	2.01	2.29	3.65	1.27	10.2	2.04	1.98	<1
Iron, Total	µg/l	97	103	781	206	484	351	157	<20
Iron, Dissolved	µg/l	32	<20	307	139	104	210	40	<20
Manganese, Total	µg/l	18	23	184	69	74	40	44	<10
Manganese, Dissolved	µg/l	12	<10	148	63	66	35	25	<10
Aluminum, Total	µg/l	<200	<200	<200	<200	308	<200	599	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	SEEL 10.3	SEEL 10.3	SEEL 10.3	SNAK 2.3	SOUT 7.8	SUSQ 365.0	SUSQ 365.0
Date	yyyymmdd	20001107	20010207	20010508	20000726	20000725	20000726	20001106
Time	hhmm	1025	1050	1345	1235	1100	1630	942
Discharge	cfs	3.894	9.68	7.751	14.157	0.942	838.7	764.4
Temperature	degree C	8.4	4.3	15.4	18.9	20.3	20.5	6.4
Conductance	umhos/cm	319	307	245	115	187	250	217
Dissolved Oxygen	mg/l	6.55	5.98	6.2	6.09	5.76	5.85	7.98
pH		8.15	7.65	8.4	7.4	7.4	7.7	8.3
Alkalinity	mg/l	128	110	134	38	56	62	64
Acidity	mg/l	2	10	0	4	6	4	0
Solids, Total	mg/l	224	234	138	94	132	562	148
Solids, Dissolved	mg/l	218	204	138	80	126	540	148
Ammonia, Total	mg/l	< 0.02	0.07	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	< 0.02	0.08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrate, Total	mg/l	0.07	0.55	< 0.04	0.25	< 0.04	0.57	0.36
Nitrate, Dissolved	mg/l	0.06	0.54	0.07	0.21	0.06	0.57	1.24
Nitrogen, Total	mg/l	< 0.064	0.77	0.24	0.56	0.5	0.98	0.62
Nitrogen Dissolved	mg/l	< 0.064	0.77	0.27	0.51	0.5	0.99	0.59
Phosphorus, Total	mg/l	< 0.01	0.08	< 0.01	0.02	0.05	0.03	0.02
Phosphorus, Dissolved	mg/l	< 0.01	0.076	< 0.01	0.019	0.042	0.016	< 0.01
Orthophosphate, Total	mg/l	< 0.01	0.065	< 0.01	0.01	0.022	0.032	< 0.01
Orthophosphate, Dissolved	mg/l	< 0.01	0.065	< 0.01	0.01	0.012	0.015	< 0.01
Organic Carbon, Total	mg/l	1.2	1.4	2.5	2.8	4.5	2.9	2.9
Calcium	mg/l	45.5	41.4	30.9	9.65	17.5	38.6	29.6
Magnesium	mg/l	7.5	7.23	5.02	2.96	3.97	3.86	3.45
Chloride	mg/l	19	22	16	10	15	14	14
Sulfate	mg/l	<20	31	48	<20	<20	<20	28
Turbidity	ntu	<1	<1	<1	1.3	1.83	3.48	1.6
Iron, Total	µg/l	25	<20	<20	166	249	188	161
Iron, Dissolved	µg/1	<20	<20	<20	<20	85	27	30
Manganese, Total	µg/l	<10	<10	<10	12	54	25	15
Manganese, Dissolved	µg/1	<10	<10	<10	<10	34	<10	11
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200

 Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	SUSQ 365.0	SUSQ 365.0	SUSQ 340.0	SUSQ 340.0	SUSQ 340.0	SUSQ 340.0	SUSQ 289.1	SUSQ 289.1
Date	yyyymmdd	20010206	20010507	20000726	20001106	20010206	20010508	20000725	20001106
Time	hhmm	956	1500	1345	1145	1220	645	1515	1350
Discharge	cfs	5618	1555	973	983	2400	1650	3060	2420
Temperature	degree C	1.1	17.7	21.7	7.8	1.4	14.8	22.9	7.8
Conductance	umhos/cm	200	240	228	208	181	224	276	268
Dissolved Oxygen	mg/l	8.32	5.75	5.64	9.04	8.11	5.27	6.22	8.35
pH		7.4	7.1	7.6	9.1	8.15	7.35	7.95	8.9
Alkalinity	mg/l	44	74	64	68	48	52	90	80
Acidity	mg/l	6	6	4	0	2	8	4	0
Solids, Total	mg/l	148	174	180	126	132	140	198	176
Solids, Dissolved	mg/l	144	160	174	126	126	136	182	176
Ammonia, Total	mg/l	0.06	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	0.04	< 0.02	< 0.02	< 0.02	0.03	< 0.02	0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02
Nitrite, Dissolved	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Nitrate, Total	mg/l	0.8	0.73	0.43	0.27	0.66	0.56	0.76	0.44
Nitrate, Dissolved	mg/l	0.77	0.75	0.44	0.27	0.68	0.57	0.7	0.46
Nitrogen, Total	mg/l	1.22	0.96	0.91	0.56	0.98	0.78	1.28	0.75
Nitrogen Dissolved	mg/l	1.17	0.77	0.78	0.46	0.98	0.61	1.33	0.72
Phosphorus, Total	mg/l	0.22	0.02	0.03	0.02	0.18	0.02	0.06	0.03
Phosphorus, Dissolved	mg/l	0.2	< 0.01	0.016	< 0.01	0.17	< 0.01	0.04	0.016
Orthophosphate, Total	mg/l	0.18	0.012	0.016	< 0.01	0.16	0.014	0.043	0.017
Orthophosphate, Dissolved	mg/l	0.18	< 0.01	0.013	< 0.01	0.15	< 0.01	0.028	0.013
Organic Carbon, Total	mg/l	2.3	3.1	2.9	3.1	2	2.7	3.7	3.5
Calcium	mg/l	23.5	32.3	31.8	28	19.5	29	29.8	31.7
Magnesium	mg/l	3.19	3.13	3.39	3.41	3.02	3.12	5.33	4.8
Chloride	mg/l	22	17	14	14	22	17	21	24
Sulfate	mg/l	70	35.9	<20	<20	39	32.1	<20	31
Turbidity	ntu	2.1	1.61	4.94	1.4	2.17	2.19	1.98	1.41
Iron, Total	μg/1	216	159	160	168	214	128	163	116
Iron, Dissolved	µg/1	85	76	23	39	103	45	<20	26
Manganese, Total	µg/l	19	23	44	24	16	33	19	10
Manganese, Dissolved	µg/l	15	19	11	16	11	15	<10	<10
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	SUSQ 289.1	SUSQ 289.1	TIOG 10.8	TIOG 10.8	TIOG 10.8	TIOG 10.8	TROW 1.8	TRUP 4.5
Date	yyyymmdd	20010206	20010508	20000725	20001107	20010207	20010509	20000726	20000724
Time	hhmm	1345	940	815	1120	1205	1000	1430	1220
Discharge	cfs	5240	3790	93.5	91.2	219.5	235.5	1.095	3.888
Temperature	degree C	2	16.6	20.7	6.3	3.4	16.5	18.2	20.6
Conductance	umhos/cm	241	291	209	259	229	159	79	304
Dissolved Oxygen	mg/l	8.23	5.61	5.21	6.54	7.29	6.7	5.96	5.49
pH		7.8	8.3	7.4	7.8	7.55	8.4	7.15	8.1
Alkalinity	mg/l	44	30	56	44	50	48	26	118
Acidity	mg/l	4	0	6	6	6	0	4	4
Solids, Total	mg/l	166	188	170	174	172	90	68	216
Solids, Dissolved	mg/l	160	172	154	166	132	90	46	194
Ammonia, Total	mg/l	0.09	< 0.02	0.02	< 0.02	0.12	< 0.02	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	0.09	< 0.02	0.02	< 0.02	0.1	< 0.02	< 0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Nitrate, Total	mg/l	0.9	0.73	0.36	0.27	0.62	0.29	0.19	< 0.04
Nitrate, Dissolved	mg/l	0.91	0.82	0.35	0.31	0.6	0.29	0.2	0.8
Nitrogen, Total	mg/l	1.38	1.12	0.88	0.37	0.98	0.64	0.42	0.35
Nitrogen Dissolved	mg/l	1.33	1.15	0.8	0.35	0.98	0.61	0.42	0.42
Phosphorus, Total	mg/l	0.06	0.03	0.03	0.01	0.03	0.02	0.02	0.02
Phosphorus, Dissolved	mg/l	0.05	< 0.01	0.018	< 0.01	0.02	< 0.01	0.018	0.015
Orthophosphate, Total	mg/l	0.051	0.025	0.013	< 0.01	0.021	0.02	0.014	0.024
Orthophosphate, Dissolved	mg/l	0.044	< 0.01	0.013	< 0.01	0.016	< 0.01	0.017	0.016
Organic Carbon, Total	mg/l	2.3	3.3	3.8	3.3	3	3.4	1.6	2.6
Calcium	mg/l	25.5	36.1	21.5	28.5	24.7	15.7	6.33	34.7
Magnesium	mg/l	4.28	4.98	5.05	7.42	5.73	3.75	2.14	7.8
Chloride	mg/l	29	26	10	16	17	9	5	13
Sulfate	mg/l	40	28.5	27	43	33	43	<20	22
Turbidity	ntu	2.8	2.38	2.02	<1	2.12	2.22	<1	1.84
Iron, Total	µg/l	213	162	132	93	114	170	27	49
Iron, Dissolved	μg/1	66	<20	<20	76	35	31	20	<20
Manganese, Total	µg/l	13	32	91	58	286	170	<10	<10
Manganese, Dissolved	µg/l	11	<10	<10	46	242	128	<10	<10
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	<200	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	TRUP 4.5	TRUP 4.5	TRUP 4.5	WAPP 2.6
Date	yyyymmdd	20001107	20010207	20010509	20000726
Time	hhmm	1400	1410	650	800
Discharge	cfs	1.783	11.414	5.592	7.481
Temperature	degree C	4.5	1.8	18.4	18.6
Conductance	umhos/cm	301	251	222	129
Dissolved Oxygen	mg/l	8.14	8.26	5.99	5.78
pН		8.05	8.1	8.8	7.05
Alkalinity	mg/l	110	86	128	34
Acidity	mg/l	4	4	0	6
Solids, Total	mg/l	196	184	130	114
Solids, Dissolved	mg/l	192	154	128	100
Ammonia, Total	mg/l	< 0.02	0.08	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	< 0.02	0.07	< 0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	<0.01	< 0.01	< 0.01
Nitrate, Total	mg/l	0.04	0.85	< 0.04	0.41
Nitrate, Dissolved	mg/l	< 0.04	0.86	< 0.04	0.79
Nitrogen, Total	mg/l	< 0.064	1.2	0.3	0.78
Nitrogen Dissolved	mg/l	< 0.064	1.28	0.3	1.22
Phosphorus, Total	mg/l	< 0.01	0.03	0.01	0.02
Phosphorus, Dissolved	mg/l	< 0.01	0.029	< 0.01	0.018
Orthophosphate, Total	mg/l	< 0.01	0.04	0.015	0.014
Orthophosphate, Dissolved	mg/l	< 0.01	0.02	< 0.01	0.011
Organic Carbon, Total	mg/l	2.6	2.3	3.5	2.4
Calcium	mg/l	37.5	28.9	25.4	10.2
Magnesium	mg/l	8.32	6.36	5.31	3.77
Chloride	mg/l	22	25	15	8
Sulfate	mg/l	27	22	43	<20
Turbidity	ntu	<1	5.46	2.46	1.4
Iron, Total	µg/l	28	268	129	56
Iron, Dissolved	μg/l	<20	32	<20	<20
Manganese, Total	µg/l	<10	<10	<10	<10
Manganese, Dissolved	μg/l	<10	<10	<10	<10
Aluminum, Total	µg/l	<200	237	<200	<200
Aluminum, Dissolved	μg/l	<200	<200	<200	<200

Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

Parameter	Units	BBDC 4.1	CNWG 4.4	CNWG 4.4	CNWG 4.4	CNWG 4.4	DEER 44.2	DEER 44.2	DEER 44.2
Date	yyyymmdd	20000801	20000803	20001115	20010219	20010514	20000803	20001114	20010219
Time	hhmm	1010	1115	1050	932	1505	845	910	1330
Discharge	cfs	1.505	23.024	22.809	27.59	10.948	7.607	8.762	10.37
Temperature	degree C	17.5	23.3	9.9	1.4	15.5	21.2	8.9	2.5
Conductance	umhos/cm	129	235	232	242	236	207	196	212
Dissolved Oxygen	mg/l	5.78	4.79	5.95	7.36	5.28	5.02	6.4	7.51
рН		6.55	7.2	7.2	7.6	7.35	7.4	7.4	7.65
Alkalinity	mg/l	24	42	38	36	40	48	58	40
Acidity	mg/l	8	10	4	4	4	6	6	4
Solids, Total	mg/l	112	204	178	88	206	148	148	82
Solids, Dissolved	mg/l	112	186	178	88	176	140	136	90
Ammonia, Total	mg/l	< 0.02	0.04	< 0.02	0.03	0.03	0.03	< 0.02	< 0.02
Ammonia, Dissolved	mg/l	< 0.02	0.05	< 0.02	0.03	0.03	0.03	< 0.02	< 0.02
Nitrite, Total	mg/l	< 0.01	0.03	0.02	0.02	0.08	< 0.01	< 0.01	< 0.01
Nitrite, Dissolved	mg/l	< 0.01	0.03	0.02	0.02	0.08	4.01	< 0.01	< 0.01
Nitrate, Total	mg/l	4.9	7.75	8.44	9.32	8.76	4.05	4.47	5.15
Nitrate, Dissolved	mg/l	5.49	7.77	8.54	9.32	8.87	3.97	4.64	5.14
Nitrogen, Total	mg/l	5.19	8.26	9.14	10.34	9.54	4.39	4.83	6.03
Nitrogen Dissolved	mg/l	5.83	8.36	9.15	10.26	9.36	4.25	4.78	5.78
Phosphorus, Total	mg/l	0.02	0.07	0.02	0.05	0.04	0.02	0.02	0.04
Phosphorus, Dissolved	mg/l	0.021	0.044	0.015	0.039	0.017	0.01	0.013	0.023
Orthophosphate, Total	mg/l	0.012	0.039	0.01	0.037	0.027	0.02	0.018	0.024
Orthophosphate, Dissolved	mg/l	< 0.01	0.028	0.01	0.031	0.012	< 0.01	0.013	0.025
Organic Carbon, Total	mg/l	1.2	3.1	2.3	1.9	2.3	2.1	1.7	1
Calcium	mg/l	9.45	17.6	17.6	17	18	17.5	16.8	16.4
Magnesium	mg/l	5.63	10.7	10.3	11.8	10	6.19	5.95	5.68
Chloride	mg/l	11	18	19	21	20	23	23	30
Sulfate	mg/l	<20	<20	<20	45	<20	<20	<20	<20
Turbidity	ntu	1.36	9.52	2.02	2.49	3.87	3.9	2.87	1.64
Iron, Total	µg/l	128	414	138	272	476	165	145	208
Iron, Dissolved	µg/l	23	44	33	73	78	53	45	35
Manganese, Total	µg/l	10	45	10	52	62	31	19	25
Manganese, Dissolved	µg/l	<10	28	<10	48	43	22	16	23
Aluminum, Total	µg/l	<200	299	<200	214	427	<200	<200	<200
Aluminum, Dis solved	μg/l	<200	<200	<200	<200	<200	<200	<200	<200

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams

Parameter	Units	DEER 44.2	EBAU 1.5	EBAU 1.5	EBAU 1.5	EBAU 1.5	FBDC 4.1	LNGA 2.5	LNGA 2.5
Date	yyyymmdd	20010514	20000801	20001114	20010220	20010514	20000801	20000731	20001114
Time	hhmm	940	835	1025	1025	1045	1120	900	750
Discharge	cfs	9.766	6.062	5.575	7.454	7.181	1.083	2.251	0.543
Temperature	degree C	11.9	19.7	9.7	4	11.4	19.4	19.2	9.5
Conductance	umhos/cm	200	194	205	231	180	113	180	181
Dissolved Oxygen	mg/l	5.37	5.44	6.07	7.37	5.58	5.52	5.34	5.99
pH		7.3	6.9	7.1	7.4	7.25	6.8	6.85	7.1
Alkalinity	mg/l	44	38	52	28	20	22	38	36
Acidity	mg/l	6	12	6	2	4	10	14	8
Solids, Total	mg/l	152	160	162	164	132	104	148	154
Solids, Dissolved	mg/l	128	160	144	144	NA	104	134	128
Ammonia, Total	mg/l	< 0.02	< 0.02	< 0.02	0.07	0.02	< 0.02	0.03	< 0.02
Ammonia, Dissolved	mg/l	< 0.02	< 0.02	< 0.02	0.07	< 0.02	< 0.02	0.03	< 0.02
Nitrite, Total	mg/l	< 0.04	< 0.01	< 0.01	0.09	< 0.04	< 0.01	0.01	0.01
Nitrite, Dissolved	mg/l	< 0.04	< 0.01	0.01	0.08	< 0.04	< 0.01	0.01	< 0.01
Nitrate, Total	mg/l	4.91	4.9	6	6.24	5.62	4.08	4.71	5.52
Nitrate, Dissolved	mg/l	4.89	4.8	5.89	6.21	5.54	4.05	4.61	5.68
Nitrogen, Total	mg/l	5.28	5.32	6.32	7.18	6.03	4.2	5.26	6.14
Nitrogen Dissolved	mg/l	5.2	5.43	6.43	7.17	5.97	4.25	4.98	6.13
Phosphorus, Total	mg/l	0.02	0.11	0.1	0.14	0.02	0.02	0.04	0.02
Phosphorus, Dissolved	mg/l	< 0.01	0.12	0.075	0.12	0.015	0.013	0.03	0.01
Orthophosphate, Total	mg/l	0.011	0.056	0.078	0.11	0.017	< 0.01	0.027	0.016
Orthophosphate, Dissolved	mg/l	< 0.01	0.034	0.078	0.12	0.013	< 0.01	0.013	< 0.01
Organic Carbon, Total	mg/l	1.3	2.5	1.9	1.8	1.5	2	3.5	1.8
Calcium	mg/l	15.9	15.9	13.6	16.1	13.6	7.77	16.5	16.6
Magnesium	mg/l	6.18	5.94	5.65	5.41	5.51	4.34	6.15	5.76
Chloride	mg/l	25	20	24	35	20	10	16	17
Sulfate	mg/l	<20	<20	<20	28	<20	<20	22	<20
Turbidity	ntu	1.73	1.68	1.3	<1	1.4	2.28	8.5	5.67
Iron, Total	µg/l	132	377	172	105	175	373	551	279
Iron, Dissolved	μg/l	47	178	86	43	50	149	77	62
Manganese, Total	µg/l	24	63	32	28	26	17	112	43
Manganese, Dissolved	μg/l	21	54	29	27	22	<10	79	29
Aluminum, Total	µg/l	<200	<200	<200	<200	<200	<200	323	<200
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	<200	<200	<200	<200

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams – Continued

Parameter	Units	LNGA 2.5	LNGA 2.5	OCTO 6.6	OCTO 6.6	OCTO 6.6	OCTO 6.6	SBCC 20.4	SCTT 3.0
Date	yyyymmdd	20010220	20010514	20000802	20001115	20010219	20010514	20000731	20000802
Time	hhmm	850	750	1200	945	1105	1415	1030	845
Discharge	cfs	3.07	0.856	96.92	138.26	150.26	73.198	1.429	0.503
Temperature	degree C	4.5	9.1	25.3	9.7	1.8	18.2	18.8	20.1
Conductance	umhos/cm	180	177	234	239	220	237	136	324
Dissolved Oxygen	mg/l	6.79	5.64	5.52	6.72	7.22	5.14	5.66	4.22
pH		7.35	7.1	7.75	7.75	7.6	7.8	7.2	7.05
Alkalinity	mg/l	24	36	52	34	44	30	42	88
Acidity	mg/l	2	6	4	2	4	2	4	12
Solids, Total	mg/l	144	180	180	166	134	204	114	208
Solids, Dissolved	mg/l	120	158	166	166	122	192	114	192
Ammonia, Total	mg/l	< 0.02	0.02	0.02	< 0.02	0.55	0.02	0.02	0.76
Ammonia, Dissolved	mg/l	0.02	0.02	0.03	< 0.02	0.53	0.02	< 0.02	0.76
Nitrite, Total	mg/l	< 0.04	< 0.04	0.02	0.02	0.05	0.07	< 0.01	0.26
Nitrite, Dissolved	mg/l	< 0.04	< 0.04	0.01	0.01	0.05	0.06	< 0.01	0.22
Nitrate, Total	mg/l	6.69	6.54	5	4.78	5.06	5.55	1.52	1.36
Nitrate, Dissolved	mg/l	6.71	6.69	4.91	4.67	5.14	5.52	1.6	1.57
Nitrogen, Total	mg/l	7.42	6.77	5.57	5.79	6.77	6.43	1.86	3.06
Nitrogen Dissolved	mg/l	7.39	6.64	5.34	5.2	6.7	6.16	1.9	3.15
Phosphorus, Total	mg/l	0.02	0.03	0.11	0.02	0.26	0.04	0.02	0.27
Phosphorus, Dissolved	mg/l	0.022	< 0.01	0.074	< 0.01	0.25	0.02	0.01	0.1
Orthophosphate, Total	mg/l	0.028	0.02	0.063	< 0.01	0.22	0.026	0.014	0.17
Orthophosphate, Dissolved	mg/l	0.026	< 0.01	0.026	< 0.01	0.22	0.014	< 0.01	0.053
Organic Carbon, Total	mg/l	1.5	2	3.3	3	4.5	2.8	2.4	4.3
Calcium	mg/l	16.1	15.6	18.7	19.5	15.9	20.3	15	28.8
Magnesium	mg/l	6.03	6.17	11.7	10.2	8.18	9.97	4.15	13.1
Chloride	mg/l	18	16	17	17	19	18	9	37
Sulfate	mg/l	21	22.1	24	29	35	21.3	<20	26
Turbidity	ntu	2.24	4.53	1.61	1.38	5.87	2.82	3.87	4.67
Iron, Total	µg/l	225	309	107	89	383	252	375	941
Iron, Dissolved	μg/l	42	57	<20	32	151	44	127	170
Manganese, Total	μg/1	33	55	30	<10	70	74	33	194
Manganese, Dissolved	μg/l	33	44	11	<10	63	44	18	158
Aluminum, Total	μg/1	<200	337	<200	<200	292	245	<200	<200
Aluminum, Dissolved	μg/l	<200	<200	<200	<200	<200	<200	<200	<200

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams – Continued

Parameter	Units	SCTT 3.0	SCTT 3.0	SCTT 3.0	SUSQ 44.5	SUSQ 44.5	SUSQ 44.5	SUSQ 44.5
Date	yyyymmdd	20001114	20010220	20010514	20000803	200011113	20010212	20010514
Time	hhmm	1200	1200	1215	1315	1200	1250	1615
Discharge	cfs	0.369	0.747	1.058	26200	12100	33800	14700
Temperature	degree C	10.2	5	12.9	28.2	12.6	4.5	19.8
Conductance	umhos/cm	300	392	255	294	339	289	327
Dissolved Oxygen	mg/l	5.15	7.11	4.47	4.46	N/A	N/A	5.03
pH		7.15	7.45	7.1	7.75	7.4	7.9	8.2
Alkalinity	mg/l	140	44	40	70	64	50	78
Acidity	mg/l	8	2	14	6	6	2	2
Solids, Total	mg/l	226	268	176	242	182	254	218
Solids, Dissolved	mg/l	214	242	156	226	166	254	182
Ammonia, Total	mg/l	0.23	0.09	0.08	0.05	0.03	0.21	< 0.02
Ammonia, Dissolved	mg/l	0.25	0.09	0.08	0.05	0.03	0.2	< 0.02
Nitrite, Total	mg/l	0.06	< 0.04	< 0.04	0.02	0.01	0.02	< 0.04
Nitrite, Dissolved	mg/l	0.05	< 0.04	< 0.04	0.02	0.02	0.02	< 0.04
Nitrate, Total	mg/l	1.13	3.54	1.98	1.35	0.81	1.79	0.88
Nitrate, Dissolved	mg/l	1.16	3.49	2	1.4	0.85	1.77	0.92
Nitrogen, Total	mg/l	0.98	4.02	2.54	1.9	1.25	2.32	1.65
Nitrogen Dissolved	mg/l	2.16	4.11	2.54	1.84	1.18	2.22	1.34
Phosphorus, Total	mg/l	0.13	0.04	0.05	0.06	0.04	0.09	0.05
Phosphorus, Dissolved	mg/l	0.081	0.025	0.03	0.036	0.02	0.047	< 0.01
Orthophosphate, Total	mg/l	0.094	0.023	0.04	0.032	0.021	0.042	0.036
Orthophosphate, Dissolved	mg/l	0.074	0.028	0.031	0.015	0.021	0.039	< 0.01
Organic Carbon, Total	mg/l	5.6	2.1	1.7	3.4	2.7	2.5	3.4
Calcium	mg/l	26.4	27	18.7	31	32.4	26.1	36.5
Magnesium	mg/l	12.5	17.7	9.58	8.95	9.66	7.18	9.03
Chloride	mg/l	33	60	34	17	23	29	26
Sulfate	mg/l	33	38	<20	45	622	32	43.2
Turbidity	ntu	8.69	1.83	1.83	6.37	3.05	2.82	4.82
Iron, Total	µg/l	660	233	711	286	526	734	329
Iron, Dissolved	µg/l	237	93	411	<20	<20	60	21
Manganese, Total	µg/l	144	147	31	60	21.2	145	163
Manganese, Dissolved	µg/l	130	142	28	25	11	67.9	34
Aluminum, Total	µg/l	<200	<200	249	250	52.9	145	1350
Aluminum, Dissolved	µg/l	<200	<200	<200	<200	10.9	17.1	<200

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams – Continued

Parameter	Units	SUSQ 10.0	SUSQ 10.0	SUSQ 10.0	SUSQ 10.0
Date	yyyymmdd	20000802	20001115	20010219	20010514
Time	hhmm	1000	815	1200	1305
Discharge	cfs	6060	30800	66300	11100
Temperature	degree C	27.4	13.8	4.5	22
Conductance	umhos/cm	297	298	243	251
Dissolved Oxygen	mg/l	3.46	5.82	6.88	4.08
pН		7.05	7.65	7.6	8.05
Alkalinity	mg/l	66	78	32	82
Acidity	mg/l	6	6	4	2
Solids, Total	mg/l	216	182	130	170
Solids, Dissolved	mg/l	210	170	118	164
Ammonia, Total	mg/l	0.07	0.05	0.09	0.06
Ammonia, Dissolved	mg/l	0.07	0.05	0.09	0.06
Nitrite, Total	mg/l	0.09	0.02	0.02	< 0.04
Nitrite, Dissolved	mg/l	0.07	0.02	0.01	< 0.04
Nitrate, Total	mg/l	1.05	0.95	1.41	0.81
Nitrate, Dissolved	mg/l	1.04	0.96	1.43	0.8
Nitrogen, Total	mg/l	1.66	1.58	1.89	1.42
Nitrogen Dissolved	mg/l	1.63	1.52	1.94	1.31
Phosphorus, Total	mg/l	0.07	0.07	0.05	0.03
Phosphorus, Dissolved	mg/l	0.019	0.025	0.03	< 0.01
Orthophosphate, Total	mg/l	0.029	0.02	0.042	0.02
Orthophosphate, Dissolved	mg/l	0.017	0.02	0.029	< 0.01
Organic Carbon, Total	mg/l	2.7	3.3	2.3	2.6
Calcium	mg/l	30	29.4	22.8	26.6
Magnesium	mg/l	9.44	8.8	6.07	6.75
Chloride	mg/l	21	21	26	18
Sulfate	mg/l	41	68	34	41.9
Turbidity	ntu	2.7	4.35	4.69	2.63
Iron, Total	µg/l	201	231	472	252
Iron, Dissolved	µg/l	<20	32	66	120
Manganese, Total	µg/l	134	55	143	128
Manganese, Dissolved	µg/l	24	<10	112	11
Aluminum, Total	µg/l	<200	<200	<200	479
Aluminum, Dissolved	µg/l	<200	<200	<200	<200

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams – Continued

 Table A3.
 Water Quality Data for Group 3 Streams

Parameter	Units	Cook Hollow Run	Babcock Run	Bill Hess Creek	Bird Creek	Biscuit Hollow Run	Briggs Hollow Run
Date	yyyymmdd	20010501	20010507	20010502	20010502	20010501	20010507
Time	hhmm	1230	1320	940	1310	1330	1145
Temperature	degree C	13.6	12.4	10.8	13.8	15.2	10.6
pH		6.65	7.00	6.75	6.85	6.30	7.45
Dissolved Oxygen	mg/l	5.97	6.23	6.46	6.34	5.09	6.07
Conductivity	umhos/cm	127	123	283	150	149	214
Alkalinity	mg/l	52.0	24.0	62.0	38.0	46.0	48.0
Acidity	mg/l	10.0	4.0	6.0	6.0	8.0	6.0

Parameter	Units	Bulkley Brook	Camp Brook	Deep Hollow Brook	Little Wappasening		
	11	20040504	20040502	20040507		20040507	20040507
Date	yyyymmdd	20010501	20010502	20010507	20010507	20010507	20010507
Time	hhmm	1435	830	1630	1100	900	1410
Temperature	degree C	15.6	10.7	18.2	11.4	10.2	16.8
pH		6.50	6.85	6.70	7.30	7.10	9.30
Dissolved Oxygen	mg/l	5.38	6.45	4.99	6.12	6.67	7.51
Conductivity	umhos/cm	81	226	53	185	137	121
Alkalinity	mg/l	26.0	44.0	8.0	44.0	30.0	42.0
Acidity	mg/l	6.0	4.0	4.0	4.0	4.0	0.0

Parameter	Units	Red House Run	Russell Run	Sackett Creek	Smith Creek	Strait Creek	White Branch Cowanesque River
Date	yyyymmdd	20010502	20010507	20010507	20010502	20010502	20010501
Time	hhmm	715	1235	1000	1140	1035	1135
Temperature	degree C	9.6	14.8	11.3	11.9	11.8	15.2
рН		6.55	7.75	7.50	6.35	6.80	6.60
Dissolved Oxygen	mg/l	6.1	6.48	6.18	5.99	6.43	6.37
Conductivity	umhos/cm	73	144	199	150	193	171
Alkalinity	mg/l	20.0	42.0	30.0	42.0	48.0	28.0
Acidity	mg/l	4.0	2.0	2.0	4.0	4.0	4.0

Parameter	Units	White Hollow
Date	yyyymmdd	20010502
Time	hhmm	1445
Temperature	degree C	10.6
pH		6.60
Dissolved Oxygen	mg/l	6.23
Conductivity	umhos/cm	137
Alkalinity	mg/l	26.0
Acidity	mg/l	6.0

 Table A3.
 Water Quality Data for Group 3 Streams -- Continued

APPENDIX B

ORGANIC POLLUTION-TOLERANCE AND FUNCTIONAL FEEDING GROUP DESIGNATIONS OF BENTHIC MACROINVERTEBRATE TAXA

Class: Order	Family	Family/Genus	Organic Pollution Tolerance Value	Functional Feeding Group Designation	
Amphipoda	Gammaridae	Gammarus	6	SH	
Arachnoidea	Hydracarina	Hydracarina	7	Р	
Coleoptera	Dytiscidae	Agabus	5	Р	
	Elmidae	Optioservus	4	SC	
		Oulimnius	5	SC	
		Stenelmis	5	SC	
	Gyrinidae	Dineutus	4	Р	
	Hydrophilidae	Laccobius	5	Р	
	Psephenidae	Ectopria	5	SC	
	*	Psephenus	4	SC	
	Ptilodactylidae	Anchytarsus	5	SH	
	Scirtidae	Cyphon	8	SC	
Decapoda	Cambaridae	female	6	SH	
		Cambarus bartonii bartonii	6	SH	
		Orconectes obscurus	6	SH	
		Procambarus acutus acutus	6	SH	
Diptera	Athericidae	Atherix	2	Р	
	Ceratopogonidae	Bezzia	6	Р	
	Chironomidae	Chironomidae	6	CG	
	Empididae	Chelifera	6	Р	
		Hemerodromia	6	Р	
	Simuliidae	Prosimulium	2	FC	
		Simulium	6	FC	
		Twinnia	6	SC	
	Tabanidae	Tabanus	5	Р	
	Tipulidae	Antocha	3	CG	
	*	Dicranota	3	Р	
		Hexatoma	2	Р	
		Leptotarsus	4	SH	
		Tipula	4	SH	
Ephemeroptera	Ameletidae	Ameletus	0	CG	
	Baetidae	Acentrella	4	CG	
		Baetis	6	CG	
		Centroptilum	2	CG	
		Heterocleon	2	SC	
	Caenidae	Caenis	7	CG	
	Ephemerellidae	Drunella	1	SC	
	*	Ephemerella	1	SC	

Class: Order	Family	Family/Genus	Organic Pollution Tolerance Value	Functional Feeding Group Designation
		Eurylophella	4	CG
		Serratella	2	CG
	Ephemeridae	Ephemera	2	CG
	Heptageniidae	Epeorus	0	CG
		Heptagenia	4	SC
		Leucrocuta	1	SC
		Stenacron	4	CG
		Stenonema	3	SC
	Isonychiidae	Isonychia	3	FC
	Leptophlebiidae	Habrophlebiodes	6	SC
		Paraleptophlebia	1	CG
	Polymitarcyidae	Ephoron	2	CG
	Potamanthidae	Anthopotamus	4	FC
	Tricorythidae	Tricorythodes	4	CG
Gastropoda	Lymnaeidae	Stagnicola	7	SC
	Physidae	Physella	8	SC
	Pleuroceridae	Leptotoxis	7	SC
Isopoda	Asellidae	Caecidotea	6	SH
Megaloptera	Corydalidae	Corydalus	4	Р
		Nigronia	2	Р
	Sialidae	Sialis	6	Р
Odonata	Aeshnidae	Boyeria	2	Р
	Gomphidae	Dromogomphus	4	Р
		Ophiogomphus	1	Р
		Lanthus	5	Р
		Stylogomphus	4	Р
Oligochaeta	Nadidae	Nadidae	8	CG
-	Lumbricidae	Lumbricidae	8	CG
	Lumbriculidae	Lumbriculidae	8	CG
Pelecypoda	Corbiculidae	Corbicula fluminea	4	FC
	Sphaeriidae	Pisidium	8	FC
Plecoptera	Chloroperlidae	Haploperla	0	Р
		Suwallia	0	Р
		Sweltsa	0	Р
	Nemouridae	Amphinemura	3	SH
		Nemoura	1	SH
	Leuctridae	Leuctra	0	SH
	Peltoperlidae	Tallaperla	0	SH
	Perlidae	Acroneuria	0	Р
		Agnetina	2	Р
		Eccoptura	2	Р
		Neoperla	3	Р
		Paragnetina	1	Р

Class: Order	Family	Family/Genus	Organic Pollution Tolerance Value	Functional Feeding Group Designation
Plecoptera	Perlidae	Perlesta	4	Р
	Perlodidae	Clioperla	2	Р
		Diura	2	SC
		Isoperla	2	Р
	Pteronarcyidae	Pteronarcys	0	SH
Trichoptera	Glossosomatidae	Glossosoma	0	SC
	Hydropsychidae	Ceratopsyche	5	FC
		Cheumatopsyche	6	FC
		Diplectrona	0	FC
		Hydropsyche	5	FC
		Macrostemum	3	FC
	Hydroptilidae	Hydroptila	6	SC
	Lepidostomatidae	Lepidostoma	1	SH
	Limnephilidae	Goera	0	SC
	Philopotamidae	Chimarra	4	FC
		Dolophilodes	0	FC
		Wormaldia	0	FC
	Polycentropodidae	Polycentropus	6	Р
	Psychomyiidae	Psychomyia	2	CG
	Rhyacophilidae	Rhyacophila	1	Р

$\mathsf{APPENDIX}\ C$

MACROINVERTEBRATE DATA FOR INTERSTATE STREAMS CROSSING THE NEW YORK-PENNSYLVANIA AND PENNSYLVANIA-MARYLAND BORDERS

Class: Order	Family	Family/ <i>Genus</i>	APAL 6.9	BNTY 0.9	CASC 1.6	CAYT 1.7	CHOC 9.1
Arachnoidea	Hydracarina	Hydracarina					1
Coleoptera	Elmidae	Optioservus	10		4	11	
		Oulimnius					21
		Stenelmis	40	10		25	8
	Psephenidae	Psephenus	15	5		17	17
Decapoda	Cambaridae	Cambarus bartonii bartonii			2		
		Orconectes obscurus				1	
Diptera	Athericidae	Atherix		8			1
	Ceratopogonidae	Bezzia					1
	Chironomidae	Chironomidae	22	51	70	56	39
	Empididae	Hemerodromia	3	3			
	Simuliidae	Simulium	5	1			2
		Twinnia			1		
	Tipulidae	Dicranota	2		4		2
		Hexatoma	4	1	4	4	4
Ephemeroptera	Baetidae	Acentrella	2				7
		Baetis	2	8		19	24
	Ephemerellidae	Serratella	1				
	Heptageniidae	Epeorus		1	4		
		Stenacron				1	
		Stenonema		4	2	1	3
	Isonychiidae	Isonychia	16		2	3	16
	Leptophlebiidae	Paraleptophlebia		1			
	Tricorythidae	Tricorythodes		4			
Megaloptera	Corydalidae	Corydalus	2				
	-	Nigronia	5		6		2
	Sialidae	Sialis	1				
Odonata	Aeshnidae	Boyeria			2		
	Gomphidae	Dromogomphus			1		
	-	Ophiogomphus	3			1	1
Plecoptera	Chloroperlidae	Haploperla			1		
*	*	Suwallia			1		
		Sweltsa	3	1	4		4
	Leuctridae	Leuctra	1	1			3
	Perlidae	Acroneuria	1		15		4
		Agnetina	1	2			3
		Neoperla		1			
	Pteronarcyidae	Pteronarcys			2		

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams

Class: Order	Family	Family/ <i>Genus</i>	APAL 6.9	BNTY 0.9	CASC 1.6	CAYT 1.7	CHOC 9.1
Trichoptera	Hydropsychidae	Ceratopsyche	7	33	5	8	19
		Cheumatopsyche	25	4	17	1	
		Hydropsyche	10		28		
	Philopotamidae	Chimarra	39	1	1	3	12
		Dolophilodes		1	5		
		Wormaldia			2		

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

Class: Order	Family	Family/ <i>Genus</i>	LSNK 7.6	NFCR 7.6	SEEL 10.3	SNAK 2.3	SOUT 7.8	TROW 1.8
Coleoptera	Elmidae	Optioservus	4	6		3		
*		Stenelmis	1	1	1		3	17
	Hydrophilidae	Laccobius		2				
	Psephenidae	Psephenus	6	18	4	6	26	
Decapoda	Cambaridae	female		1				
Diptera	Athericidae	Atherix	1		3	2	1	1
	Chironomidae	Chironomidae	51	66	93	41	69	78
	Empididae	Hemerodromia	1		2	1		
	Simuliidae	Simulium	2	1	5		5	1
	Tabanidae	Tabanus					1	
	Tipulidae	Antocha		1				
		Dicranota	2	14				
		Hexatoma		10	9			8
		Leptotarsus		1				
Ephemeroptera	Baetidae	Baetidae Acentrella 1 1		1				
		Baetis	10	12	4	19	13	34
	Heptageniidae	Epeorus		1		6		31
		Heptagenia		1				
		Stenonema		1		1	6	
	Isonychiidae	Isonychia	25		8	22	15	
	Leptophlebiidae	Habrophlebiodes		1				
		Paraleptophlebia		4				
	Tricorythidae	Tricorythodes			3			
Gastropoda	Lymnaeidae	Stagnicola					1	
Megaloptera	Corydalidae	Corydalus					2	
		Nigronia	7	8		1		1
Odonata	Aeshnidae	Boyeria	1					
	Gomphidae	Ophiogomphus			4			
Oligochaeta	Nadidae	Nadidae				2		1
	Lumbricidae	Lumbricidae				2		
Plecoptera	Chloroperlidae	Suwallia						1
		Sweltsa	2					1
	Leuctridae	Leuctra	4	7			1	

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

Class: Order	Family	Family/ <i>Genus</i>	LSNK 7.6	NFCR 7.6	SEEL 10.3	SNAK 2.3	SOUT 7.8	TROW 1.8
	Perlidae	Acroneuria	19		2	4	3	4
		Agnetina		2				10
		Neoperla						3
		Paragnetina	1			1	1	
	Pteronarcyidae	Pteronarcys	1					
Trichoptera	Hydropsychidae	Ceratopsyche	5	3	44	25	12	15
		Cheumatopsyche	9		10	5	23	3
		Hydropsyche	13		1		4	
	Philopotamidae	Chimarra	3			6	27	1
		Dolophilodes	13			19		
		Wormaldia	1					1
	Polycentropodidae	Polycentropus						2

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

Class: Order	Family	Family/ <i>Genus</i>	TRUP 4.5	WAPP 2.6	
Coleoptera	Elmidae	Optioservus		1	
		Stenelmis	6		
	Psephenidae	Psephenus	11	3	
Diptera	Athericidae	Atherix	2		
	Chironomidae	Chironomidae	17	65	
	Tabanidae	Tabanus	1		
	Tipulidae	Antocha	1		
		Dicranota	1		
		Hexatoma	3	4	
Ephemeroptera	Baetidae	Acentrella		1	
		Baetis	1	15	
	Heptageniidae	Heptagenia		1	
		Stenonema	2	6	
	Isonychiidae	Isonychia	2	20	
	Tricorythidae	Tricorythodes	1		
Megaloptera	Corydalidae	Nigronia	1		
Odonata	Gomphidae	Lanthus		1	
Oligochaeta	Nadidae	Nadidae		3	
Plecoptera	Chloroperlidae	Sweltsa		1	
	Perlidae	Neoperla	25		
Trichoptera	Hydropsychidae	Ceratopsyche	29	12	
	* * *	Cheumatopsyche	14	7	
		Hydropsyche	1		
	Philopotamidae	Chimarra		4	
	*	Dolophilodes		2	

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams—Continued

Class: Order	Family	Family/ <i>Genus</i>	BBDC 4.1	CNWG 4.4	DEER 44.5	EBAU 1.5	FBDC 4.1
Coleoptera	Elmidae	Optioservus	29		18	31	50
		Oulimnius					1
		Stenelmis		53	35	1	5
	Psephenidae	Psephenus			11	5	
	Ptilodactylidae	Anchytarsus	2				
Decapoda	Cambaridae	Cambarus bartonii bartonii					1
Diptera	Athericidae	Atherix		1	6		
	Chironomidae	Chironomidae	23	7	45	27	54
	Empididae	Chelifera				1	
	Simuliidae	Simulium		1	1		
	Tipulidae	Antocha	3		16	7	5
		Tipula				1	1
Ephemeroptera	Baetidae	Baetis	1	8	9	5	9
		Centroptilum	1	4			
	Ephemerellidae	Serratella	3	2			1
	Heptageniidae	Epeorus	5		1		
	1 0	Heptagenia		2			
		Stenonema	1	16			2
	Isonychiidae	Isonychia	12	7	12	1	
Megaloptera	Corydalidae	Corydalus		8			
		Nigronia	3	3	1		9
	Sialidae	Sialis			1		
Odonata	Aeshnidae	Boyeria					3
	Gomphidae	Lanthus			1		6
Pelecypoda	Corbiculidae	Corbicula fluminea		1			
Plecoptera	Leuctridae	Leuctra	11			2	14
	Perlidae	Acroneuria	12		6	2	4
		Agnetina	3				
		Eccoptura					8
		Perlesta			1		1
Trichoptera	Glossosomatidae	Glossosoma			-		2
	Hydropsychidae	Ceratopsyche	17	15	15	22	4
	ng ar op og en aue	Cheumatopsyche	13	19	25	9	13
		Diplectrona	10			-	1
		Hydropsyche	3	12	1	8	2
	Hydroptilidae	Hydroptila	5	12		0	1
	Limnephilidae	Goera					1
	Philopotamidae	Chimarra			5		
	Intopotuniduo	Dolophilodes	14		5		
		Wormaldia	17				1
	Polycentropodidae	Polycentropus	1				1
	Rhyacophilidae	Rhyacophila	2				

 Table C2.
 Macroinvertebrate Data for Pennsylvania-Maryland Border Streams

Class: Order	Family	Family/ <i>Genus</i>	LNGA 2.5	OCTO 6.6	SBCC 20.4	SCTT 3.0
Amphipoda	Gammaridae	Gammarus		10		
Arachnoidea	Hydracarina	Hydracarina			1	
Coleoptera	Dytiscidae	Agabus				6
-	Elmidae	Optioservus	12	1		
		Oulimnius	6		5	
		Stenelmis	18	1		
		Psephenus	1	7		
	Scirtidae	Cyphon	1			
Diptera	Athericidae	Atherix			3	
*	Chironomidae	Chironomidae	6	11	27	145
	Empididae	Chelifera	1			
	Simuliidae	Simulium				22
	Tipulidae	Antocha	7	4		
	-	Dicranota	4			
		Hexatoma	3		7	
		Tipula				4
Ephemeroptera	Baetidae	Baetis		5		
Sphemeroptera		Heterocleon		28		
	Ephemerellidae	Serratella		6		
	Heptageniidae	Stenonema		9	4	
	Isonychiidae	Isonychia		1		
Megaloptera	Corydalidae	Corydalus		1		
8F		Nigronia	1	_	4	
	Sialidae	Sialis			1	
Oligochaeta	Nadidae	Nadidae			-	4
8	Lumbricidae	Lumbricidae		1		3
Pelecypoda	Corbiculidae	Corbicula fluminea		2		
Plecoptera	Leuctridae	Leuctra	4		23	
	Peltoperlidae	Tallaperla			3	
	Perlidae	Acroneuria			6	
	Perlodidae	Isoperla			7	
Trichoptera	Hydropsychidae	Ceratopsyche	5	42	3	
menopion	-iju opsjemaae	Cheumatopsyche	2	23		
		Diplectrona	2	25	2	
		Hydropsyche	22	1		1
	Lepidostomatidae	Lepidostoma		1		1
	Philopotamidae	Chimarra	10	6		
	1 moporannuae	Dolophilodes	10	0	32	
	Rhyacophilidae	Rhyacophila			2	

 Table C2.
 Macroinvertebrate Data for Pennsylvania - Maryland Border Streams—Continued

Class: Order	Family	Family/ <i>Genus</i>	CHEM 12.0	COWN 1.0	COWN 2.2	SUSQ 289.1
Amphipoda	Gammaridae	Gammarus		7	10	
Coleoptera	Elmidae	Optioservus		3		1
		Stenelmis	17	27		22
	Gyrinidae	Dineutus				1
	Psephenidae	Psephenus	2	2		16
Decapoda	Cambaridae	Procambarus acutus acutus				1
Diptera	Athericidae	Atherix	1			
	Chironomidae	Chironomidae	15	17	97	5
	Empididae	Hemerodromia		2		
	Simuliidae	Simulium	4	12	12	
	Tipulidae	Tipula				
Ephemeroptera	Baetidae	Acentrella		3		
* *		Baetis	4	10		15
	Caenidae	Caenis			1	1
	Heptageniidae	Heptagenia				3
		Stenonema	4	11		4
	Isonychiidae	Isonychia	23			23
	Leptophlebiidae	Paraleptophlebia	1			
	Polymitarcyidae	Ephoron				3
	Potamanthidae	Anthopotamus				1
Gastropoda	Physidae	Physella	3			
*	Pleuroceridae	Leptotoxis				
Isopoda	Asellidae	Caecidotea		12	34	
Megaloptera	Corydalidae	Corydalus	2	1		
	Sialidae	Sialis	1			
Odonata	Gomphidae	Stylogomphus	1			
Oligochaeta	Nadidae	Nadidae				
0	Lumbriculidae	Lumbriculidae	1			
Pelecypoda	Sphaeriidae	Pisidium				1
Plecoptera	Perlidae	Acroneuria				
		Agnetina				2
Trichoptera	Hydropsychidae	Ceratopsyche		28	4	3
-	*	Cheumatopsyche	57	11	14	16
		Hydropsyche	3	3		1
		Macrostemum	4			2
	Philopotamidae	Chimarra	31	6		22
	Psychomyiidae	Psychomyia				

Table C3. Macroinvertebrate Data for River Sites

Class: Order	Family	Family/ <i>Genus</i>	SUSQ 340.0	SUSQ 365.0	TIOG 10.8
Amphipoda	Gammaridae	Gammarus	1	2	
Coleoptera	Elmidae	Optioservus			
		Stenelmis	39	14	1
	Gyrinidae	Dineutus	7	7	
	Psephenidae	Psephenus	10	13	
Decapoda	Cambaridae	Procambarus acutus acutus			
Diptera	Athericidae	Atherix	1		1
	Chironomidae	Chironomidae	6	17	37
	Empididae	Hemerodromia			1
	Simuliidae	Simulium	1		3
	Tipulidae	Tipula		1	
Ephemeroptera	Baetidae	Acentrella		5	
		Baetis	6	16	2
	Caenidae	Caenis		1	
	Heptageniidae	Heptagenia		1	
		Stenonema	1	3	5
	Isonychiidae	Isonychia	10	1	1
	Leptophlebiidae	Paraleptophlebia			
	Polymitarcyidae	Ephoron	5	5	
	Potamanthidae	Anthopotamus			
Gastropoda	Physidae	Physella			
*	Pleuroceridae	Leptotoxis		6	
Isopoda	Asellidae	Caecidotea			
Megaloptera	Corydalidae	Corydalus		1	6
0	Sialidae	Sialis			
Odonata	Gomphidae	Stylogomphus			
Oligochaeta	Nadidae	Nadidae			3
	Lumbriculidae	Lumbriculidae			
Pelecypoda	Sphaeriidae	Pisidium			2
Plecoptera	Perlidae	Acroneuria	4	1	
*		Agnetina	7	15	1
Trichoptera	Hydropsychidae	Ceratopsyche	6	2	25
•		Cheumatopsyche	20		7
		Hydropsyche	1	1	
		Macrostemum	2		19
	Philopotamidae	Chimarra	11	3	38
	Psychomyiidae	Psychomyia	1		

 Table C3.
 Macroinvertebrate Data for River Sites—Continued

Class: Order	Family	Family/ <i>Genus</i>	BABC	BILL	BIRD	BISC	BRIG
Coleoptera	Elmidae	Stenelmis		1			
*	Psephenidae	Psephenus		6	1		
Decapoda	Cambaridae	Orconectes obscurus	1				
Diptera	Chironomidae	Chironomidae	65	15	54	45	72
	Empididae	Chelifera					
		Hemerodromia			2		
	Simuliidae	Simulium	1	1	1	1	
	Tabanidae	Tabanus	2				
	Tipulidae	Hexatoma	3	10	8		4
Ephemeroptera	Ameletidae	Ameletus		5	6	9	1
	Baetidae	Acentrella	5	10			1
		Baetis	17	16	2	7	
		Centroptilum	1	5		4	1
	Ephemerellidae	Drunella			6		
		Ephemerella	2	4	2	3	
	Heptageniidae	Epeorus	2	8	31	17	38
		Heptagenia	2				
		Leucrocuta	3		4	17	
		Stenacron					2
		Stenonema	4	1			
	Leptophlebiidae	Paraleptophlebia	31	31			
Plecoptera	Chloroperlidae	Haploperla	4	1			4
		Sweltsa	18		1	26	13
	Nemouridae	Amphinemura	13	10	7	2	1
	Leuctridae	Leuctra	30	3			3
	Perlidae	Acroneuria		1	1		
		Agnetina		3			
	Perlodidae	Clioperla				1	
		Isoperla	5	7	2	4	4
Trichoptera	Hydropsychidae	Ceratopsyche		3			
		Cheumatopsyche		1		2	
	Philopotamidae	Dolophilodes				2	
	Polycentropodidae	Polycentropus	2				
	Rhyacophilidae	Rhyacophila					1

Table C4. Macroinvertebrate Data for Group 3 Sites

Class: Order	Family	Family/ <i>Genus</i>	BULK	CAMP	СООК	DEEP	LWAP
Coleoptera	Elmidae	Optioservus				2	
	Psephenidae	Psephenus			1		
	Ptilodactylidae	Anchytarsus				2	
Decapoda	Cambaridae	Orconectes obscurus	2	1	2	1	
Diptera	Ceratopogonidae	Bezzia	1			1	
	Chironomidae	Chironomidae	50	2	42	53	66
	Empididae	Chelifera	3			7	
	Simuliidae	Simulium	1	3		1	
	Tipulidae	Antocha				2	
		Dicranota				9	
		Hexatoma		14	2	4	
Ephemeroptera	Ameletidae	Ameletus	1	1	6		3
	Baetidae	Acentrella			3	1	14
		Baetis		7	5		6
		Centroptilum			3		
	Ephemerellidae	Drunella		1			
		Ephemerella		12	5	3	2
		Eurylophella				1	1
	Ephemeridae	Ephemera				5	
	Heptageniidae	Epeorus	17	39	15	1	18
		Leucrocuta	3		14		12
		Stenacron				2	
		Stenonema	4	2	2	4	
	Leptophlebiidae	Paraleptophlebia	5	3	1	7	1
Megaloptera	Corydalidae	Nigronia	1			5	
Odonata	Gomphidae	Ophiogomphus			1		
Plecoptera	Chloroperlidae	Sweltsa	11	3	31		19
	Nemouridae	Amphinemura	26	2	2		1
	Leuctridae	Leuctra	5	4	1		
	Perlidae	Acroneuria	6	2	2	2	1
		Agnetina		5			
	Perlodidae	Isoperla	1	20	4		1
Trichoptera	Hydropsychidae	Ceratopsyche		5			
		Cheumatopsyche			3		
		Diplectrona				2	
		Hydropsyche		3	2	1	
	Philopotamidae	Chimarra				2	
		Dolophilodes	3		1		
	Polycentropodidae	Polycentropus				1	
	Rhyacophilidae	Rhyacophila	8		1	3	

 Table C4.
 Macroinvertebrate Data for Group 3 Sites—Continued

Class: Order	Family	Family/ <i>Genus</i>	PARK	PRIN	REDH	RUSS	SACK
Coleoptera	Elmidae	Stenelmis		1			
•	Psephenidae	Psephenus		2			
Diptera	Chironomidae	Chironomidae	74	47	54	56	19
	Simuliidae	Simulium	1	17	1	3	5
	Tipulidae	Dicranota			1		
		Hexatoma	4	1	11	1	6
Ephemeroptera	Ameletidae	Ameletus	1	1	2	4	1
	Baetidae	Acentrella		1		2	11
		Baetis	6	4			
		Centroptilum	3				3
	Ephemerellidae	Ephemerella	1	7	1		
		Eurylophella					1
	Heptageniidae	Epeorus	23	7		17	39
		Leucrocuta	5	8	1		7
	Isonychiidae	Isonychia		1			
	Leptophlebiidae	Paraleptophlebia		5		1	7
	Tricorythidae	Tricorythodes		1			
Odonata	Gomphidae	Ophiogomphus		1			
		Stylogomphus			1		
Plecoptera	Chloroperlidae	Haploperla	1	3		14	6
		Sweltsa	6	3	38	26	10
	Nemouridae	Amphinemura	5	5	3	6	3
	Leuctridae	Leuctra	4		9	6	
	Perlodidae	Diura			5		
		Isoperla	3	2	1		3
Trichoptera	Hydropsychidae	Ceratopsyche	1	2			
_		Cheumatopsyche	1		2		
		Diplectrona				1	
		Hydropsyche	2				
	Philopotamidae	Dolophilodes			19		
	Polycentropodidae	Polycentropus			1		
	Rhyacophilidae	Rhyacophila			1	1	

Table C4. Macroinvertebrate Data for Group 3 Sites—Continued

			SMIT	STRA	WBCO	WHIT
Class: Order	Family	Family/ <i>Genus</i>				
Coleoptera	Elmidae	Optioservus	33		1	
1		Stenelmis			3	
	Psephenidae	Ectopria	1			
		Psephenus		15		
Decapoda	Cambaridae	Orconectes obscurus		1		
Diptera	Ceratopogonidae	Bezzia	1		1	1
*	Chironomidae	Chironomidae	61	19	32	18
	Simuliidae	Prosimulium			37	1
		Simulium		4		
	Tipulidae	Antocha			1	
	1	Dicranota	1			
		Hexatoma	3	10		13
		Tipula			2	
Ephemeroptera	Ameletidae	Ameletus	1	2		1
	Baetidae	Baetis		12		1
		Centroptilum		3		3
	Ephemerellidae	Ephemerella		5		
	Ephemeridae	Ephemera	2			
	Heptageniidae	Epeorus		9		45
		Leucrocuta	3	3		2
		Stenacron	2			
		Stenonema		1		
	Leptophlebiidae	Paraleptophlebia	4	34		
Gastropoda	Physidae	Physella			1	
Megaloptera	Sialidae	Sialis	1			
Oligochaeta	Lumbriculidae	Lumbriculidae			5	
Plecoptera	Chloroperlidae	Sweltsa		3		20
1	Nemouridae	Amphinemura	2	7		7
		Nemoura				15
	Leuctridae	Leuctra	7			2
	Perlidae	Acroneuria	2	1		
		Agnetina		2		
		Eccoptura	1			
	Perlodidae	Diura				5
		Isoperla		12		1
Trichoptera	Hydropsychidae	Ceratopsyche	1	6	9	
		Cheumatopsyche	3	1	10	
		Hydropsyche	1	1	17	
	Philopotamidae	Chimarra		2		
	1	Dolophilodes	1	1		2
	Polycentropodidae	Polycentropus	1	1		
	Rhyacophilidae	Rhyacophila	3			

Table C4. Macroinvertebrate Data for Group 3 Sites—Continued

Appendix D

WATER CLASSIFICATION AND BEST USAGE RELATIONSHIPS

New York:

The New York State water quality classifications are summarized from Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705, effective September 1, 1991, New York State Department of Environmental Conservation, Division of Water, Albany, New York. Only classifications that are used in this report will be described in this section. The classes are as follows:

Class A:

(a) The best usages of Class A waters are: a source of water supply for drinking, culinary or food processing purposes; primary and secondary contact recreation; and fishing. The waters shall be suitable for fish propagation and survival.

(b) This classification may be given to those waters that, if subjected to approved treatment equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to reduce naturally present impurities, meet or will meet New York State Department of Health drinking water standards and are or will be considered safe and satisfactory for drinking water purposes.

Class B: The best usages of Class B waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

Class C: The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

Class D: The best usage of these waters is fishing. Due to such natural conditions as intermittence of flow, water conditions not conducive to propagation of game fishery, or streambed conditions, the waters will not support fish propagation. These waters shall be suitable for fish survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

(T): Suffix added to classes where trout survival is an additional best use to the use classification.

Pennsylvania:

The Pennsylvania state water quality classifications are summarized from Water Quality Standards of the Department's Rules and Regulations, 25 Pa. Code, Chapter 93.3-5, effective November 2000, Pennsylvania Department of Environmental Protection, Division of Water Quality Assessment and Standards, Harrisburg, Pennsylvania. All surface waters must meet protected water uses for aquatic life (warm water fishes), water supply (potable, industrial, livestock, and wildlife), and recreation (boating, fishing, water contact sports, and aesthetics). Only classifications that are used in this report will be described in this section. The use classifications are as follows:

CWF – Cold Water Fishes: Maintenance and/or propagation of fish species including the family Salmonidae and additional flora and fauna, which are indigenous to a cold water habitat.

WWF – Warm Water Fishes: Maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

TSF – Trout Stocked Fishery: Maintenance of stocked trout from February 15 to July 31 and maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

MF – Migratory Fishes: Passage, maintenance and propagation of anadromous and catadromous fishes and other fishes that ascend to flowing waters to complete their life cycle. The MF designation is in addition to other designations when appropriate.

Maryland:

The Maryland State water quality classifications are summarized from Water Quality Regulations for Designated Uses, COMAR 26.08.02, Effective August 2000, Maryland Department of the Environment, Annapolis, Maryland. All surface waters must protect public health or welfare; enhance the quality of water; protect aquatic resources; and serve the purposes of the Federal Act. Only classifications that are used in this report will be described in this section. The designated use classifications are as follows:

- **I-P** Protection of fish and aquatic life and contact recreation (fishable/swimmable), and Use I-P, which includes drinking water supply.
- III-P Natural trout waters and Use III-P, which includes a drinking water supply.

IV-P – Recreational trout waters and Use IV-P, which includes drinking water.

APPENDIX E

STATISTICAL TREND RESULTS BY PARAMETER

		C	concentration	າຣ		Fl	ow-Adjusted	Concentratio	ons
Station	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	1.000	0.000	-0.002	0.000	177	0.540	-1.793	-0.076	21.709
Chemung River	0.238	1.984	0.125	0.855	232	0.537	0.909	0.053	-67.018
Conowingo Creek	0.609	0.666	0.016	0.399	167	0.520	0.658	0.058	NA
Cowanesque River	0.121	1.734	0.199	1.398	124	0.599	0.997	0.096	-34.718
Deer Creek	0.140	1.445	0.042	1.103	131	0.122	1.375	0.072	NA
Ebaugh Creek	0.307	2.013	0.179	1.227	164	1.000	0.025	0.008	-0.171
Octoraro Creek	0.692	0.562	-0.060	0.323	174	0.592	0.637	-0.015	-8.092
Scott Creek	0.835	-2.005	0.018	-0.938	214	0.800	0.466	0.115	41.204
Susquehanna River 10.0	0.478	1.004	-0.009	0.577	174	1.000	0.059	-0.131	5.267
Susquehanna River 44.5	0.216	3.099	0.145	1.694	183	0.731	-0.557	-0.009	5.045
Susquehanna River 289.1	0.888	0.000	0.012	0.000	156	0.501	-0.516	-0.074	-17.398
Susquehanna River 340	0.353	0.803	0.103	0.637	126	0.575	0.360	0.068	-12.283
Susquehanna River 365	0.340	0.630	0.099	0.478	132	0.190	1.298	0.122	-35.673
Tioga River	0.097	-1.630	-0.162	-1.165	140	0.286	-1.494	-0.122	37.641
Troups Creek	0.147	1.989	0.167	1.198	166	0.403	0.738	0.117	-72.375

 Table E1.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Suspended Solids

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

		C	concentration	IS		Flow - Adjusted Concentrations				
Station	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope	
Cayuta Creek	< 0.001	-0.002	-0.383	-6.677	0.030	0.006	-0.002	-0.274	28.568	
Chemung River	< 0.001	-0.003	-0.329	-8.362	0.040	0.002	-0.004	-0.212	84.639	
Conowingo Creek	0.059	-0.002	-0.200	-4.765	0.040	0.880	0.000	-0.053	-0.632	
Cowanesque River	0.271	-0.002	-0.143	-2.776	0.060	0.136	-0.003	-0.209	NA	
Deer Creek	0.005	-0.002	-0.355	-5.084	0.030	0.125	0.001	-0.256	29.853	
Ebaugh Creek	0.002	-0.003	-0.288	-6.703	0.050	0.058	-0.003	-0.122	36.049	
Octoraro Creek	0.005	-0.003	-0.210	-6.409	0.040	0.972	-0.001	0.160	11.095	
Scott Creek	1.000	0.000	-0.044	0.000	0.170	0.971	0.000	0.003	1.156	
Susquehanna River 10.0	0.064	-0.002	-0.113	-2.386	0.070	0.220	0.002	-0.059	13.181	
Susquehanna River 44.5	0.020	-0.002	-0.126	-4.435	0.050	0.066	-0.002	-0.107	52.321	
Susquehanna River 289.1	0.003	-0.003	-0.280	-5.741	0.050	0.030	-0.003	-0.201	46.190	
Susquehanna River 340	< 0.001	-0.002	-0.343	-7.413	0.030	< 0.001	-0.002	-0.358	13.445	
Susquehanna River 365	< 0.001	-0.002	-0.309	-6.715	0.030	< 0.001	-0.002	-0.363	34.373	
Tioga River	< 0.001	-0.003	-0.359	-6.245	0.060	< 0.001	-0.003	-0.319	54.566	
Troups Creek	0.684	0.000	-0.045	0.000	0.020	0.778	0.000	0.038	-11.159	

Table E2. Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Ammonia

Strong Significant Trend: P < 0.05 Significant Trend: 0.05 < P < 0.10 No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

		C	oncentration	າຣ		Flow - Adjusted Concentrations					
Station	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope		
Cayuta Creek	0.079	-0.023	-0.171	-2.668	0.877	0.011	-0.045	-0.279	65.322		
Chemung River	0.011	-0.028	-0.246	-2.497	1.138	0.009	-0.029	-0.253	-54.725		
Conowingo Creek	< 0.001	0.170	0.468	2.100	8.110	< 0.001	0.169	0.443	NA		
Cowanesque River	< 0.001	-0.058	-0.422	-6.932	0.830	0.044	-0.029	-0.275	-82.955		
Deer Creek	0.138	0.035	0.129	0.704	4.923	0.527	0.014	0.073	20.670		
Ebaugh Creek	0.978	-0.002	0.026	-0.029	6.152	0.158	0.041	-0.049	-29.293		
Octoraro Creek	0.212	0.081	0.073	1.418	5.720	0.781	0.010	-0.046	-18.163		
Scott Creek	0.368	-0.045	-0.127	-1.980	2.296	0.065	-0.105	-0.209	52.803		
Susquehanna River 10.0	0.063	-0.033	-0.264	-2.123	1546	0.039	-0.028	-0.247	NA		
Susquehanna River 44.5	0.759	-0.009	-0.029	-0.751	1.256	0.738	-0.005	-0.018	-11.828		
Susquehanna River 289.1	0.003	-0.030	-0.287	-3.051	0.980	< 0.001	-0.030	-0.329	NA		
Susquehanna River 340	0.004	-0.024	-0.284	-3.049	0.790	0.003	-0.023	-0.285	NA		
Susquehanna River 365	< 0.001	-0.029	-0.340	-3.433	0.852	0.001	-0.025	-0.374	NA		
Tioga River	0.001	-0.036	-0.313	-4.502	0.806	0.001	-0.030	-0.310	NA		
Troups Creek	0.002	-0.034	-0.337	-7.416	0.454	1.000	-0.001	-0.003	1.349		

 Table E3.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Nitrogen

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

		C	oncentration	S		Fle	ow-Adjusted	Concentratio	ns
Station	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	0.006	-0.004	-0.177	-4.450	0.090	0.065	-0.005	-0.200	42.846
Chemung River	0.344	-0.001	-0.089	-1.767	0.070	0.104	-0.002	-0.162	37.408
Conowingo Creek	0.001	-0.004	-0.284	-5.180	0.070	0.015	-0.003	-0.189	65.711
Cowanesque River	0.200	0.000	-0.128	0.000	0.030	0.188	-0.001	-0.203	NA
Deer Creek	0.006	-0.002	-0.228	-5.119	0.030	0.026	-0.001	-0.193	30.729
Ebaugh Creek	0.204	-0.001	-0.089	-2.767	0.040	0.577	-0.001	0.003	12.880
Octoraro Creek	0.009	-0.004	-0.203	-5.000	0.080	0.111	-0.003	-0.115	15.015
Scott Creek	0.117	-0.003	-0.107	-3.645	0.090	0.295	-0.006	0.039	58.126
Susquehanna River 10.0	0.005	-0.002	-0.201	-3.355	0.050	0.135	-0.001	-0.101	NA
Susquehanna River 44.5	0.060	-0.002	-0.136	-3.331	0.060	0.051	-0.002	-0.156	NA
Susquehanna River 289.1	< 0.001	-0.003	-0.321	-5.016	0.050	< 0.001	-0.002	-0.338	-71.688
Susquehanna River 340	< 0.001	-0.002	-0.325	-5.003	0.040	0.001	-0.002	-0.304	NA
Susquehanna River 365	< 0.001	-0.001	-0.318	-3.596	0.040	0.011	-0.002	-0.254	43.216
Tioga River	0.018	-0.001	-0.219	-2.778	0.030	0.051	-0.001	-0.194	39.126
Troups Creek	0.090	0.000	-0.182	0.000	0.020	0.397	0.000	-0.086	-29.924

Table E4. Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Phosphorus

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

		С	oncentratio	ns	Flow-Adjusted Concentrations					
Station	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope	
Cayuta Creek	0.173	0.602	0.133	2.410	25.0	0.671	0.237	0.060	-9.818	
Chemung River	0.005	1.156	0.265	3.988	29.0	< 0.001	0.788	0.432	49.389	
Conowingo Creek	< 0.001	0.228	0.517	1.427	16.0	< 0.001	0.225	0.474	NA	
Cowanesque River	0.335	0.125	0.160	1.252	10.0	0.599	-0.103	-0.003	26.124	
Deer Creek	< 0.001	0.414	0.427	2.433	17.0	< 0.001	0.420	0.491	NA	
Ebaugh Creek	0.002	1.823	0.329	7.148	25.5	0.066	1.815	0.207	-30.172	
Octoraro Creek	< 0.001	0.181	0.469	1.296	14.0	< 0.001	0.184	0.440	NA	
Scott Creek	0.889	0.000	0.083	0.000	37.0	0.971	0.016	0.112	1.417	
Susquehanna River 10.0	0.158	0.227	0.180	1.568	14.5	0.143	0.264	0.179	NA	
Susquehanna River 44.5	0.022	0.402	0.276	2.679	15.0	0.026	0.194	0.298	NA	
Susquehanna River 289.1	< 0.001	0.749	0.320	4.681	16.0	< 0.001	0.490	0.356	NA	
Susquehanna River 340	< 0.001	0.419	0.357	4.191	10.0	< 0.001	0.343	0.453	NA	
Susquehanna River 365	< 0.001	0.379	0.359	3.789	10.0	0.005	0.287	0.315	-58.282	
Tioga River	0.863	0.000	-0.015	0.000	10.0	0.921	-0.007	-0.012	6.373	
Troups Creek	0.212	0.332	0.140	2.373	14.0	1.000	-0.063	0.003	9.300	

 Table E5.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Chloride

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

Station		C	concentration	าร	Flow - Adjusted Concentrations				
	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	0.031	-0.763	-0.210	-3.179	24	0.039	-0.938	-0.209	NA
Chemung River	< 0.001	-1.020	-0.340	-3.518	29	< 0.001	-1.020	-0.413	NA
Conowingo Creek	0.269	-0.125	-0.053	-0.892	14	0.292	-0.232	-0.087	72.132
Cowanesque River	< 0.001	-1.391	-0.408	-6.050	23	0.054	-0.977	-0.218	NA
Deer Creek	0.094	0.000	0.202	0.000	10	0.321	0.059	0.102	-38.259
Ebaugh Creek	0.229	0.000	0.204	0.000	10	0.366	0.075	0.232	19.601
Octoraro Creek	0.841	0.000	0.067	0.000	21	1.000	-0.021	0.071	2.413
Scott Creek	0.095	-0.713	-0.117	-2.971	24	0.120	-0.559	-0.114	NA
Susquehanna River 10.0	0.344	-0.338	-0.079	-0.927	36.5	0.698	-0.238	-0.028	7.974
Susquehanna River 44.5	0.802	-0.255	-0.089	-0.594	43	0.058	-0.704	-0.295	27.180
Susquehanna River 289.1	0.104	-0.500	-0.161	-2.776	18	0.038	-0.466	-0.206	37.383
Susquehanna River 340	0.198	-0.331	-0.133	-1.948	17	0.162	-0.380	-0.142	43.963
Susquehanna River 365	0.673	0.000	-0.036	0.000	16	0.627	-0.110	-0.033	25.856
Tioga River	< 0.001	-1.753	-0.452	-4.494	39	< 0.001	-1.792	-0.495	NA
Troups Creek	0.013	-0.807	-0.277	-3.670	22	0.011	-0.685	-0.285	NA

 Table E6.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Sulfate

b -

NA -

P - Trend Probability

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

Not available

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

154

Station		C	Concentration	ıs	Flow - Adjusted Concentrations				
	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	< 0.001	-22.568	-0.367	-13.045	173	0.202	-7.924	-0.126	NA
Chemung River	< 0.001	-29.127	-0.417	-11.426	259	0.002	-43.051	-0.295	26.779
Conowingo Creek	< 0.001	-50.325	-0.410	-12.550	401	0.011	-24.534	-0.242	27.501
Cowanesque River	0.505	7.204	0.078	3.118	231	0.381	13.673	0.106	-35.832
Deer Creek	< 0.001	-28.091	-0.493	-14.296	196.5	0.044	-15.649	-0.162	26.896
Ebaugh Creek	< 0.001	-32.001	-0.539	-14.480	221	< 0.001	-20.412	-0.367	48.483
Octoraro Creek	< 0.001	-40.861	-0.407	-10.215	400	0.238	-10.117	-0.034	NA
Scott Creek	0.464	-17.272	-0.027	-3.539	488	0.404	-34.392	-0.075	44.747
Susquehanna River 10.0	< 0.001	-43.940	-0.492	-9.319	471.5	0.001	-62.073	-0.378	64.661
Susquehanna River 44.5	0.001	-38.286	-0.367	-7.349	521	0.035	-28.217	-0.286	27.422
Susquehanna River 289.1	< 0.001	-39.020	-0.430	-15.992	244	< 0.001	-60.826	-0.404	46.237
Susquehanna River 340	< 0.001	-32.841	-0.377	-10.947	300	0.008	-39.465	-0.255	20.547
Susquehanna River 365	< 0.001	-21.880	-0.334	-8.717	251	0.001	-30.118	-0.336	NA
Tioga River	0.067	-14.265	-0.175	-5.895	242	0.862	-2.257	-0.019	3.720
Troups Creek	0.472	-3.426	-0.083	-1.888	181.5	0.778	-1.591	-0.029	11.041

Table E7. Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Iron

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

Station		C	concentration	าร	Flow - Adjusted Concentrations				
	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	0.278	-1.199	-0.105	-1.199	100	0.302	-3.329	-0.093	NA
Chemung River	0.643	0.000	-0.049	0.000	190	0.629	-1.387	-0.056	4.244
Conowingo Creek	< 0.001	-27.982	-0.344	-11.238	249	0.007	-20.332	-0.250	24.125
Cowanesque River	0.500	2.416	0.068	1.046	231	0.430	7.626	0.112	NA
Deer Creek	0.092	-1.799	-0.163	-1.799	100	0.351	-3.822	-0.135	9.172
Ebaugh Creek	0.294	0.000	-0.106	0.000	100	0.157	-6.351	-0.202	30.880
Octoraro Creek	0.079	-12.652	-0.163	-4.866	260	0.405	-10.809	-0.041	16.828
Scott Creek	0.278	0.000	0.078	0.000	100	0.856	-0.572	-0.095	5.977
Susquehanna River 10.0	0.057	-11.775	-0.249	-4.556	258.5	0.027	-15.490	-0.301	78.158
Susquehanna River 44.5	0.015	-19.644	-0.257	-6.830	287.6	0.035	-21.004	-0.248	49.849
Susquehanna River 289.1	0.071	-6.699	-0.168	-3.917	171	0.030	-8.484	-0.202	31.543
Susquehanna River 340	0.197	-4.151	-0.119	-2.749	151	0.398	-3.167	-0.080	20.119
Susquehanna River 365	0.219	-1.560	-0.110	-1.560	100	0.063	-8.442	-0.190	52.271
Tioga River	0.526	1.789	0.067	1.028	174	0.097	5.130	0.162	-59.262
Troups Creek	0.944	0.000	-0.011	0.000	136.5	0.572	2.627	0.068	-22.660

 Table E8.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Aluminum

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

Station		(Concentration	S	Flow - Adjusted Concentrations				
	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope
Cayuta Creek	< 0.001	-1.095	-0.383	-7.301	15	0.018	-0.596	-0.240	80.293
Chemung River	< 0.001	-2.954	-0.327	-4.161	71	0.003	-2.945	-0.292	70.886
Conowingo Creek	0.055	-1.820	-0.189	-3.605	50.5	0.265	-0.854	-0.084	13.649
Cowanesque River	0.032	4.980	0.233	5.533	90	0.661	-0.729	-0.068	-71.860
Deer Creek	0.031	-0.541	-0.240	-1.933	28	0.240	-0.303	-0.179	-67.027
Ebaugh Creek	0.465	-0.495	-0.079	-1.394	35.5	0.140	-0.835	-0.173	12.099
Octoraro Creek	0.018	-1.616	-0.218	-2.992	54	0.111	-2.493	-0.062	NA
Scott Creek	0.075	-8.562	-0.167	-5.689	150.5	0.231	-10.689	0.041	37.277
Susquehanna River 10.0	0.004	-3.406	-0.310	-2.580	132	0.029	-2.469	-0.256	-93.128
Susquehanna River 44.5	0.011	-4.987	-0.302	-4.138	120.5	0.012	-4.296	-0.338	49.863
Susquehanna River 289.1	0.015	-0.992	-0.233	-3.815	26	0.016	-0.905	-0.235	19.070
Susquehanna River 340	0.716	-0.077	-0.043	-0.208	37	0.596	-0.306	-0.057	10.870
Susquehanna River 365	0.111	-0.381	-0.157	-1.523	25	0.797	-0.099	-0.044	72.106
Tioga River	< 0.001	-17.389	-0.368	-7.012	248	0.003	-14.858	-0.286	NA
Troups Creek	0.476	0.000	-0.091	0.000	12	0.585	-0.303	-0.061	19.257

 Table E9.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Total Manganese

Strong Significant Trend: P < 0.05 Significant Trend: 0.05 < P < 0.10 No Significant Trend: P > 0.10 Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available

Station		C	Concentration	s	Flow - Adjusted Concentrations					
	Р	b	Tau	% Slope	Median	Р	b	Tau	% Slope	
Cayuta Creek	0.747	-0.301	-0.044	-0.573	52.5	0.246	-0.534	-0.130	81.604	
Chemung River	0.270	-0.404	-0.138	-0.652	62	0.199	-0.480	-0.157	-60.386	
Conowingo Creek	0.028	-1.011	-0.341	-1.944	52	0.639	-0.462	-0.136	35.913	
Cowanesque River	0.258	0.819	0.131	1.707	48	0.784	0.248	-0.011	-9.610	
Deer Creek	1.000	0.000	-0.144	0.000	32.5	0.448	0.445	-0.103	-29.247	
Ebaugh Creek	0.408	0.500	0.090	1.041	48	0.139	0.571	0.186	NA	
Octoraro Creek	0.095	-0.927	-0.196	-1.749	53	0.631	-0.256	-0.024	-44.141	
Scott Creek	0.773	-0.091	0.007	-0.139	66	0.970	0.046	0.005	NA	
Susquehanna River 10.0	0.450	-0.498	-0.168	-1.071	46.5	0.223	-0.574	-0.209	NA	
Susquehanna River 44.5	0.200	-0.617	-0.185	-1.341	46	0.107	-0.783	-0.196	NA	
Susquehanna River 289.1	0.777	-0.083	-0.051	-0.059	52	0.511	-0.355	-0.090	72.515	
Susquehanna River 340	0.801	0.000	0.024	0.000	39	0.925	0.071	0.004	-3.645	
Susquehanna River 365	0.518	0.262	0.054	0.624	42	0.470	0.262	0.068	NA	
Tioga River	0.730	-0.262	-0.054	-0.504	52	0.540	-0.186	-0.058	-32.353	
Troups Creek	0.570	0.250	0.066	0.713	35	0.102	0.970	0.189	NA	

 Table E10.
 Trend Statistics in Concentrations and Flow-Adjusted Concentrations for Water Quality Index

Strong Significant Trend: P < 0.05Significant Trend: 0.05 < P < 0.10No Significant Trend: P > 0.10 b - Slope or trend direction (+ or -)

% Slope - Percent change of median concentration per year

Median - Median concentration for time period indicated

NA - Not available