# NUTRIENTS AND SUSPENDED SEDIMENT TRANSPORTED IN THE SUSQUEHANNA RIVER BASIN, 2003, AND TRENDS, JANUARY 1985 THROUGH DECEMBER 2003

Publication No. 234

December 2004

Kevin H. McGonigal Water Quality Program Specialist



Printed on recycled paper.

This report is prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Water Quality Protection, Division of Conservation Districts and Nutrient Management, under Grant ME3521227.

## SUSQUEHANNA RIVER BASIN COMMISSION



Paul O. Swartz, Executive Director

Erin M. Crotty, N.Y. Commissioner Kenneth P. Lynch, N.Y. Alternate Scott J. Foti, N.Y. Alternate/Advisor

Kathleen A. McGinty, Pa. Commissioner Cathy Curran Myers, Pa. Alternate William A. Gast, Pa. Alternate/Advisor

Kendl Philbrick, Md. Commissioner Doctor Robert M. Summers, Md. Alternate Matthew G. Pajerowski, Md. Alternate/Advisor

Brigadier General Meredith W.B. Temple, U.S. Commissioner Colonel Robert J. Davis, Jr., U.S. Alternate Colonel Francis X. Kosich, U.S. Alternate Stacey E. Brown, U.S. Advisor

The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact<sup>\*</sup> among the states of Maryland, New York, Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development and control of basin water resources among the public and private sectors.

\*Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976).

This report is available on our website (<u>www.SRBC.net</u>) by selecting Public Information/Technical Reports. For a CD Rom or for a hard copy, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, Pa. 17102-2391, (717) 238-0423, FAX (717) 238-2436, E-mail: <u>srbc@srbc.net</u>.

| ABSTRACT                                                         | 1  |
|------------------------------------------------------------------|----|
| INTRODUCTION                                                     | 1  |
|                                                                  |    |
| Background                                                       | 1  |
| Objective of the Study                                           | 2  |
| Purpose of Report                                                | 2  |
|                                                                  |    |
| DESCRIPTION OF THE SUSQUEHANNA RIVER BASIN                       | 2  |
| NUTRIENT MONITORING SITES                                        | 4  |
| SAMPLE COLLECTION AND ANALYSIS                                   | 6  |
| PRECIPITATION                                                    | 6  |
| WATER DISCHARGE                                                  | 7  |
| ANNUAL NUTRIENT AND SUSPENDED-SEDIMENT LOADS AND YIELDS          | 7  |
| SEASONAL WATER DISCHARGES AND NUTRIENT AND SUSPENDED-SEDIMENT    |    |
| LOADS AND YIELDS                                                 | 16 |
| COMPARISON OF THE 2003 LOADS AND YIELDS OF TOTAL NITROGEN, TOTAL |    |
| PHOSPHORUS, AND SUSPENDED SEDIMENT WITH THE BASELINES            | 31 |
|                                                                  |    |
| Susquehanna River at Towanda, Pa.                                | 31 |
| Susquehanna River at Danville, Pa                                | 34 |
| West Branch Susquehanna River at Lewisburg, Pa                   | 34 |
| Juniata River at Newport, Pa.                                    | 39 |
| Susquehanna River at Marietta, Pa                                | 39 |
| Conestoga River at Conestoga, Pa                                 | 44 |
|                                                                  |    |
| DISCHARGE, NUTRIENT, AND SUSPENDED-SEDIMENT TRENDS               | 47 |
| SUMMARY                                                          |    |
| REFERENCES                                                       | 53 |
|                                                                  |    |

### TABLE OF CONTENTS

### FIGURES

| The Susquehanna River Basin, Subbasins, and Population Centers                         | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Locations of Sampling Sites within the Susquehanna River Basin                         | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual and Long-Term Discharges at Towanda, Danville, Lewisburg, Newport, Marietta,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and Conestoga, Pa.                                                                     | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Annual Loads of Total Nitrogen (TN) at Towanda, Danville, Lewisburg, Newport, Marietta | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and Conestoga, Pa., Calendar Year 2003                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Nitrogen (TN) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conestoga, Pa., Calendar Year 2003                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Annual Loads of Total Phosphorus (TP) at Towanda, Danville, Lewisburg, Newport,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marietta, and Conestoga, Pa., Calendar Year 2003                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Phosphorus (TP) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conestoga, Pa., Calendar Year 2003                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Annual Loads of Suspended Sediment (SS) at Towanda, Danville, Lewisburg, Newport,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marietta, and Conestoga, Pa., Calendar Year 2003                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                        | The Susquehanna River Basin, Subbasins, and Population Centers<br>Locations of Sampling Sites within the Susquehanna River Basin<br>Annual and Long-Term Discharges at Towanda, Danville, Lewisburg, Newport, Marietta,<br>and Conestoga, Pa<br>Annual Loads of Total Nitrogen (TN) at Towanda, Danville, Lewisburg, Newport, Marietta<br>and Conestoga, Pa., Calendar Year 2003<br>Total Nitrogen (TN) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and<br>Conestoga, Pa., Calendar Year 2003<br>Annual Loads of Total Phosphorus (TP) at Towanda, Danville, Lewisburg, Newport,<br>Marietta, and Conestoga, Pa., Calendar Year 2003<br>Total Phosphorus (TP) Yields at Towanda, Danville, Lewisburg, Newport,<br>Marietta, and Conestoga, Pa., Calendar Year 2003<br>Total Phosphorus (TP) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and<br>Conestoga, Pa., Calendar Year 2003<br>Total Phosphorus (TP) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and<br>Conestoga, Pa., Calendar Year 2003 |

| Figure 6B. | Suspended Sediment (SS) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 7.  | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Towanda, Pa., Calendar Year 2003                             |
| Figure 8.  | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Danville, Pa., Calendar Year 2003                            |
| Figure 9.  | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Lewisburg, Pa., Calendar Year 2003                           |
| Figure 10. | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Newport, Pa., Calendar Year 2003                             |
| Figure 11. | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Marietta, Pa., Calendar Year 2003                            |
| Figure 12. | Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Conestoga, Pa., Calendar Year 2003                           |
| Figure 13. | Comparison of Seasonal Yields of Total Nitrogen (TN) at Towanda, Danville, Marietta,<br>Lewisburg, Newport, and Conestoga, Pa                                        |
| Figure 14. | Comparison of Seasonal Yields of Total Phosphorus (TP) at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa                                         |
| Figure 15. | Comparison of Seasonal Yields of Suspended Sediment (SS) at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa                                       |
| Figure 16. | Seasonal Percent of Annual Load of Total Nitrogen, Total Phosphorus, and Suspended<br>Sediment at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa |
| Figure 17. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Towanda, Pa., 1989-1993 and 2003                             |
| Figure 18. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Towanda, Pa., 1989-2002 and 2003                             |
| Figure 19. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Danville, Pa., 1985-1989 and 2003                            |
| Figure 20. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Danville, Pa., 1985-2002 and 2003                            |
| Figure 21. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, West<br>Branch Susquehanna River at Lewisburg, Pa., 1985-1989 and 2003               |
| Figure 22. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, West<br>Branch Susquehanna River at Lewisburg, Pa., 1985-2002 and 2003               |
| Figure 23. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Juniata River at Newport, Pa., 1985-1989 and 2003                                    |
| Figure 24. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Juniata River at Newport, Pa., 1985-2002 and 2003                                    |
| Figure 25. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Marietta, Pa., 1987-1991 and 2003                            |
| Figure 26. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Susquehanna River at Marietta, Pa., 1987-2002 and 2003                            |
| Figure 27. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Conestoga River at Conestoga, Pa., 1985-1989 and 2003                             |
| Figure 28. | Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields,<br>Conestoga River at Conestoga, Pa., 1985-2002 and 2003                             |

## TABLES

| Table 1.  | Land Use Percentages for the Susquehanna River Basin and Selected Tributaries | . 4   |
|-----------|-------------------------------------------------------------------------------|-------|
| 1 4010 1. | Duna Obe i ereentuges for the Busquenumu River Bushi una Bereetea Thoutaries  | ••••• |

| Table 2.  | Data Collection Sites and Their Drainage Areas                                                                    | .4  |
|-----------|-------------------------------------------------------------------------------------------------------------------|-----|
| Table 3.  | Water Quality Parameters, Laboratory Methods, and Detection Limits                                                | .6  |
| Table 4.  | Summary for Annual Precipitation for Selected Areas in the Susquehanna River Basin,                               |     |
|           | Calendar Year 2003                                                                                                | .7  |
| Table 5.  | Annual Water Discharge, Calendar Year 2003                                                                        | . 8 |
| Table 6.  | List of Analyzed Parameters, Abbreviations, and Storet Codes                                                      | .9  |
| Table 7.  | Annual Water Discharges, Annual Loads, Yields, and Average Concentration of Total<br>Nitrogen, Calendar Year 2003 | .9  |
| Table 8.  | Annual Water Discharges and Annual Loads and Yields of Total Phosphorus, Calendar<br>Year 2003                    | 9   |
| Table 9.  | Annual Water Discharges and Annual Loads and Yields of Total Suspended Sediment,<br>Calendar Year 2003            | 9   |
| Table 10. | Annual Water Discharges and Annual Loads and Yields of Total Ammonia, Calendar<br>Vear 2003                       | 10  |
| Table 11. | Annual Water Discharges and Annual Loads and Yields of Total NO <sub>23</sub> Nitrogen,                           | 10  |
| Table 12. | Annual Water Discharges and Annual Loads and Yields of Total Organic Nitrogen,<br>Calendar Year 2003              | 10  |
| Table 13. | Annual Water Discharges and Annual Loads and Yields of Dissolved Phosphorus,<br>Calendar Year 2003                | 10  |
| Table 14. | Annual Water Discharges and Annual Loads and Yields of Dissolved Orthophosphate,<br>Calendar Year 2003            | 11  |
| Table 15. | Annual Water Discharges and Annual Loads and Yields of Dissolved Ammonia,<br>Calendar Year 2003                   | 11  |
| Table 16. | Annual Water Discharges and Annual Loads and Yields of Dissolved Nitrogen, Calendar<br>Year 2003                  | 11  |
| Table 17. | Annual Water Discharges and Annual Loads and Yields of Dissolved NO <sub>23</sub> Nitrogen,<br>Calendar Year 2003 | 11  |
| Table 18. | Annual Water Discharges and Annual Loads and Yields of Dissolved Organic Nitrogen,<br>Calendar Year 2003          | 12  |
| Table 19. | Annual Water Discharges and Annual Loads and Yields of Total Organic Carbon,<br>Calendar Year 2003                | 12  |
| Table 20. | Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS                                                 | 17  |
| Table 21. | Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Winter                                   | 17  |
| Table 22. | Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Spring                                   | 17  |
| Table 23. | Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Summer                                   | 18  |
| Table 24. | Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Fall                                     | 18  |
| Table 25. | Seasonal Mean Water Discharges and Loads of Nutrients and Suspended Sediment,<br>Calendar year 2003               | 19  |
| Table 26. | Seasonal Mean Water Discharge and Load Percentages of Nutrients and Suspended<br>Sediment, Calendar year 2003     | 20  |
| Table 27. | Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Towanda. Pa                                      | 31  |
| Table 28. | Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Danville. Pa.                                    | 34  |
| Table 29. | Comparison of 2003 Total Nitrogen, Total Phosphorus, and Suspended-Sediment Yields                                |     |
|           | With Baseline Yields at Lewisburg, Pa.                                                                            | 34  |
| Table 30. | Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Newport, Pa                                      | 39  |
| Table 31. | Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Marietta, Pa                                     | 39  |
| Table 32. | Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Conestoga, Pa                                    | 44  |
| Table 33. | Trend Statistics for the Susquehanna River at Towanda, Pa., January 1989 through                                  |     |
|           | December 2003.                                                                                                    | 48  |

| Table 34. | Trend Statistics for the Susquehanna River at Danville, Pa., January 1985 through      |      |
|-----------|----------------------------------------------------------------------------------------|------|
|           | December 2003.                                                                         | . 48 |
| Table 35. | Trend Statistics for the West Branch Susquehanna River at Lewisburg, Pa., January 1985 |      |
|           | through December 2003                                                                  | . 49 |
| Table 36. | Trend Statistics for the Juniata River at Newport, Pa., January 1989 through December  |      |
|           | 2003                                                                                   | . 49 |
| Table 37. | Trend Statistics for the Susquehanna River at Marietta, Pa., January 1987 through      |      |
|           | December 2003.                                                                         | . 50 |
| Table 38. | Trend Statistics for the Conestoga River at Conestoga, Pa., January 1985 through       |      |
|           | December 2003.                                                                         | . 50 |
| Table 39. | Summary of 2003 Data Comparison to Percentage of LTM, 1996 Loads, Initial 5-Year       |      |
|           | Baseline, and Full Program Baseline, and Trends in Flow-Adjusted Concentration for     |      |
|           | TN, TP, and SS.                                                                        | . 52 |
| Table 40. | Summary of 2003 Flow-Adjusted Concentration Trends at all Sites                        | . 52 |

## APPENDIXES

| Appendix A: | 2003 Storm Sampling Concentrations of Total Nitrogen, Total Phosphorus, and |
|-------------|-----------------------------------------------------------------------------|
|             | Suspended Sediment                                                          |

#### ACKNOWLEDGEMENTS

The author would like to acknowledge those who made important contributions to the completion of this project. Specific thanks to Susquehanna River Basin staff: Dave Heicher, Jen Hoffman, Susan Obleski, and Doreen McCabe for report review, comments, and input; Donna Gavin for GIS support; and Daryl Sitlinger for field support. Also thanks to Mike Langland of the U.S. Geological Survey for assistance with trends analysis. Finally, thanks to the Pa. Department of Environmental Protection for providing funding for the project.

## NUTRIENTS AND SUSPENDED SEDIMENT TRANSPORTED IN THE SUSQUEHANNA RIVER BASIN, 2003, AND TRENDS, JANUARY 1985 THROUGH DECEMBER 2003

Kevin H. McGonigal Water Quality Program Specialist

#### ABSTRACT

Nutrient and suspended-sediment (SS) samples were collected under base flow and stormflow conditions during calendar year 2003. The samples were collected from the Susquehanna River at Towanda, Danville, and Marietta; the West Branch Susquehanna River at Lewisburg; the Juniata River at Newport; and the Conestoga River at Conestoga, Pennsylvania, and analyzed for nitrogen and phosphorus species and SS.

Precipitation for 2003 was above average for all sites. Highest departures from the long-term averages were recorded at Conestoga with 14.68 inches above the long-term mean (LTM) leading to the highest flow at 176.2 percent of the LTM. Lowest departure from the mean was at Danville for rainfall, 1.54 above LTM, and at Lewisburg for flow at 147.3 percent of the LTM. No trends were found for flow.

This report utilizes five methods to determine whether nutrient and SS loads and yields are improving: (1) comparison with similar water year 1996; (2) comparison with initial 5-year baseline yields; (3) comparison with baseline data from beginning of program through 2002 (full program baseline); (4) comparison with the LTM; and (5) trend analysis through 2003.

Comparison with the year 1996 showed increases at Newport for total nitrogen (TN) and total phosphorus (TP) and increases for flow and TN at Conestoga. Baseline comparisons showed increases in TN and TP at Newport and an increase in TP at Marietta when compared to the initial 5-year baselines, and an increase in all three at Newport and an increase in TP for Marietta when compared to the full program baseline. Comparison with the LTM showed increases at Newport for TN, TP, and SS, increase in flow at Conestoga, and an increase in TP at Marietta. Trends in flow-adjusted concentrations (FACs) were found to be decreasing at Newport for TN and TP and no significant trend at Marietta for TP. TN, TP, and SS were shown to be decreasing at all other sites for all analysis methods.

#### INTRODUCTION

Nutrients and SS entering the Chesapeake Bay (Bay) from the Susquehanna River Basin contribute to nutrient enrichment problems in the Bay (USEPA, 1982). The Pennsylvania Department of Environmental Protection's (PADEP) Bureau of Laboratories, the U.S. Environmental Protection Agency (USEPA), and the Susquehanna River Basin Commission (SRBC) cooperated in a study to quantify nutrient and SS transported to the Bay via the Susquehanna River Basin.

#### Background

Given that the lower Susquehanna River Basin is a significant source of SS to the Bay, SRBC, in cooperation with the PADEP, USEPA, and the U.S. Geological Survey (USGS), conducted a 5-year intensive study at 14 sites from 1985-89. In 1990, the number of sampling sites was reduced to five long-term monitoring stations. An additional site was included in 1994, and sampling at these six sites has continued to the present day. Calculated annual loads and yields of nutrient and SS showed year-to-year variability that was highly correlated with the variability of the annual water discharge (Ott and others, 1991; Takita, 1996, 1998). These studies also reinforced the indications from earlier studies that the highest nutrient yields come from the lower basin.

The existing Susquehanna River sediment and nutrient sites are important in documenting Pennsylvania's real progress in the Bay cleanup effort. These sites have been used to keep track of trends in water quality improvement. With 50 percent of the Bay's total freshwater inflow coming from the Susquehanna River, these sites are critical calibration sites for the Chesapeake Bay Model, which is being used as a major tool in planning the restoration effort.

#### **Objective of the Study**

The objective of SRBC's monitoring program is to collect monthly base flow and daily, or more frequent, samples during selected storms from the six long-term monitoring sites in the Susquehanna River Basin. The data are then used to compute annual nutrient and SS loads and trends to evaluate the results of nutrient reduction efforts.

#### **Purpose of Report**

The purpose of this report is to present basic information on annual and seasonal loads and yields of nutrients and SS measured during calendar year 2003, and to compare the TN, TP, and SS loads with the baseline established from the 1985-89 study and baselines established for the entire span of the program. Seasonal and annual variations in loads are discussed, as well as the results of statistical trend analysis for the period January 1985 through December 2003 for various forms of nitrogen and phosphorus, SS, total organic carbon (TOC), and water discharge.

#### DESCRIPTION OF THE SUSQUEHANNA RIVER BASIN

The Susquehanna River (Figure 1) drains an area of 27,510 square miles (Susquehanna River Basin Study Coordination Committee, 1970), and is the largest tributary to the Bay. The

Susquehanna River originates in the Appalachian Plateau of southcentral New York and central Pennsylvania, flows into the Valley and Ridge and Piedmont Provinces of Pennsylvania and Maryland, and joins the Bay at Havre de Grace, Md. The climate in the Susquehanna River Basin varies considerably from the low lands adjacent to the Bay in Maryland to the high elevations, above 2,000 feet, of the northern headwaters in central New York State. The annual mean temperature ranges from 53° F (degrees Fahrenheit) near the Pennsylvania-Maryland border to 45° F in the northern part of the basin. Precipitation in the basin averages 39.15 inches per year, and is fairly well distributed throughout the year.

Land use in the Susquehanna River Basin, shown in Table 1, is predominantly rural with woodland accounting for 70 percent; agriculture, 22 percent; and urban, 7 percent. Woodland occupies the higher elevations of the northern and western parts of the basin and much of the mountain and ridge land in the Juniata and Lower Susquehanna Subbasins. Woods and grasslands occupy areas in the lower part of the basin that are unsuitable for cultivation because the slopes are too steep, the soils are too stony, or the soils are poorly drained. The lower Susquehanna contains the highest density of agriculture within the basin. However, extensive areas are cultivated along the river valleys in southern New York and along the West Branch Susquehanna River from Northumberland, Pa., to Lock Haven, Pa., including the Bald Eagle Creek Valley.

Major urban areas in the Lower Susquehanna Subbasin include York, Lancaster, Harrisburg, and Sunbury, Pa. Most of the urban areas in the northern part of the basin are located along river valleys, and they include Binghamton, Elmira, and Corning, N.Y., and Scranton and Wilkes-Barre, Pa. The major urban areas in the West Branch Susquehanna Subbasin are Williamsport, Renovo, and Clearfield. Lewisburg and Altoona are the major urban areas within the Juniata Subbasin.



Figure 1. The Susquehanna River Basin, Subbasins, and Population Centers

| Site                    | Urban | Agricultural | Forested | Other |
|-------------------------|-------|--------------|----------|-------|
| Towanda                 | 4     | 23           | 72       | 1     |
| Danville                | 9     | 22           | 67       | 2     |
| Lewisburg               | 4     | 11           | 84       | 1     |
| Newport                 | 6     | 19           | 74       | 1     |
| Marietta                | 12    | 37           | 49       | 2     |
| Conestoga               | 21    | 49           | 29       | 1     |
| Susquehanna River Basin | 7     | 22           | 70       | 1     |

Table 1. Land Use Percentages for the Susquehanna River Basin and Selected Tributaries

#### NUTRIENT MONITORING SITES

Data were collected from three sites on the Susquehanna River and three major tributaries in the basin. These six sites, selected for long-term monitoring of nutrient and SS transport in the basin, are listed in Table 2, and their general locations are shown in Figure 2.

The Susquehanna River at Towanda, Pa., was selected because it represents the contribution from New York State, although the drainage area does include the Tioga River Watershed in northern Pennsylvania and an area along the northern tier counties of eastern Pennsylvania. The drainage area at Towanda is 7,797 square miles, of which 6,262 square miles lie in New York.

The Susquehanna River at Danville, Pa., has a drainage area of 11,220 square miles, and includes part of northcentral Pennsylvania (the Tioga River Watershed) and much of southcentral New York. Data collected at Danville represent the loadings from tributaries between Towanda and Danville.

Data collected from the West Branch Susquehanna River at Lewisburg, Pa., represent the loadings from this major tributary to the mainstem. The West Branch includes much of northcentral Pennsylvania and has a drainage area of 6,847 square miles. The combined drainage areas above Lewisburg and Danville represent 65.7 percent of the total Susquehanna River Basin.

The Juniata River, a major tributary to the mainstem, includes much of southcentral Pennsylvania, and has a drainage area, above Newport, Pa., of 3,354 square miles. This station represents the loadings from the Juniata River. The combined drainage areas at Danville, Lewisburg, and Newport represent 77.9 percent of the Susquehanna River Basin.

The Susquehanna River at Marietta, Pa., is the southern-most sampling site upstream from the reservoirs on the lower Susquehanna River, and represents the inflow to the reservoirs from its 25,990-square-mile drainage area. This drainage area represents 94.5 percent of the total Susquehanna River Basin.

| USGS<br>Identification<br>Number | Original Sites                                  | Short<br>Name | Drainage<br>Area<br>(square mile) |
|----------------------------------|-------------------------------------------------|---------------|-----------------------------------|
| 01531500                         | Susquehanna River at Towanda, Pa.               | Towanda       | 7,797                             |
| 01540500                         | Susquehanna River at Danville, Pa.              | Danville      | 11,220                            |
| 01553500                         | West Branch Susquehanna River at Lewisburg, Pa. | Lewisburg     | 6,847                             |
| 01567000                         | Juniata River at Newport, Pa.                   | Newport       | 3,354                             |
| 01576000                         | Susquehanna River at Marietta, Pa.              | Marietta      | 25,990                            |
| 01576754                         | Conestoga River at Conestoga, Pa.               | Conestoga     | 470                               |

 Table 2.
 Data Collection Sites and Their Drainage Areas



Figure 2. Locations of Sampling Sites within the Susquehanna River Basin

Data collected from the Conestoga River at Conestoga, Pa., provide loadings from a major tributary watershed that is actively farmed and is experiencing an increase in agricultural nutrient management programs. Additionally, this watershed is experiencing an increase in development. The drainage area of this basin above the sampling site is 470 square miles.

#### SAMPLE COLLECTION AND ANALYSIS

Samples were collected to measure nutrient and SS concentrations during various flows. Generally, two samples were collected per month; one near the twelfth of the month and one during monthly base flow conditions. Additionally, a minimum of four high flow events were sampled, targeting one per season. When possible, a second high flow event was sampled in accordance with spring planting in the basin. During high flow sampling events, samples were collected daily during the rise and fall of the hydrograph. The goal was to gather a minimum of three samples on the rise and three samples on the fall with one sample as close to peak flow as possible. Sampling continued until flows returned to prestorm levels. All low flow and random samples were collected by hand with USGS depth-integrating samplers. Multiple vertical samples were taken at each site and then composited so that a representative sample was Winch operated depth-integrating obtained.

samplers were used during high flow events to insure that the full water column was sampled.

Whole water samples were collected to be analyzed for TN species, TP species, TOC, and SS. Additionally, filtered samples were collected to analyze for dissolved nitrogen (DN) and dissolved phosphorus (DP) species. All samples were delivered to the PADEP Laboratory in Harrisburg to be analyzed the following workday. The parameters and laboratory methods used are listed in Table 3. SS samples were analyzed at SRBC.

#### PRECIPITATION

Precipitation data were obtained from longterm monitoring stations operated by the U.S. Department of Commerce. The data are published as Climatological Data-Pennsylvania, and as Climatological Data—New York by the National Atmospheric Administration Oceanic and (NOAA) at the National Climatic Data Center in Asheville, North Carolina. Quarterly and annual data from these sources were compiled across the subbasins of the Susquehanna River Basin and are reported in Table 4. Due to high rainfalls in the spring and fall, precipitation totals exceeded the LTM at all sites for 2003.

Table 3. Water Quality Parameters, Laboratory Methods, and Detection Limits

| Parameter                        | Laboratory | Methodology                    | Detection<br>Limit<br>(mg/l) | References                                    |
|----------------------------------|------------|--------------------------------|------------------------------|-----------------------------------------------|
| Ammonia (total)                  | PADEP      | Colorimetry                    | 0.020                        | USEPA 350.1                                   |
| Ammonia (dissolved)              | PADEP      | Block Digest, Colorimetry      | 0.020                        | USEPA 350.1                                   |
| Nitrogen (total)                 | PADEP      | Persulfate Digestion for TN    | 0.040                        | Standard Methods<br>#4500-N <sub>org</sub> -D |
| Nitrogen (dissolved)             | PADEP      | Persulfate Digestion           | 0.040                        | Standard Methods<br>#4500-N <sub>org</sub> -D |
| Nitrite plus Nitrate (total)     | PADEP      | Cd-reduction, Colorimetry      | 0.010                        | USEPA 353.2                                   |
| Nitrite plus Nitrate (dissolved) | PADEP      | Cd-reduction, Colorimetry      | 0.010                        | USEPA 353.2                                   |
| Orthophosphate (dissolved)       | PADEP      | Colorimetry                    | 0.002                        | USEPA 365.1                                   |
| Phosphorus (dissolved)           | PADEP      | Block Digest, Colorimetry      | 0.010                        | USEPA 365.1                                   |
| Phosphorus (total)               | PADEP      | Persulfate Digest, Colorimetry | 0.010                        | USEPA 365.1                                   |
| Organic Carbon (total)           | PADEP      | Combustion/Oxidation           | 0.50                         | SM 5310D                                      |

|                               |                  | Calendar<br>Year 2003 | Average<br>Long-term | Departure<br>From |
|-------------------------------|------------------|-----------------------|----------------------|-------------------|
| River                         |                  | Precipitation         | Precipitation        | Long Term         |
| Location                      | Season           | inches                | inches               | inches            |
| Susquehanna River             | January-March    | 6.58                  | 7.94                 | -1.36             |
| above Towanda, Pa             | April-June       | 8.77                  | 10.02                | -1.25             |
|                               | July-September   | 15.06                 | 10.25                | +4.81             |
|                               | October-December | 9.71                  | <u>8.73</u>          | +0.98             |
|                               | Yearly Total     | 40.12                 | 36.94                | +3.18             |
| Susquehanna River             | January-March    | 6.13                  | 7.87                 | -1.74             |
| above Danville, Pa.           | April-June       | 9.13                  | 10.11                | -0.99             |
|                               | July-September   | 13.97                 | 10.39                | +3.58             |
|                               | October-December | 9.43                  | <u>8.75</u>          | +0.68             |
|                               | Yearly Total     | 38.66                 | 37.12                | +1.54             |
| West Branch Susquehanna River | January-March    | 8.38                  | 8.87                 | -0.49             |
| above Lewisburg, Pa.          | April-June       | 11.55                 | 11.43                | +0.12             |
|                               | July-September   | 21.25                 | 11.61                | +9.64             |
|                               | October-December | 12.18                 | 9.44                 | +2.74             |
|                               | Yearly Total     | 53.36                 | 41.35                | +12.01            |
| Juniata River                 | January-March    | 8.57                  | 8.79                 | -0.22             |
| above Newport, Pa.            | April-June       | 13.09                 | 11.01                | +2.08             |
|                               | July-September   | 16.21                 | 10.89                | +5.32             |
|                               | October-December | 10.57                 | <u>9.13</u>          | +1.44             |
|                               | Yearly Total     | 48.44                 | 39.82                | +8.62             |
| Susquehanna River             | January-March    | 7.99                  | 8.49                 | -0.50             |
| above Marietta, Pa.           | April-June       | 11.68                 | 10.71                | +0.97             |
|                               | July-September   | 16.21                 | 10.79                | +5.42             |
|                               | October-December | <u>10.88</u>          | <u>9.06</u>          | +1.81             |
|                               | Yearly Total     | 46.76                 | 39.05                | +7.71             |
| Conestoga River               | January-March    | 10.19                 | 8.57                 | +1.62             |
| above Conestoga, Pa.          | April-June       | 14.16                 | 10.85                | +3.31             |
|                               | July-September   | 16.96                 | 11.79                | +5.17             |
|                               | October-December | <u>14.09</u>          | <u>9.50</u>          | +4.59             |
|                               | Yearly Total     | 55.40                 | 40.71                | +14.69            |

Table 4.Summary for Annual Precipitation for Selected Areas in the Susquehanna River Basin,<br/>Calendar Year 2003

#### WATER DISCHARGE

Water discharge data were obtained from the USGS and are listed in Table 5. Lewisburg recorded the second highest rainfall for the year but also recorded the lowest percent of flow above the LTM. This could be due to the watershed being mostly forested and thus allowing for less runoff. Water discharges were above the LTM at all sites ranging from 147.3 percent of the LTM at Lewisburg to 176.2 percent at Conestoga. Figure 3 compares the 2003 discharges with the LTM discharges for each site.

#### ANNUAL NUTRIENT AND SUSPENDED-SEDIMENT LOADS AND YIELDS

Loads and yields represent two methods for describing nutrient and SS amounts within a

basin. Loads refer to the actual amount of the constituent being transported in the water column past a given point over a specific duration of time and are expressed in pounds. Yields compare the transported load with the acreage of the watershed and are expressed in lbs/acre. This allows for easy watershed comparisons. This project reports loads and yields for the constituents listed in Table 6 as computed by the Minimum Variance Unbiased Estimator (MVUE) described by Cohn and others (1989). This estimator relates the constituent concentration to water discharge, seasonal effects, and long-term trends, and computes the best-fit regression equation. Daily loads of the constituents were then calculated from the daily mean water discharge records. The loads were reported along with the estimates of accuracy. Tables 7-19 show the loads and yields for the six monitoring stations, as well as an

associated error value. They also show the average annual concentration for each constituent. Comparisons have been made to the LTMs for all constituents. As a general note, nutrient and SS loads increase with increasing discharge.

|           | Years of Long-term 20 |                              | 2003     |                             |
|-----------|-----------------------|------------------------------|----------|-----------------------------|
| Site      | Record                | Annual Mean cfs <sup>1</sup> | Mean cfs | Percent of LTM <sup>2</sup> |
| Towanda   | 90                    | 10,700                       | 16,290   | 152.2                       |
| Danville  | 99                    | 15,359                       | 24,050   | 156.6                       |
| Lewisburg | 64                    | 10,924                       | 16,095   | 147.3                       |
| Newport   | 104                   | 4,564                        | 8,029    | 175.9                       |
| Marietta  | 72                    | 37,290                       | 59,234   | 158.8                       |
| Conestoga | 19                    | 655                          | 1,154    | 176.2                       |

Table 5. Annual Water Discharge, Calendar Year 2003

<sup>1</sup> Cubic feet per second

<sup>2</sup> Long-Term Mean



Figure 3. Annual and Long-Term Discharges at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa.

 Table 6.
 List of Analyzed Parameters, Abbreviations, and Storet Codes

| Parameter                        | Abbreviation     | Storet Code |
|----------------------------------|------------------|-------------|
| Total Nitrogen as N              | TN               | 00600       |
| Dissolved Nitrogen as N          | DN               | 00602       |
| Total Organic Nitrogen as N      | TON              | 00605       |
| Dissolved Organic Nitrogen as N  | DON              | 00607       |
| Total Ammonia as N               | TNH <sub>3</sub> | 00610       |
| Dissolved Ammonia as N           | DNH <sub>3</sub> | 00608       |
| Total Nitrate + Nitrite as N     | TNOx             | 00630       |
| Dissolved Nitrate + Nitrite as N | DNOx             | 00631       |
| Total Phosphorus as P            | TP               | 00665       |
| Dissolved Phosphorus as P        | DP               | 00666       |
| Dissolved Orthophosphate as P    | DOP              | 00671       |
| Total Organic Carbon             | TOC              | 00680       |
| Suspended Sediment               | SS               | 80154       |

Table 7.Annual Water Discharges, Annual Loads, Yields, and Average Concentration of Total<br/>Nitrogen, Calendar Year 2003

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | N Load<br>% of LTM | Prediction<br>Error<br>percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|--------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 32,621                   | 113.1              | 5.4                            | 1.37                 | 1.02                       | 5.78                     | 6.54                         |
| Danville  | 24,050                     | 156.6                 | 50,184                   | 110.4              | 6.0                            | 1.50                 | 1.06                       | 6.33                     | 6.99                         |
| Lewisburg | 16,095                     | 147.3                 | 31,644                   | 132.0              | 7.9                            | 1.12                 | 1.0                        | 5.47                     | 7.22                         |
| Newport   | 8,029                      | 175.9                 | 31,282                   | 194.5              | 5.1                            | 1.79                 | 1.98                       | 7.49                     | 14.57                        |
| Marietta  | 59,234                     | 158.8                 | 193,078                  | 150.2              | 6.3                            | 1.75                 | 1.66                       | 7.73                     | 11.61                        |
| Conestoga | 1,154                      | 176.2                 | 17,139                   | 166.4              | 5.3                            | 7.98                 | 7.54                       | 34.24                    | 56.98                        |

| Table 8. | Annual Water Discharges and Annual Loads and Yields of Total Phosphorus, Calenda | r |
|----------|----------------------------------------------------------------------------------|---|
|          | Year 2003                                                                        |   |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | P Load<br>% of LTM | Prediction<br>Error<br>percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|--------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 2,677                    | 125.2              | 21.5                           | 0.1015               | 0.0835                     | 0.428                    | 0.54                         |
| Danville  | 24,050                     | 156.6                 | 4,691                    | 146.5              | 20.7                           | 0.1059               | 0.0991                     | 0.446                    | 0.65                         |
| Lewisburg | 16,095                     | 147.3                 | 1,712                    | 142.2              | 27.1                           | 0.0560               | 0.0540                     | 0.275                    | 0.39                         |
| Newport   | 8,029                      | 175.9                 | 1,949                    | 244.8              | 20.4                           | 0.0886               | 0.1233                     | 0.371                    | 0.91                         |
| Marietta  | 59,234                     | 158.8                 | 15,013                   | 196.6              | 19.0                           | 0.1040               | 0.1287                     | 0.459                    | 0.90                         |
| Conestoga | 1,154                      | 176.2                 | 1,055                    | 159.1              | 31.0                           | 0.5139               | 0.4644                     | 2.202                    | 3.51                         |

| Table 9. | Annual Water Discharges and Annual Loads and Yields of Total Suspended Sediment, |
|----------|----------------------------------------------------------------------------------|
|          | Calendar Year 2003                                                               |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | SS Load<br>% of LTM | Prediction<br>Error<br>percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|---------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 2,399,772                | 106.4               | 45.5                           | 107.06               | 74.83                      | 452.0                    | 480.9                        |
| Danville  | 24,050                     | 156.6                 | 2,855,630                | 114.4               | 38.0                           | 82.53                | 60.31                      | 347.5                    | 397.7                        |
| Lewisburg | 16,095                     | 147.3                 | 555,487                  | 56.2                | 63.1                           | 45.98                | 17.53                      | 225.7                    | 126.8                        |
| Newport   | 8,029                      | 175.9                 | 1,059,614                | 223.3               | 46.0                           | 52.82                | 67.03                      | 221.1                    | 493.6                        |
| Marietta  | 59,234                     | 158.8                 | 8,041,920                | 151.8               | 33.9                           | 72.15                | 68.96                      | 318.4                    | 483.5                        |
| Conestoga | 1,154                      | 176.2                 | 561,962                  | 179.5               | 94.1                           | 242.78               | 247.35                     | 1040.8                   | 1,868.2                      |

| Table 10. | Annual Water Discharges and Annual Loads and Yields of Total Ammonia, Calendar Year |
|-----------|-------------------------------------------------------------------------------------|
|           | 2003                                                                                |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 1,319                    | 90.0             | 22.26                          | 0.0688               | 0.0411                     | 0.29                     | 0.26                         |
| Danville  | 24,050                     | 156.6                 | 2,083                    | 95.0             | 25.35                          | 0.0721               | 0.0440                     | 0.30                     | 0.29                         |
| Lewisburg | 16,095                     | 147.3                 | 1,032                    | 100.0            | 24.46                          | 0.0480               | 0.0326                     | 0.24                     | 0.24                         |
| Newport   | 8,029                      | 175.9                 | 587                      | 146.4            | 25.21                          | 0.0447               | 0.0371                     | 0.19                     | 0.27                         |
| Marietta  | 59,234                     | 158.8                 | 6,391                    | 142.2            | 27.91                          | 0.0612               | 0.0548                     | 0.27                     | 0.38                         |
| Conestoga | 1,154                      | 176.2                 | 257                      | 90.5             | 37.54                          | 0.2200               | 0.1131                     | 0.94                     | 0.86                         |

| Table 11. | Annual Water Discharges and Annual Loads and Yields of Total NO <sub>23</sub> Nitrogen, Calendar |
|-----------|--------------------------------------------------------------------------------------------------|
|           | Year 2003                                                                                        |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 22,055                   | 134              | 7.41                           | 0.7799               | 0.688                      | 3.29                     | 4.42                         |
| Danville  | 24,050                     | 156.6                 | 33,440                   | 128              | 6.68                           | 0.8663               | 0.706                      | 3.65                     | 4.66                         |
| Lewisburg | 16,095                     | 147.3                 | 23,174                   | 155              | 6.72                           | 0.6960               | 0.731                      | 3.42                     | 5.29                         |
| Newport   | 8,029                      | 175.9                 | 25,091                   | 210              | 5.20                           | 1.3304               | 1.587                      | 5.57                     | 11.69                        |
| Marietta  | 59,234                     | 158.8                 | 146,915                  | 168              | 7.02                           | 1.1915               | 1.260                      | 5.26                     | 8.83                         |
| Conestoga | 1,154                      | 176.2                 | 14,852                   | 181              | 6.88                           | 6.37                 | 6.537                      | 27.30                    | 49.37                        |

Table 12.Annual Water Discharges and Annual Loads and Yields of Total Organic Nitrogen,<br/>Calendar Year 2003

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 10,019                   | 90               | 11.20                          | 0.53                 | 0.312                      | 2.24                     | 2.01                         |
| Danville  | 24,050                     | 156.6                 | 16,175                   | 922              | 12.98                          | 0.58                 | 0.342                      | 2.44                     | 2.25                         |
| Lewisburg | 16,095                     | 147.3                 | 8,894                    | 110              | 21.23                          | 0.375                | 0.281                      | 1.84                     | 2.03                         |
| Newport   | 8,029                      | 175.9                 | 6,092                    | 148              | 14.13                          | 0.458                | 0.385                      | 1.92                     | 2.84                         |
| Marietta  | 59,234                     | 158.8                 | 35,348                   | 0.88             | 14.76                          | 0.548                | 0.303                      | 2.42                     | 2.13                         |
| Conestoga | 1,154                      | 176.2                 | 2,798                    | 144              | 25.84                          | 1.51                 | 1.232                      | 6.47                     | 9.3                          |

| Table 13. | Annual Water Discharges and Annual Loads and Yields of Dissolved Phosphorus, |
|-----------|------------------------------------------------------------------------------|
|           | Calendar Year 2003                                                           |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 905                      | 121              | 19.03                          | 0.0356               | 0.0282                     | 0.15                     | 0.18                         |
| Danville  | 24,050                     | 156.6                 | 1,348                    | 151              | 19.52                          | 0.029                | 0.0285                     | 0.12                     | 0.19                         |
| Lewisburg | 16,095                     | 147.3                 | 584                      | 129              | 19.03                          | 0.021                | 0.0184                     | 0.10                     | 0.13                         |
| Newport   | 8,029                      | 175.9                 | 905                      | 225              | 18.22                          | 0.045                | 0.0573                     | 0.19                     | 0.42                         |
| Marietta  | 59,234                     | 158.8                 | 4,667                    | 192              | 16.27                          | 0.033                | 0.0400                     | 0.15                     | 0.28                         |
| Conestoga | 1,154                      | 176.2                 | 448                      | 172              | 14.16                          | 0.20                 | 0.1972                     | 0.87                     | 1.49                         |

| Table 14. | Annual Water Discharges and Annual Loads and Yields of Dissolved Orthophosphate, |
|-----------|----------------------------------------------------------------------------------|
|           | Calendar Year 2003                                                               |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 703                      | 1.85             | 24.10                          | 0.018                | 0.0219                     | 0.076                    | 0.14                         |
| Danville  | 24,050                     | 156.6                 | 1,004                    | 231              | 24.25                          | 0.014                | 0.0212                     | 0.061                    | 0.14                         |
| Lewisburg | 16,095                     | 147.3                 | 364                      | 2.08             | 30.20                          | 0.008                | 0.0115                     | 0.04                     | 0.08                         |
| Newport   | 8,029                      | 175.9                 | 873                      | 288              | 28.22                          | 0.034                | 0.0552                     | 0.14                     | 0.41                         |
| Marietta  | 59,234                     | 158.8                 | 4,358                    | 263              | 24.94                          | 0.023                | 0.0374                     | 0.10                     | 0.26                         |
| Conestoga | 1,154                      | 176.2                 | 414                      | 195              | 19.37                          | 0.16                 | 0.1822                     | 0.70                     | 1.38                         |

| Table 15. | Annual Water Discharges and Annual Loads and Yields of Dissolved Ammonia, Calendar |
|-----------|------------------------------------------------------------------------------------|
|           | Year 2003                                                                          |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 1,461                    | 128              | 19.72                          | 0.054                | 0.0456                     | 0.23                     | 0.29                         |
| Danville  | 24,050                     | 156.6                 | 2,252                    | 131              | 19.86                          | 0.057                | 0.0476                     | 0.24                     | 0.31                         |
| Lewisburg | 16,095                     | 147.3                 | 1,238                    | 114              | 18.14                          | 0.05                 | 0.0391                     | 0.25                     | 0.28                         |
| Newport   | 8,029                      | 175.9                 | 612                      | 181              | 16.70                          | 0.038                | 0.0387                     | 0.16                     | 0.28                         |
| Marietta  | 59,234                     | 158.8                 | 5,946                    | 151              | 19.65                          | 0.05                 | 0.0510                     | 0.24                     | 0.36                         |
| Conestoga | 1,154                      | 176.2                 | 242                      | 124              | 31.26                          | 0.15                 | 0.1065                     | 0.65                     | 0.29                         |

Table 16.Annual Water Discharges and Annual Loads and Yields of Dissolved Nitrogen, Calendar<br/>Year 2003

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 30,225                   | 133              | 5.67                           | 1.08                 | 0.942                      | 4.57                     | 6.06                         |
| Danville  | 24,050                     | 156.6                 | 44,867                   | 123              | 6.54                           | 1.208                | 0.948                      | 5.09                     | 6.25                         |
| Lewisburg | 16,095                     | 147.3                 | 28,206                   | 121              | 6.57                           | 1.08                 | 0.890                      | 5.32                     | 6.44                         |
| Newport   | 8,029                      | 175.9                 | 28,640                   | 212              | 4.71                           | 1.50                 | 1.812                      | 6.28                     | 13.34                        |
| Marietta  | 59,234                     | 158.8                 | 173,772                  | 167              | 6.58                           | 1.42                 | 1.490                      | 6.25                     | 10.45                        |
| Conestoga | 1,154                      | 176.2                 | 16,363                   | 190              | 6.14                           | 6.68                 | 7.202                      | 28.65                    | 54.40                        |

| Table 17. | Annual Water Discharges and Annual Loads and Yields of Dissolved NO <sub>23</sub> Nitrogen, |
|-----------|---------------------------------------------------------------------------------------------|
|           | Calendar Year 2003                                                                          |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 21,878                   | 154              | 7.38                           | 0.67                 | 0.682                      | 2.85                     | 4.38                         |
| Danville  | 24,050                     | 156.6                 | 33,112                   | 137              | 6.72                           | 0.80                 | 0.699                      | 3.36                     | 4.61                         |
| Lewisburg | 16,095                     | 147.3                 | 23,002                   | 145              | 6.57                           | 0.74                 | 0.726                      | 3.62                     | 5.25                         |
| Newport   | 8,029                      | 175.9                 | 24,956                   | 231              | 5.21                           | 1.20                 | 1.579                      | 5.03                     | 11.63                        |
| Marietta  | 59,234                     | 158.8                 | 145,701                  | 221              | 7.16                           | 0.90                 | 1.249                      | 3.97                     | 8.76                         |
| Conestoga | 1,154                      | 176.2                 | 14,800                   | 199              | 6.88                           | 5.78                 | 6.514                      | 24.78                    | 49.20                        |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load thousand lbs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 8,541                    | 104              | 10.70                          | 0.39                 | 0.266                      | 1.64                     | 1.71                         |
| Danville  | 24,050                     | 156.6                 | 11,893                   | 108              | 10.76                          | 0.36                 | 0.251                      | 1.54                     | 1.66                         |
| Lewisburg | 16,095                     | 147.3                 | 5,566                    | 105              | 15.88                          | 0.25                 | 0.176                      | 1.21                     | 1.27                         |
| Newport   | 8,029                      | 175.9                 | 4,017                    | 142              | 11.59                          | 0.31                 | 0.254                      | 1.31                     | 1.87                         |
| Marietta  | 59,234                     | 158.8                 | 23,113                   | 80               | 18.47                          | 0.39                 | 0.198                      | 1.73                     | 1.39                         |
| Conestoga | 1,154                      | 176.2                 | 2,157                    | 213              | 25.76                          | 0.79                 | 0.949                      | 3.37                     | 7.17                         |

Table 18.Annual Water Discharges and Annual Loads and Yields of Dissolved Organic Nitrogen,<br/>Calendar Year 2003

| Table 19. | Annual Water Discharges and Annual Loads and Yields of Total Organic Carbon, |
|-----------|------------------------------------------------------------------------------|
|           | Calendar Year 2003                                                           |

| Site      | Annual<br>Discharge<br>cfs | Discharge<br>% of LTM | Annual Load<br>thousand<br>Ibs | Load<br>% of LTM | Prediction<br>Error<br>Percent | LTM<br>Conc.<br>mg/l | 2003<br>Ave. Conc.<br>mg/l | LTM<br>Yield<br>Ib/ac/yr | Annual<br>Yield<br>Ibs/ac/yr |
|-----------|----------------------------|-----------------------|--------------------------------|------------------|--------------------------------|----------------------|----------------------------|--------------------------|------------------------------|
| Towanda   | 16,290                     | 152.2                 | 112,146                        | 141              | 4.45                           | 3.77                 | 3.497                      | 15.91                    | 22.47                        |
| Danville  | 24,050                     | 156.6                 | 166,362                        | 156              | 4.28                           | 3.52                 | 3.514                      | 14.81                    | 23.17                        |
| Lewisburg | 16,095                     | 147.3                 | 73,227                         | 169              | 7.31                           | 2.02                 | 2.311                      | 9.91                     | 16.71                        |
| Newport   | 8,029                      | 175.9                 | 50,402                         | 167              | 6.68                           | 3.36                 | 3.189                      | 14.06                    | 23.48                        |
| Marietta  | 59,234                     | 158.8                 | 356,712                        | 151              | 5.10                           | 3.21                 | 3.059                      | 14.17                    | 21.45                        |
| Conestoga | 1,154                      | 176.2                 | 11,153                         | 137              | 9.50                           | 6.31                 | 4.909                      | 27.07                    | 37.08                        |

Identifying sites where the percentage of LTM for a constituent was higher than the percentage of LTM for discharge may show potential areas where degradation was occurring for that particular constituent. For example, the flow for 2003 was 175.9 percent of the LTM at Newport while TN was 194.5 percent, TP was 244.8 percent, and SS was 223.3 percent of the long term means. This implies an increase in these constituents that has come from more than increased flow. Newport also showed higher average annual concentrations for TN, TP, and SS during 2003 as compared with the LTMs. As a general note for 2003, when higher percentages of LTM were found, so were higher average concentrations. Marietta showed an increased TP load and concentration value when compared to the LTM. All vield values for 2003 for TN, TP, and SS were higher than the LTMs for all sites except for SS at Lewisburg. Lewisburg also

showed a lower average annual concentration as compared to the LTM. The higher yields were most likely due to increased flow during 2003.

While TN was shown to be decreasing at all sites, DN showed higher than LTM values at Newport, Marietta, and Conestoga. Much of this DN value was contained in dissolved NO23 which was higher than the LTM at Newport, Marietta, and Conestoga. Dissolved ammonia was also higher than the LTM at Newport. DP was higher than LTMs at Newport and Marietta and dissolved orthophosphate (DOP) was higher than LTMs at all sites. Dissolved organic nitrogen showed higher than LTMs at Conestoga. Lewisburg was the only site to show higher than LTMs for TOC. This could be due to leaf litter from the mostly forested watershed. Figures 4-6 show loads and yields of TN, TP, and SS in comparison with the LTM for each site.



Figure 4A. Annual Loads of Total Nitrogen (TN) at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003



Figure 4B. Total Nitrogen (TN) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003



Figure 5A. Annual Loads of Total Phosphorus (TP) at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003



Figure 5B. Total Phosphorus (TP) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003



Figure 6A. Annual Loads of Suspended Sediment (SS) at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003



Figure 6B. Suspended Sediment (SS) Yields at Towanda, Danville, Lewisburg, Newport, Marietta, and Conestoga, Pa., Calendar Year 2003

When looking at constituent loads, it can be difficult to determine whether improvements are being made due to the variations in flow. Because of this, it is useful to compare the loads from years that had similar amounts of flow. Table 20 lists the flow and TN, TP, and SS loads for 1996 and 2003. The fact that constituent loads tend to be higher during higher flow years suggests that the loads for TN, TP, and SS should be higher for all sites except Conestoga during 1996. This was the case for TN, TP, and SS at all sites except Newport, which showed higher percent loads as compared to the 1996 values for TN and TP.

Tables 21–24 show seasonal comparisons of years 1996 and 2003. Newport showed higher percentages than 1996 for TN and TP for all seasons, including doubling the 1996 spring value. SS at Conestoga was four times the 1996 value, while the TP value was only 43.27 percent of the 1996 value. This indicates less sediment bound phosphorous was being transported. Summer sampling results showed increased percentages as compared to 1996 in TP and SS at Towanda, Danville, Conestoga, and Marietta. TN was higher in the fall at Newport, Conestoga, and Marietta.

#### SEASONAL WATER DISCHARGES AND NUTRIENT AND SUSPENDED-SEDIMENT LOADS AND YIELDS

Seasonal loads for all parameters and all sites are listed in Table 25 for loads and Table 26 for percentages (high values in boldface type). For the purposes of this project, January through March is winter, April through June is spring, July through September is summer, and October through December is fall. As a general note, nutrient and SS levels increase with increases in flow. This was observed at all sites for TN except at Towanda. TP, DP and DOP were highest during the fall for all sites except for TP at Conestoga. This matched the highest flow season for Towanda, Danville, Lewisburg, and Marietta.

For Newport, fall was actually the lowest flow season while it was the highest for TP, DP, DOP, and the second highest for TN, DN, total nitrate plus nitrite (TNOx), dissolved nitrate plus nitrite (DNOx), total ammonia (TNH3), dissolved ammonia (DNH3), and TOC. Winter at Newport constituted 36.5 percent of the annual flow and 26.54 percent of the SS annual load while fall represented 13.73 percent of the flow and 24.28 percent of the SS. SS was highest during the winter at Towanda, Danville, Lewisburg, and Marietta even though the season was the second highest for flow at each of the four sites. Conestoga had the highest SS loads during the spring, which was the third highest flow season for the site. Flow at Conestoga for spring was 25.41 percent of the annual flow and 38.26 percent of the annual SS load.

When compared to the seasonal LTMs, Towanda and Danville showed higher than the LTMs for spring flow and lower than the LTMs in TN and TP, with large reductions shown in SS. Spring flows at Lewisburg for 2003 were equal to the LTM while similar reductions in TN, TP, and SS were found at Lewisburg as at the northern sites. Newport showed above LTM values for all seasons for flow, TN, TP, and SS. Marietta had a higher spring flow than the LTM while also showing a lower SS value. Conestoga had all flow values higher than the LTM and a much larger SS value as compared to the LTM during Figures 7-12 show graphs of the spring. discharge, TN, TP and SS as compared to the LTM.

Newport showed an increase in TN yields during the winter and spring when compared to the LTM yields, while Marietta showed higher TN yields in the fall as compared to the LTM yield. Danville, and Marietta showed Towanda, increasing TP yields downstream for 2003, which matched the same trend in LTM yields. Marietta and Newport both showed significant increases in vield values during the summer and fall months as compared to the LTMs. Increases over the LTMs also were apparent during those seasons at all other sites. SS showed a generally decreasing trend in the long term when moving downstream on the Susquehanna. 2003 yields roughly followed the same pattern during winter and fall but showed increasing yields during the spring and summer. When comparing the seasonal percentages, spring had the highest percent of TP, SS, and flow at all sites. Figures 13-16 show the seasonal yields for each site.

|           | Discharge (cfs) |        |          | TN thousands (lbs) |         |          |        | TP thousand | l (Ibs)  | SS         | SS thousands (lbs) |          |  |
|-----------|-----------------|--------|----------|--------------------|---------|----------|--------|-------------|----------|------------|--------------------|----------|--|
| Site      | 1996            | 2003   | % Change | 1996               | 2003    | % Change | 1996   | 2003        | % Change | 1996       | 2003               | % Change |  |
| Towanda   | 17,000          | 16,290 | 95.82    | 43,400             | 32,621  | 75.16    | 4,800  | 2,677       | 55.77    | 8,690,000  | 2,399,772          | 27.62    |  |
| Danville  | 24,800          | 24,050 | 96.98    | 64,600             | 50,184  | 77.68    | 6,890  | 4,691       | 68.08    | 7,450,000  | 2,855,630          | 38.33    |  |
| Lewisburg | 17,100          | 16,095 | 94.12    | 40,800             | 31,644  | 77.56    | 2,810  | 1,712       | 60.93    | 4,560,000  | 555,487            | 12.18    |  |
| Newport   | 8,660           | 8,029  | 92.71    | 30,500             | 31,282  | 102.56   | 1,270  | 1,949       | 153.46   | 1,270,000  | 1,059,614          | 83.43    |  |
| Marietta  | 63,600          | 59,234 | 93.14    | 221,000            | 193,078 | 87.37    | 16,200 | 15,013      | 92.67    | 14,000,000 | 8,041,920          | 57.44    |  |
| Conestoga | 1,120           | 1,154  | 103.04   | 16,300             | 17,139  | 105.15   | 1,580  | 1,055       | 66.77    | 759,000    | 561,962            | 74.04    |  |

Table 20. Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS

Table 21. Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Winter

|           |        | Discharge (o | cfs)     | TN     | I thousands | (lbs)    |       | TP thousand | l (lbs)  | SS thousands (Ibs) |           |          |  |
|-----------|--------|--------------|----------|--------|-------------|----------|-------|-------------|----------|--------------------|-----------|----------|--|
| Site      | 1996   | 2003         | % Change | 1996   | 2003        | % Change | 1996  | 2003        | % Change | 1996               | 2003      | % Change |  |
| Towanda   | 20,600 | 18,888       | 91.69    | 14,300 | 10,475      | 73.25    | 1,590 | 830         | 52.20    | 2,930,000          | 966,671   | 32.99    |  |
| Danville  | 30,600 | 26,795       | 87.57    | 21,700 | 15,774      | 72.69    | 2,200 | 1,281       | 58.23    | 2,650,000          | 966,803   | 36.48    |  |
| Lewisburg | 24,200 | 16,344       | 67.54    | 16,800 | 8,870       | 52.80    | 1,260 | 505         | 40.08    | 2,690,000          | 229,980   | 8.55     |  |
| Newport   | 12,700 | 10,186       | 80.20    | 11,600 | 9,857       | 84.97    | 618   | 515         | 83.33    | 496,000            | 281,229   | 56.70    |  |
| Marietta  | 96,600 | 62,987       | 65.20    | 86,300 | 51,639      | 59.84    | 6,460 | 3,784       | 58.58    | 5,750,000          | 2,442,463 | 42.48    |  |
| Conestoga | 1,410  | 1,337        | 94.82    | 5,390  | 5,179       | 96.09    | 520   | 225         | 43.27    | 25,900             | 126,788   | 489.53   |  |

17

Table 22. Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Spring

|           |        | Discharge (cfs) |          |        | TN thousands (lbs) |          |       | TP thousand | l (lbs)  | SS        | 6 thousands (Ib | os)      |
|-----------|--------|-----------------|----------|--------|--------------------|----------|-------|-------------|----------|-----------|-----------------|----------|
| Site      | 1996   | 2003            | % Change | 1996   | 2003               | % Change | 1996  | 2003        | % Change | 1996      | 2003            | % Change |
| Towanda   | 20,900 | 17,454          | 83.51    | 12,500 | 8,096              | 64.77    | 1,160 | 538         | 46.38    | 2,310,000 | 400,918         | 17.36    |
| Danville  | 29,200 | 26,696          | 91.42    | 17,400 | 12,502             | 71.85    | 1,620 | 1,029       | 63.52    | 2,020,000 | 663,111         | 32.83    |
| Lewisburg | 14,800 | 15,462          | 104.47   | 7,540  | 6,638              | 88.04    | 419   | 281         | 67.06    | 413,000   | 69,222          | 16.76    |
| Newport   | 6,260  | 8,935           | 142.73   | 5,030  | 7,680              | 152.68   | 190   | 525         | 276.32   | 172,000   | 351,206         | 204.19   |
| Marietta  | 62,000 | 64,682          | 104.33   | 44,200 | 44,306             | 100.24   | 2,770 | 3,446       | 124.40   | 2,220,000 | 1,880,303       | 84.70    |
| Conestoga | 1,010  | 1,172           | 116.04   | 3,720  | 4,162              | 111.88   | 277   | 297         | 107.22   | 122,000   | 214,999         | 176.23   |

|           |        | Discharge (o | cfs)     | TN     | I thousands | (lbs)    |       | TP thousand | l (lbs)  | SS thousands (lbs) |           |          |  |
|-----------|--------|--------------|----------|--------|-------------|----------|-------|-------------|----------|--------------------|-----------|----------|--|
| Site      | 1996   | 2003         | % Change | 1996   | 2003        | % Change | 1996  | 2003        | % Change | 1996               | 2003      | % Change |  |
| Towanda   | 4,740  | 9,454        | 199.45   | 2,320  | 3,916       | 168.79   | 183   | 380         | 207.65   | 83,500             | 274,906   | 329.23   |  |
| Danville  | 7,380  | 14,255       | 193.16   | 3,640  | 5,954       | 163.57   | 307   | 657         | 214.01   | 106,000            | 309,983   | 292.44   |  |
| Lewisburg | 7,790  | 13,634       | 175.02   | 3,610  | 5,649       | 156.48   | 210   | 299         | 142.38   | 135,000            | 79,585    | 58.95    |  |
| Newport   | 6,470  | 4,948        | 76.48    | 6,020  | 4,831       | 80.25    | 300   | 363         | 121.00   | 462,000            | 169,942   | 36.78    |  |
| Marietta  | 27,000 | 40,352       | 149.45   | 18,900 | 30,556      | 161.67   | 1,210 | 2,663       | 220.08   | 745,000            | 1,332,297 | 178.83   |  |
| Conestoga | 563    | 810          | 143.87   | 1,950  | 2,835       | 145.38   | 151   | 264         | 174.83   | 50,100             | 123,607   | 246.72   |  |

Table 23. Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Summer

Table 24. Comparison of 2003 Loads with 1996 Loads for Flow, TN, TP, and SS During Fall

|           | Discharge (cfs) |        |          | TN thousands (lbs) |        |          |       | TP thousand | l (lbs)  | SS thousands (lbs) |           |          |  |
|-----------|-----------------|--------|----------|--------------------|--------|----------|-------|-------------|----------|--------------------|-----------|----------|--|
| Site      | 1996            | 2003   | % Change | 1996               | 2003   | % Change | 1996  | 2003        | % Change | 1996               | 2003      | % Change |  |
| Towanda   | 21,700          | 19,363 | 89.23    | 14,200             | 10,134 | 71.37    | 1,860 | 928         | 49.89    | 3,250,000          | 747,276   | 22.99    |  |
| Danville  | 31,900          | 28,456 | 89.20    | 21,800             | 15,955 | 73.19    | 2,730 | 1,723       | 63.11    | 2,670,000          | 915,735   | 34.30    |  |
| Lewisburg | 21,800          | 18,940 | 86.88    | 12,900             | 10,488 | 81.30    | 927   | 627         | 67.64    | 1,320,000          | 176,699   | 13.39    |  |
| Newport   | 9,210           | 3,830  | 41.59    | 7,900              | 8,915  | 112.85   | 162   | 546         | 337.04   | 138,000            | 257,267   | 186.43   |  |
| Marietta  | 79,100          | 68,913 | 87.12    | 71,800             | 66,577 | 92.73    | 5,740 | 5,120       | 89.20    | 5,310,000          | 2,386,857 | 44.95    |  |
| Conestoga | 1,490           | 1,294  | 86.85    | 5,270              | 4,963  | 94.17    | 635   | 268         | 42.20    | 327,000            | 96,568    | 29.53    |  |

|                         |        | Mean   | Total    | Dissolved    | Total        | Dissolved | Total<br>Organic | Dissolved<br>Organic | Total<br>Nitrate<br>Plus | Dissolved<br>Nitrate<br>Plus | Total      | Dissolved  | Dissolved<br>Ortho- | Total             | Suspended      |
|-------------------------|--------|--------|----------|--------------|--------------|-----------|------------------|----------------------|--------------------------|------------------------------|------------|------------|---------------------|-------------------|----------------|
| Station                 | Season | Water  | Nitrogen | Nitrogen     | Ammonia      | Ammonia   | Nitrogen         | Nitrogen             | Nitrite                  | Nitrite                      | Phosphorus | Phosphorus | Phosphate           | Organic<br>Carbon | Sediment       |
|                         |        | cfs    | as 11    | <i>as</i> 11 | <i>as</i> 11 | d5 11     | <i>as</i> 11     | th                   | ousands of               | f pounds                     | as 1       | as 1       | d5 1                | Carbon            |                |
| Towanda                 | Winter | 18.888 | 10.475   | 9,768        | 414          | 476       | 3.106            | 2,548                | 7.138                    | 7.113                        | 830        | 248        | 184                 | 27.711            | 966.671        |
|                         | Spring | 17,454 | 8,096    | 7,477        | 247          | 280       | 2,580            | 2,194                | 5,418                    | 5,434                        | 538        | 178        | 136                 | 27,771            | 400,918        |
|                         | Summer | 9,454  | 3,916    | 3,466        | 143          | 142       | 1,549            | 1,310                | 2,330                    | 2,300                        | 380        | 136        | 116                 | 20,758            | 284,906        |
|                         | Fall   | 19,363 | 10,134   | 9,513        | 514          | 563       | 2,784            | 2,489                | 7,170                    | 7,031                        | 928        | 344        | 267                 | 35,906            | 747,276        |
| Donvillo                | Winter | 26 705 | 15 774   | 14 420       | 607          | 770       | 1 656            | 2 161                | 11.020                   | 11.022                       | 1 201      | 252        | 260                 | 20 052            | 066 803        |
| Danvine                 | Spring | 20,795 | 13,774   | 14,450       | 380          | 770       | 4,050            | 3,404                | 7 029                    | 7 868                        | 1,281      | 555<br>278 | 209                 | 30,033<br>43 525  | <b>900,005</b> |
|                         | Summer | 14 255 | 5 954    | 5 008        | 187          | 200       | 2 / 98           | 1 747                | 3 38/                    | 3 304                        | 657        | 190        | 1/18                | 30 363            | 309 983        |
|                         | Fall   | 28.456 | 15.955   | 14.565       | 829          | 812       | 4.511            | 3.546                | 11.098                   | 10.917                       | 1.723      | 528        | 374                 | 53.621            | 915.735        |
|                         |        | 20,100 | 10,000   | 1 1,0 00     | 022          | 012       | .,               | 0,010                | 11,070                   |                              | 1,720      | 020        |                     | 00,021            | ,,             |
| Lewisburg               | Winter | 16,344 | 8,870    | 7,753        | 339          | 382       | 2,770            | 1,617                | 6,027                    | 6,028                        | 505        | 146        | 95                  | 15,889            | 229,980        |
| _                       | Spring | 15,462 | 6,638    | 5,994        | 180          | 250       | 1,801            | 1,245                | 4,840                    | 4,809                        | 281        | 104        | 60                  | 14,882            | 69,222         |
|                         | Summer | 13,634 | 5,649    | 5,118        | 134          | 181       | 1,615            | 1,085                | 4,248                    | 4,172                        | 299        | 114        | 74                  | 18,700            | 79,585         |
|                         | Fall   | 18,940 | 10,488   | 9,341        | 378          | 425       | 2,708            | 1,620                | 8,060                    | 7,992                        | 627        | 219        | 135                 | 23,757            | 176,699        |
| Newport                 | Winter | 10,186 | 9.857    | 9.099        | 175          | 182       | 1.903            | 1.304                | 7.904                    | 7.875                        | 515        | 238        | 229                 | 14,119            | 281.229        |
| - · · · · · · · · · · · | Spring | 8,935  | 7,680    | 6,919        | 146          | 157       | 1,761            | 1,118                | 5,927                    | 5,891                        | 525        | 217        | 200                 | 13,378            | 351.206        |
|                         | Summer | 4,948  | 4,831    | 4,373        | 95           | 99        | 992              | 642                  | 3,781                    | 3,754                        | 363        | 178        | 180                 | 9,313             | 169,942        |
|                         | Fall   | 3,830  | 8,915    | 8,248        | 171          | 173       | 1,436            | 954                  | 7,479                    | 7,436                        | 546        | 272        | 264                 | 13,592            | 257,267        |
| Mariatta                | Winter | 62 087 | 51 630   | 17 366       | 2 102        | 1 0 1 0   | 10.460           | 7 152                | 30 371                   | 30.005                       | 3 784      | 1.079      | 1.007               | 81 725            | 2 112 163      |
| Walletta                | Spring | 64 682 | 44 306   | 39 263       | 1 072        | 1,910     | 9.049            | 5 751                | 32 581                   | 32,095                       | 3,784      | 1,079      | 972                 | 90,966            | 1 880 303      |
|                         | Summer | 40.352 | 30,556   | 26,569       | 633          | 665       | 6.009            | 3,890                | 21,928                   | 21,715                       | 2.663      | 918        | 883                 | 73,517            | 1,332,297      |
|                         | Fall   | 68,913 | 66,577   | 60,573       | 2,584        | 2,232     | 9,830            | 6,320                | 53,034                   | 52,740                       | 5,120      | 1,570      | 1,497               | 110,504           | 2,386,857      |
|                         |        | -      |          | -            |              |           |                  |                      |                          |                              | -          | -          | -                   | <i>,</i>          |                |
| Conestoga               | Winter | 1,337  | 5,179    | 4,937        | 77           | 77        | 952              | 750                  | 4,313                    | 4,275                        | 225        | 98         | 80                  | 2,883             | 126,788        |
|                         | Spring | 1,172  | 4,162    | 3,929        | 57           | 51        | 714              | 544                  | 3,569                    | 3,550                        | 297        | 100        | 95                  | 2,887             | 214,999        |
|                         | Summer | 810    | 2,835    | 2,694        | 44           | 38        | 420              | 308                  | 2,541                    | 2,543                        | 264        | 107        | 111                 | 2,246             | 123,607        |
|                         | Fall   | 1,294  | 4,963    | 4,803        | 80           | 76        | 711              | 554                  | 4,428                    | 4,432                        | 268        | 143        | 128                 | 3,137             | 96,568         |

Table 25.Seasonal Mean Water Discharges and Loads of Nutrients and Suspended Sediment, Calendar year 2003

| Station   | Season | Mean<br>Water  | Total<br>Nitrogen | Dissolved<br>Nitrogen | Total<br>Ammonia | Dissolved<br>Ammonia | Total<br>Organic<br>Nitrogen | Dissolved<br>Organic<br>Nitrogen | Total<br>Nitrate<br>Plus<br>Nitrite | Dissolved<br>Nitrate<br>Plus<br>Nitrite | Total<br>Phosphorus | Dissolved<br>Phosphorus | Dissolved<br>Ortho-<br>Phosphate | Total<br>Organic | Suspended<br>Sediment |
|-----------|--------|----------------|-------------------|-----------------------|------------------|----------------------|------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|---------------------|-------------------------|----------------------------------|------------------|-----------------------|
|           |        | Discharge      | as N              | as N                  | as N             | as N                 | as N                         | as N                             | as N                                | as N                                    | as P                | as P                    | as P                             | Carbon           |                       |
|           |        | cts            | 20.11.0/          |                       | 01.11.01         |                      | 21.0004                      | th                               | ousands of                          | pounds                                  | 21.024/             | 05.05%                  | 0 < 1 = 1                        | A 4 5 4 4 4      | 10.000/               |
| Towanda   | Winter | 28.99%         | 32.11%            | 32.32%                | 31.41%           | 32.58%               | 31.00%                       | 29.83%                           | 32.36%                              | 32.51%                                  | 31.02%              | 27.37%                  | 26.17%                           | 24.71%           | 40.28%                |
|           | Spring | 26.79%         | 24.82%            | 24.74%                | 18.74%           | 19.16%               | 25.75%                       | 25.69%                           | 24.56%                              | 24.84%                                  | 20.10%              | 19.65%                  | 19.35%                           | 24.76%           | 16./1%                |
|           | Summer | 14.51%         | 12.00%            | 11.47%                | 10.85%           | 9.72%                | 15.46%                       | 15.34%                           | 10.56%                              | 10.51%                                  | 14.20%              | 15.01%                  | 16.50%                           | 18.51%           | 11.8/%                |
|           | Fall   | 29.72%         | 31.07%            | 31.47%                | 39.00%           | 38.54%               | 27.79%                       | 29.14%                           | 32.51%                              | 32.14%                                  | 34.68%              | 57.97%                  | 37.98%                           | <b>32.02</b> %   | 31.14%                |
| D         | Winter | 27.950         | 21 420/           | 22 1 40/              | 22 0.90/         | 24 100/              | 29 700/                      | 20.120/                          | 22.000/                             | 22 200/                                 | 27.210/             | 26 170/                 | 26 700/                          | 22.250           | 22.860                |
| Danville  | winter | 27.85%         | 31.43%            | 32.14%                | 32.98%           | 34.19%               | 28.19%                       | 29.13%                           | 32.98%                              | <b>33.29</b> %                          | 27.31%              | 20.17%                  | 20.79%                           | 25.55%           | <b>33.80</b> %        |
|           | Spring | 27.75%         | 24.91%            | 24.20%                | 18.24%           | 2087%                | 27.88%                       | 20.37%                           | 25./1%                              | 23.70%                                  | 21.94%              | 20.01%                  | 21.22%                           | 20.10%           | 23.22%                |
|           | Summer | 14.82%         | 11.80%            | 11.15%                | 8.98%            | 8.88%                | 15.44%                       | 14.09%                           | 10.12%                              | 9.98%                                   | 14.01%              | 14.08%                  | 14.74%                           | 18.25%           | 10.86%                |
|           | rall   | 29.58%         | 51.79%            | 32.44%                | 39.80%           | 30.00%               | 21.89%                       | 29.82%                           | 33.19%                              | 52.97%                                  | 30.74%              | 39.14%                  | 51.25%                           | 32.23%           | 52.07%                |
| Lewisburg | Winter | 25 39%         | 28.03%            | 27 19%                | 32 88%           | 30.86%               | 31 14%                       | 29.05%                           | 26.01%                              | 26.21%                                  | 29 50%              | 25.04%                  | 26 10%                           | 21 70%           | 41 40%                |
| Lewisburg | Spring | 24.02%         | 20.03%            | 21.25%                | 17.46%           | 20.19%               | 20.25%                       | 22.05%                           | 20.88%                              | 20.91%                                  | 16.41%              | 17 84%                  | 16.48%                           | 20.32%           | 12 46%                |
|           | Summer | 21 18%%        | 17 85%            | 18 15%                | 13.00%           | 14 62%               | 18 16%                       | 19 49%                           | 18 33%                              | 18 14%                                  | 17.46%              | 19 55%                  | 20.33%                           | 25 54%           | 14 33%                |
|           | Fall   | 29 42%         | 33 14%            | 33 12%                | 36 66%           | 34 33%               | 30.45%                       | 29 10%                           | 34 78%                              | 34 75%                                  | 36 62%              | 37 56%                  | 37.09%                           | 32.44%           | 31.81%                |
|           | I ull  |                | 00111/0           | 00112/0               | 20.0070          | 0 1100 /0            | 50.1570                      | 27.1070                          | 0 11/0/0                            | 0111070                                 | 2010270             | 0110070                 | 01100/10                         | 02.1170          | 51.0170               |
| Newport   | Winter | 36.51%         | 31.51%            | 31.77%                | <b>29.81</b> %   | <b>29.79</b> %       | 31.24%                       | 32.45%                           | 31.50%                              | 31.56%                                  | 26.42%              | 26.30%                  | 26.23%                           | 28.01%           | 26.54%                |
| •         | Spring | 32.03%         | 24.55%            | 24.16%                | 24.87%           | 25.70%               | 28.91%                       | 27.82%                           | 23.62%                              | 23.61%                                  | 26.94%              | 23.98%                  | 22.91%                           | 26.54%           | 33.14%                |
|           | Summer | 17.74%         | 15.44%            | 15.27%                | 16.18%           | 16.20%               | 16.28%                       | 15.98%                           | 15.07%                              | 15.04%                                  | 18.62%              | 19.67%                  | 20.62%                           | 18.48%           | 16.04%                |
|           | Fall   | 13.73%         | 28.50%            | 28.80%                | 29.13%           | 28.31%               | 23.57%                       | 23.74%                           | 29.81%                              | 29.80%                                  | 28.01%              | 30.06%                  | 30.24%                           | 26.97%           | 24.28%                |
|           |        |                |                   |                       |                  |                      |                              |                                  |                                     |                                         |                     |                         |                                  |                  |                       |
| Marietta  | Winter | 26.58%         | 26.75%            | 27.26%                | 32.89%           | 32.07%               | 29.59%                       | 30.94%                           | 26.80%                              | 26.83%                                  | 25.20%              | 23.12%                  | 23.10%                           | 22.91%           | 30.37%                |
|           | Spring | 27.30%         | 22.95%            | 22.59%                | 16.77%           | 19.28%               | 25.60%                       | 24.88%                           | 22.18%                              | 22.07%                                  | 22.95%              | 23.57%                  | 22.30%                           | 25.50%           | 23.38%                |
|           | Summer | 17.03%         | 15.83%            | 15.29%                | 9.90%            | 11.17%               | 17.00%                       | 16.83%                           | 14.93%                              | 14.90%                                  | 17.74%              | 19.67%                  | 20.26%                           | 20.61%           | 16.57%                |
|           | Fall   | <b>29.09</b> % | 34.48%            | 34.86%                | 40.43%           | 37.48%               | 27.81%                       | 27.34%                           | 36.10%                              | 36.20%                                  | 34.10%              | 33.64%                  | 34.34%                           | 30.98%           | 29.68%                |
|           |        |                |                   |                       |                  |                      |                              |                                  |                                     |                                         |                     |                         |                                  |                  |                       |
| Conestoga | Winter | 28.98%         | 30.22%            | 30.17%                | 29.84%           | 31.82%               | 34.04%                       | <b>34.79</b> %                   | 29.04%                              | 28.89%                                  | 21.35%              | 21.88%                  | 19.32%                           | 25.85%           | 22.56%                |
|           | Spring | 25.41%         | 24.28%            | 24.01%                | 22.09%           | 21.07%               | 25.53%                       | 25.23%                           | 24.03%                              | 23.99%                                  | 28.18%              | 22.32%                  | 22.95%                           | 25.89%           | 38.26%                |
|           | Summer | 17.56%         | 16.54%            | 16.46%                | 17.05%           | 15.70%               | 15.02%                       | 14.29%                           | 17.11%                              | 17.18%                                  | 25.05%              | 23.88%                  | 26.81%                           | 20.14%           | 22.00%                |
|           | Fall   | 28.05%         | 28.96%            | 29.35%                | 31.01%           | 31.40%               | 25.42%                       | 25.70%                           | <b>29.82</b> %                      | <b>29.95</b> %                          | 25.43%              | 31.92%                  | 30.92%                           | 28.13%           | 17.18%                |

Table 26.Seasonal Mean Water Discharge and Load Percentages of Nutrients and Suspended Sediment, Calendar year 2003



Figure 7. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Towanda, Pa., Calendar Year 2003



Figure 8. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Danville, Pa., Calendar Year 2003



Figure 9. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Lewisburg, Pa., Calendar Year 2003



Figure 10. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Newport, Pa., Calendar Year 2003



Figure 11. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Marietta, Pa., Calendar Year 2003



Figure 12. Seasonal Discharges and Loads of Total Nitrogen (TN), Total Phosphorus (TP), Suspended Sediment (SS) at Conestoga, Pa., Calendar Year 2003



Figure 13. Comparison of Seasonal Yields of Total Nitrogen (TN) at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa.





Figure 14. Comparison of Seasonal Yields of Total Phosphorus (TP) at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa.




Figure 15. Comparison of Seasonal Yields of Suspended Sediment (SS) at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa.



Figure 16. Seasonal Percent of Annual Load of Total Nitrogen, Total Phosphorus, and Suspended Sediment at Towanda, Danville, Marietta, Lewisburg, Newport, and Conestoga, Pa.

# COMPARISON OF THE 2003 LOADS AND YIELDS OF TOTAL NITROGEN, TOTAL PHOSPHORUS, AND SUSPENDED SEDIMENT WITH THE BASELINES

The annual fluctuations of nutrient and SS loads and water discharge make it difficult to determine whether the changes were related to land use, nutrient availability, or simply annual water discharge. Ott and others (1991) used the functional relationship between annual loads and annual water discharge to provide a method to reduce the variability of loadings due to discharge. This was accomplished by plotting the annual loads or yields against the water-discharge ratio. This water-discharge ratio is the ratio of the annual mean discharge to the LTM discharge. Data from the initial 5-year study (1985-89) were used to provide a best-fit linear regression line to be used as the baseline relationship between annual loads and water discharge. It was hypothesized that, as future loads and waterdischarge ratios were plotted against the baseline, any significant deviation from the baseline would indicate that some change in the annual load had occurred, and that further evaluations to determine the reason for the change were warranted. The data collected in 2003 were compared with the 1985-89 baseline, where possible. Monitoring at some of the stations was started after 1987: therefore, a baseline was established for the 5-year period following the start of monitoring. 2003 yields values also were plotted against a baseline developed with data from the beginning of each dataset (usually 1985) through 2002. Figures 17-28 display the baseline graphs and the 2003 vields.

#### Susquehanna River at Towanda, Pa.

The baselines for TN, TP, and SS for the Susquehanna River at Towanda are shown in Figures 17 and 18 with the 2003 annual yield. Actual 2003 and baseline yields are listed in Table 27 along with the discharge ratio. Best-fit lines were drawn through the data sets using the following equations:

Initial 5-year Baseline;

 $\frac{\text{Total Nitrogen (TN)}}{\text{TN Yield} = .0642 + 6.0358x} \qquad \text{R}^2 = 0.86}$  $\frac{\text{Total Phosphorus (TP)}}{\text{TP Yield} = -0.1375 + 0.4909x} \qquad \text{R}^2 = 0.53}$  $\frac{\text{Suspended Sediment (SS)}}{\text{SS Yield} = -620.42 + 914.21x} \qquad \text{R}^2 = 0.43}$ 

Where x = water-discharge ratio and R2 = correlation coefficient

2002 Baselines;

| Total Nitrogen (TN)            |              |
|--------------------------------|--------------|
| TN Yield = $0.3397 + 5.8545x$  | $R^2 = 0.87$ |
| Total Phosphorus (TP)          |              |
| TP Yield = $-0.2163 + 0.6148x$ | $R^2 = 0.71$ |
| Suspended Sediment (SS)        |              |
| SS Yield = -833.1 + 1238.3x    | $R^2 = 0.67$ |
|                                |              |

Table 27. Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Towanda, Pa.

| Parameter | Discharge<br>Ratio | 1989 – 1993 Baseline<br>Ib/ac/yr | 1989 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |  |
|-----------|--------------------|----------------------------------|----------------------------------|------------------|--|
| TN        | 1.522              | 9.25                             | 9.25                             | 6.54             |  |
| TP        | 1.522              | 0.6096                           | 0.7194                           | 0.54             |  |
| SS        | 1.522              | 771.008                          | 1051.59                          | 480.91           |  |



Figure 17. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Towanda, Pa., 1989-1993 and 2003



Figure 18. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Towanda, Pa., 1989-2002 and 2003

#### Susquehanna River at Danville, Pa.

Figures 19-20 shows the baselines for TN, TP, and SS and the 2003 yields for the Susquehanna River at Danville. Actual 2003 and baseline yields are listed in Table 28 along with the discharge ratio. The regression equations used to establish the baselines were:

Initial 5-year baseline;

 Total Nitrogen (TN)

 TN Yield =  $-0.2303 + 7.3419x R^2 = 0.85$  

 Total Phosphorus (TP)

 TP Yield =  $-0.1583 + 0.6657x R^2 = 0.95$  

 Suspended Sediment (SS)

 SS Yield =  $-480.64 + 870.684x R^2 = 0.99$  

 2002 Baselines;

 Total Nitrogen (TN)

 TN Yield =  $0.3994 + 5.7997x R^2 = 0.78$  

 Total Phosphorus (TP)

 TP Yield =  $-0.1748 + 0.5993x R^2 = 0.73$  

 Suspended Sediment (SS)

SS Yield =  $-557.19 + 887.57x R^2 = 0.7446$ 

# West Branch Susquehanna River at Lewisburg, Pa.

The baselines and the 2003 yields for TN, TP, and SS are shown in Figures 21-22. Actual 2003 and baseline yields are listed in Table 29 along with the discharge ratio. The baselines were defined by the following equations:

Initial 5-year baseline;

 $\frac{\text{Total Nitrogen (TN)}}{\text{TN Yield} = -1.4234 + 7.8108x R^2 = 0.73}$  $\frac{\text{Total Phosphorus (TP)}}{\text{TP Yield} = 0.0255 + 0.2728x R^2 = 0.53}$  $\frac{\text{Suspended Sediment (SS)}}{\text{SS Yield} = -157.34 + 345.33x R^2 = 0.67}$ 

2002 Baselines;

 $\frac{\text{Total Nitrogen (TN)}}{\text{TN Yield} = -0.5775 + 6.1956xR^2 = 0.88}$  $\frac{\text{Total Phosphorus (TP)}}{\text{TP Yield} = -0.1392 + 0.424x R^2 = 0.72}$  $\frac{\text{Suspended Sediment (SS)}}{\text{SS Yield} = -507.09 + 768.37x R^2 = 0.72}$ 

Table 28. Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Danville, Pa.

| Parameter | Discharge<br>Ratio | 1985 – 1989 Baseline<br>Ib/ac/yr | 1985 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |
|-----------|--------------------|----------------------------------|----------------------------------|------------------|
| TN        | 1.566              | 11.27                            | 9.482                            | 6.99             |
| TP        | 1.566              | 0.8842                           | 0.7637                           | 0.65             |
| SS        | 1.566              | 882.851                          | 832.745                          | 397.68           |

| Table 29. | Comparison of 2003 Total Nitrogen, Total Phosphorus, and Suspended-Sediment Yiel | ds |
|-----------|----------------------------------------------------------------------------------|----|
|           | With Baseline Yields at Lewisburg, Pa.                                           |    |

| Parameter | Discharge 1985 – 1989 Baseline<br>eter Ratio Ib/ac/yr |         | 1985 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |
|-----------|-------------------------------------------------------|---------|----------------------------------|------------------|
| TN        | 1.473                                                 | 10.082  | 8.549                            | 7.22             |
| TP        | 1.473                                                 | 0.4273  | 0.4854                           | 0.39             |
| SS        | 1.473                                                 | 351.331 | 624.719                          | 126.76           |



Figure 19. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Danville, Pa., 1985-1989 and 2003



Figure 20. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Danville, Pa., 1985-2002 and 2003



Figure 21. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, West Branch Susquehanna River at Lewisburg, Pa., 1985-1989 and 2003



Figure 22. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, West Branch Susquehanna River at Lewisburg, Pa., 1985-2002 and 2003

#### Juniata River at Newport, Pa.

The baselines and 2003 yields for TN, TP, and SS at Newport, are shown in Figures 23-24. Actual 2003 and baseline yields are listed in Table 30 along with the discharge ratio. The baselines were defined by the following equations:

Initial 5-year baseline;

 $\frac{\text{Total Nitrogen (TN)}}{\text{TN Yield} = -0.2997 + 8.3964x R^2 = 0.80}$  $\frac{\text{Total Phosphorus (TP)}}{\text{TP Yield} = -0.0762 + 0.4844x R^2 = 0.96}$  $\frac{\text{Suspended Sediment (SS)}}{\text{SS Yield} = -294.17 + 532.33x R^2 = 0.89}$ 2002 Baselines;

Total Nitrogen (TN) TN Yield =  $0.0697 + 7.4075x R^2 = 0.93$ Total Phosphorus (TP) TP Yield =  $0.1038 + 0.2498x R^2 = 0.54$ 

Suspended Sediment (SS)

SS Yield =  $-131.86 + 355.03x R^2 = 0.80$ 

#### Susquehanna River at Marietta, Pa.

The Figure 25-26 shows the TN, TP, and SS baselines and 2003 yield. Actual 2003 and baseline yields are listed in Table 31 along with the discharge ratio. The baselines were defined by the following equations:

Initial 5-year baseline;

<u>Total Nitrogen (TN)</u> TN Yield =  $-0.8251 + 9.1855x R^2 = 0.99$ <u>Total Phosphorus (TP)</u> TP Yield =  $0.1393 + 0.2321x R^2 = 0.27$ <u>Suspended Sediment (SS)</u> SS Yield =  $-97.695 + 380.81x R^2 = 0.48$ 

2002 Baselines;

<u>Total Nitrogen (TN)</u> TN Yield =  $-0.8488 + 8.449x R^2 = 0.92$ <u>Total Phosphorus (TP)</u> TP Yield =  $-0.1479 + 0.5872x R^2 = 0.69$ <u>Suspended Sediment (SS)</u> SS Yield =  $-320.71 + 637.48x R^2 = 0.83$ 

Table 30. Comparison of 2003 TN, TP, and SS Yields with Baseline Yields at Newport, Pa.

| Parameter | Discharge<br>Ratio | 1985 – 1989 Baseline<br>Ib/ac/yr | 1985 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |
|-----------|--------------------|----------------------------------|----------------------------------|------------------|
| TN        | 1.59               | 13.051                           | 11.848                           | 14.57            |
| TP        | 1.59               | 0.6939                           | 0.501                            | 0.91             |
| SS        | 1.59               | 552.235                          | 432.637                          | 493.63           |

| Table 31. | Comparison of | of 2003 TN, | TP, and SS | S Yields with | Baseline | Yields at | Marietta, | Pa. |
|-----------|---------------|-------------|------------|---------------|----------|-----------|-----------|-----|
|-----------|---------------|-------------|------------|---------------|----------|-----------|-----------|-----|

| Parameter | Discharge<br>Ratio | 1987 – 1991 Baseline<br>Ib/ac/yr | 1987 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |
|-----------|--------------------|----------------------------------|----------------------------------|------------------|
| TN        | 1.759              | 15.332                           | 14.013                           | 11.61            |
| TP        | 1.759              | 0.5476                           | 0.885                            | 0.9              |
| SS        | 1.759              | 572.15                           | 800.617                          | 483.47           |



Figure 23. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Juniata River at Newport, Pa., 1985-1989 and 2003



Figure 24. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Juniata River at Newport, Pa., 1985-2002 and 2003



Figure 25. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Marietta, Pa., 1987-1991 and 2003



Figure 26. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Susquehanna River at Marietta, Pa., 1987-2002 and 2003

# Conestoga River at Conestoga, Pa.

Figure 27-28 shows the TN, TP, and SS baselines and 2003 yields. Actual 2003 and baseline yields are listed in Table 32 along with the discharge ratio. The baselines were defined by the following equations:

Initial 5-year baseline;

<u>Total Nitrogen (TN)</u> TN Yield =  $2.1988 + 31.264x R^2 = 0.97$ <u>Total Phosphorus (TP)</u> TP Yield =  $0.4272 + 1.8654x R^2 = 0.67$  Suspended Sediment (SS)

SS Yield =  $-614.08 + 1740.7 \text{ x } \text{R}^2 = 0.72$ 

2002 Baselines;

<u>Total Nitrogen (TN)</u> TN Yield =  $2.347 + 32.262x R^2 = 0.95$ <u>Total Phosphorus (TP)</u> TP Yield =  $-1.1218 + 3.4263x R^2 = 0.82$ <u>Suspended Sediment (SS)</u> SS Yield =  $-871.82 + 1966.6x R^2 = 0.77$ 

| Table 32. | Comparison o | f 2003 TN, | TP, and SS | Yields with | Baseline | Yields at | Conestoga, | Pa. |
|-----------|--------------|------------|------------|-------------|----------|-----------|------------|-----|
|-----------|--------------|------------|------------|-------------|----------|-----------|------------|-----|

| Parameter | Discharge<br>Ratio | 1985 – 1989 Baseline<br>Ib/ac/yr | 1985 - 2002 Baseline<br>Ib/ac/yr | 2003<br>Ib/ac/yr |
|-----------|--------------------|----------------------------------|----------------------------------|------------------|
| TN        | 1.761              | 57.255                           | 59.16                            | 56.98            |
| ТР        | 1.761              | 3.712                            | 6.034                            | 3.51             |
| SS        | 1.761              | 2,451.29                         | 2,591.36                         | 1868.2           |



Figure 27. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Conestoga River at Conestoga, Pa., 1985-1989 and 2003



Figure 28. Total Nitrogen (TN), Total Phosphorus (TP), and Suspended-Sediment (SS) Yields, Conestoga River at Conestoga, Pa., 1985-2002 and 2003

# DISCHARGE, NUTRIENT, AND SUSPENDED-SEDIMENT TRENDS

Trend analyses of water quality and flow data collected at the six monitoring sites were completed for the period January 1985 through December 2002. Trends were estimated using linear regression techniques and the USGS estimator model (Cohn and others, 1989). These tests were used to estimate the direction and magnitude of trends for discharge, SS, TOC, and several forms of nitrogen and phosphorus. Results were reported for monthly mean discharge (FLOW) and FAC.

Trends in FLOW indicate the natural changes Changes in flow and the in hydrology. cumulative sources of flow (base flow and over land runoff) affect the observed concentrations and the estimated loads of nutrients and SS. The FAC is the concentration after the effects of flow are removed from the concentration time series. Trends in FAC indicate that changes have occurred in the processes that deliver constituents to the stream system. After the effects of flow are removed, this is the concentration that relates to the effects of nutrient-reduction activities and other actions taking place in the watershed. A description of the methodology is included in Langland and others (1999).

Trend results for each monitoring site are presented in Tables 33 through 38. Each table lists the results for flow, the various nitrogen and phosphorus species, TOC, and SS. The level of significance was set by the p-value of 0.05 for FAC (Langland and others, 1999). The magnitude of the slope incorporates a confidence interval and was reported as a range (minimum and maximum). The slope direction was reported as not significant (NS) or, when significant, as improving or degrading. When a time series had greater than 20 percent of its observations below the method detection level (BMDL), a trend analysis could not be completed.

Improving trends were found at all sites for all nitrogen constituents except DON at Marietta and Conestoga. Increasing trends in DOP were found at all sites except Lewisburg and Conestoga, which recorded a BMDL and decreasing trend, respectively. All parameters showed improving trends at Towanda and Danville except for DOP. No significant trends were found at Marietta for TON, DP and TP, Conestoga for DN and DNOx, Newport for TNOx and DNOx, and Lewisburg for TOC. These results support the previous load data. All other parameters had decreasing trends for 2003.

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend Direction |
|------------------|--------|--------|---------|---------------------|---------|-----------------|
|                  | Code   | Series |         | Minimum             | Maximum |                 |
| FLOW             | 60     | FAC    | 0.5380  |                     |         | NS              |
| TN               | 600    | FAC    | 0.0000  | -39                 | -31     | IMPROVING       |
| DN               | 602    | FAC    | 0.0000  | -30                 | -20     | IMPROVING       |
| TON              | 605    | FAC    | 0.0000  | -45                 | -28     | IMPROVING       |
| DON              | 607    | FAC    | 0.0158  | -27                 | -3      | IMPROVING       |
| DNH <sub>3</sub> | 608    | FAC    | 0.0014  | -38                 | -11     | IMPROVING       |
| TNH <sub>3</sub> | 610    | FAC    | 0.0000  | -57                 | -37     | IMPROVING       |
| DKN              | 623    | FAC    | 0.0000  | -37                 | -16     | IMPROVING       |
| TKN              | 625    | FAC    | 0.0000  | -48                 | -32     | IMPROVING       |
| TNOx             | 630    | FAC    | 0.0000  | -32                 | -21     | IMPROVING       |
| DNOx             | 631    | FAC    | 0.0000  | -32                 | -21     | IMPROVING       |
| TP               | 665    | FAC    | 0.0005  | -35                 | -12     | IMPROVING       |
| DP               | 666    | FAC    | 0.0000  | -45                 | -26     | IMPROVING       |
| DOP              | 671    | FAC    | 0.0000  | 236                 | 458     | DEGRADING       |
| TOC              | 680    | FAC    | 0.0050  | -13                 | -2      | IMPROVING       |
| SS               | 80154  | FAC    | 0.0005  | -51                 | -18     | IMPROVING       |

Table 33.Trend Statistics for the Susquehanna River at Towanda, Pa., January 1989 through<br/>December 2003

Table 34.Trend Statistics for the Susquehanna River at Danville, Pa., January 1985 through<br/>December 2003

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend     |
|------------------|--------|--------|---------|---------------------|---------|-----------|
|                  | Code   | Series |         | Minimum             | Maximum | Direction |
| FLOW             | 60     | FLOW   | 0.9743  |                     |         | NS        |
| TN               | 600    | FAC    | 0.0000  | -42                 | -34     | IMPROVING |
| DN               | 602    | FAC    | 0.0000  | -34                 | -25     | IMPROVING |
| TON              | 605    | FAC    | 0.0000  | -55                 | -41     | IMPROVING |
| DON              | 607    | FAC    | 0.0000  | -34                 | -15     | IMPROVING |
| DNH <sub>3</sub> | 608    | FAC    | 0.0000  | -58                 | -39     | IMPROVING |
| TNH <sub>3</sub> | 610    | FAC    | 0.0000  | -70                 | -55     | IMPROVING |
| DKN              | 623    | FAC    | 0.0000  | -51                 | -35     | IMPROVING |
| TKN              | 625    | FAC    | 0.0000  | -56                 | -43     | IMPROVING |
| TNOx             | 630    | FAC    | 0.0000  | -28                 | -17     | IMPROVING |
| DNOx             | 631    | FAC    | 0.0000  | -28                 | -18     | IMPROVING |
| TP               | 665    | FAC    | 0.0000  | -52                 | -34     | IMPROVING |
| DP               | 666    | FAC    | 0.0000  | -54                 | -37     | IMPROVING |
| DOP              | 671    | FAC    | 0.0000  | 230                 | 447     | DEGRADING |
| TOC              | 680    | FAC    | 0.0000  | -27                 | -17     | IMPROVING |
| SS               | 80154  | FAC    | 0.0000  | -70                 | -54     | IMPROVING |

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend     |
|------------------|--------|--------|---------|---------------------|---------|-----------|
|                  | Code   | Series |         | Minimum             | Maximum | Direction |
| FLOW             | 60     | FLOW   | 0.2402  |                     |         | NS        |
| TN               | 600    | FAC    | 0.0000  | -33                 | -22     | IMPROVING |
| DN               | 602    | FAC    | 0.0000  | -26                 | -16     | IMPROVING |
| TON              | 605    | FAC    | 0.0000  | -52                 | -32     | IMPROVING |
| DON              | 607    | FAC    | 0.0000  | -42                 | -22     | IMPROVING |
| DNH <sub>3</sub> | 608    | FAC    | 0.0193  | -33                 | -3      | IMPROVING |
| $TNH_3$          | 610    | FAC    | 0.0000  | -57                 | -34     | BMDL      |
| DKN              | 623    | FAC    | 0.0000  | -51                 | -30     | BMDL      |
| TKN              | 625    | FAC    | 0.0000  | -49                 | -28     | IMPROVING |
| TNOx             | 630    | FAC    | 0.0030  | -19                 | -4      | IMPROVING |
| DNOx             | 631    | FAC    | 0.0045  | -18                 | -3      | IMPROVING |
| TP               | 665    | FAC    | 0.0000  | -52                 | -48     | IMPROVING |
| DP               | 666    | FAC    | 0.0000  | -63                 | -48     | IMPROVING |
| DOP              | 671    | FAC    | 0.0000  | 150                 | 347     | BMDL      |
| TOC              | 680    | FAC    | 0.4214  | -5                  | 13      | NS        |
| SS               | 80154  | FAC    | 0.0000  | -71                 | -47     | IMPROVING |

Table 35.Trend Statistics for the West Branch Susquehanna River at Lewisburg, Pa., January 1985<br/>through December 2003

Table 36.Trend Statistics for the Juniata River at Newport, Pa., January 1989 through December2003

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend     |
|------------------|--------|--------|---------|---------------------|---------|-----------|
|                  | Code   | Series |         | Minimum             | Maximum | Direction |
| FLOW             | 60     | FLOW   | 0.5889  |                     |         | NS        |
| TN               | 600    | FAC    | 0.0000  | -18                 | -8      | IMPROVING |
| DN               | 602    | FAC    | 0.0018  | -12                 | -3      | IMPROVING |
| TON              | 605    | FAC    | 0.0000  | -39                 | -20     | IMPROVING |
| DON              | 607    | FAC    | 0.0022  | -29                 | -7      | IMPROVING |
| DNH <sub>3</sub> | 608    | FAC    | 0.0000  | -48                 | -27     | IMPROVING |
| TNH <sub>3</sub> | 610    | FAC    | 0.0000  | -63                 | -46     | BMDL      |
| DKN              | 623    | FAC    | 0.0000  | -46                 | -26     | BMDL      |
| TKN              | 625    | FAC    | 0.0000  | -40                 | -21     | IMPROVING |
| TNOx             | 630    | FAC    | 0.2430  | -10                 | 3       | NS        |
| DNOx             | 631    | FAC    | 0.6061  | -8                  | 5       | NS        |
| TP               | 665    | FAC    | 0.0014  | -33                 | -9      | IMPROVING |
| DP               | 666    | FAC    | 0.0261  | -27                 | -2      | IMPROVING |
| DOP              | 671    | FAC    | 0.0000  | 191                 | 394     | DEGRADING |
| TOC              | 680    | FAC    | 0.0000  | -29                 | -13     | IMPROVING |
| SS               | 80154  | FAC    | 0.0198  | -42                 | -4      | IMPROVING |

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend     |
|------------------|--------|--------|---------|---------------------|---------|-----------|
|                  | Code   | Series |         | Minimum             | Maximum | Direction |
| FLOW             | 60     | FLOW   | 0.5963  |                     |         | NS        |
| TN               | 600    | FAC    | 0.0000  | -27                 | -15     | IMPROVING |
| DN               | 602    | FAC    | 0.0013  | -18                 | -5      | IMPROVING |
| TON              | 605    | FAC    | 0.0985  | -30                 | 3       | NS        |
| DON              | 607    | FAC    | 0.0116  | 7                   | 73      | DEGRADING |
| DNH <sub>3</sub> | 608    | FAC    | 0.0002  | -39                 | -14     | IMPROVING |
| TNH <sub>3</sub> | 610    | FAC    | 0.0000  | -56                 | -30     | IMPROVING |
| DKN              | 623    | FAC    | 0.0002  | -36                 | -13     | IMPROVING |
| TKN              | 625    | FAC    | 0.0000  | -41                 | -20     | IMPROVING |
| TNOx             | 630    | FAC    | 0.0187  | -17                 | -2      | IMPROVING |
| DNOx             | 631    | FAC    | 0.0359  | -16                 | -1      | IMPROVING |
| TP               | 665    | FAC    | 0.9110  | -16                 | 17      | NS        |
| DP               | 666    | FAC    | 0.4869  | -9                  | 21      | NS        |
| DOP              | 671    | FAC    | 0.0000  | 924                 | 1610    | DEGRADING |
| TOC              | 680    | FAC    | 0.0013  | -15                 | -4      | IMPROVING |
| SS               | 80154  | FAC    | 0.0022  | -43                 | -11     | IMPROVING |

Table 37.Trend Statistics for the Susquehanna River at Marietta, Pa., January 1987 through<br/>December 2003

Table 38.Trend Statistics for the Conestoga River at Conestoga, Pa., January 1985 through<br/>December 2003

| Parameter        | Storet | Time   | P-Value | Slope Magnitude (%) |         | Trend     |
|------------------|--------|--------|---------|---------------------|---------|-----------|
|                  | Code   | Series |         | Minimum             | Maximum | Direction |
| FLOW             | 60     | FLOW   | 0.3388  |                     |         | NS        |
| TN               | 600    | FAC    | 0.0000  | -18                 | -8      | IMPROVING |
| DN               | 602    | FAC    | 0.6072  | -4                  | 7       | NS        |
| TON              | 605    | FAC    | 0.0000  | -46                 | -25     | IMPROVING |
| DON              | 607    | FAC    | 0.7957  | -13                 | 20      | DEGRADING |
| DNH <sub>3</sub> | 608    | FAC    | 0.0000  | -81                 | -70     | IMPROVING |
| TNH <sub>3</sub> | 610    | FAC    | 0.0000  | -84                 | -75     | IMPROVING |
| DKN              | 623    | FAC    | 0.0000  | -40                 | -19     | IMPROVING |
| TKN              | 625    | FAC    | 0.0000  | -52                 | -36     | IMPROVING |
| TNOx             | 630    | FAC    | 0.4859  | -5                  | 12      | IMPROVING |
| DNOx             | 631    | FAC    | 0.2927  | -4                  | 13      | NS        |
| TP               | 665    | FAC    | 0.0000  | -46                 | -24     | IMPROVING |
| DP               | 666    | FAC    | 0.0000  | -39                 | -25     | IMPROVING |
| DOP              | 671    | FAC    | 0.0309  | -28                 | -1      | IMPROVING |
| TOC              | 680    | FAC    | 0.0000  | -49                 | -38     | IMPROVING |
| SS               | 80154  | FAC    | 0.0000  | -61                 | -36     | IMPROVING |

### SUMMARY

Bimonthly and stormflow samples were collected during 2003 from the Susquehanna River at Towanda, Danville, and Marietta; the West Branch Susquehanna River at Lewisburg; the Juniata River at Newport; and the Conestoga River at Conestoga, Pa. Collected samples were analyzed for various nitrogen and phosphorus species and SS.

Precipitation for 2003 was above average for all sites. Highest departures from the long-term averages were recorded at Conestoga with 14.68 inches above the LTM leading to the highest flow at 176.2 percent of the LTM. Lowest departure from the mean was at Danville for rainfall, 1.54 inches above LTM, and at Lewisburg for flow at 147.3 percent of the LTM. No trends were found for flow.

2003 data were analyzed in five ways: comparison with LTMs; comparison with similar water year data (1996); comparison with initial 5-year baselines; comparison with full program baselines; and analysis of FAC trends. Results of these methods are shown in Table 39. For LTM comparisons, this chart shows the percentages of LTM as compared to the percentages of the LTM for discharge. Strongest evidence for improvements or degradation was shown where all methods agree. This was the case for TN at all sites except Newport where loads were shown to be higher for 4-of-5 methods and Conestoga, which showed higher load values as compared to the 1996 loads. All other sites showed improving TN conditions for all analysis methods. This was also the case for TP at Towanda, Danville, Lewisburg, and Conestoga. Newport showed degrading signs for TP in 4 of the 5 analysis methods and Marietta showed degrading trends for 3 of the 5 for TP. SS showed improving signs at all sites except Newport, which had degrading signs when compared to the LTM percentage and the full program baseline.

Table 40 shows the FAC trends for 2003. Increasing trends were shown for DON at Conestoga and Marietta while Towanda, Danville, Marietta, and Newport all showed increasing trends in DOP. All other trends were either decreasing or not significant. Lewisburg and Newport also showed total kjedahl nitrogen (TKN) and dissolved kjedahl nitrogen (DKN) as below method detection limit meaning that more than 20 percent of the data was BMDL and a trend could not be reported. This also occurred at Lewisburg for DOP.

The percentages of LTM have shown that the dissolved fractions of nitrogen and phosphorus Newport showed the most were degrading. degrading constituents including TN, DN, DNH3, TNO23, DNO23, TP, DP and DOP. Marietta showed degrading conditions in TNO23, DNO23, DN, TP, DP, and DOP. All six sites showed degrading conditions when compared to the percentages of LTM for DOP. Conestoga showed degrading conditions in TNO23, DNO23, DN, Lewisburg showed degrading and DON. conditions in TNO23 and TOC which could be due to the leaf drop from the mostly forested watershed.

Table 39.Summary of 2003 Data Comparison to Percentage of LTM, 1996 Loads, Initial 5-Year<br/>Baseline, and Full Program Baseline, and Trends in Flow-Adjusted Concentration for TN,<br/>TP, and SS

| Parameter | Site      | LTM % | 1996 | Basline 89 | Baseline 0 | Trend |
|-----------|-----------|-------|------|------------|------------|-------|
| FLOW      | Towanda   | INC   | DEC  | N/A        | N/A        | None  |
|           | Danville  | INC   | DEC  | N/A        | N/A        | None  |
|           | Lewisburg | INC   | DEC  | N/A        | N/A        | None  |
|           | Newport   | INC   | DEC  | N/A        | N/A        | None  |
|           | Marietta  | INC   | DEC  | N/A        | N/A        | None  |
|           | Conestoga | INC   | INC  | N/A        | N/A        | None  |
| TN        | Towanda   | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Danville  | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Lewisburg | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Newport   | INC   | INC  | INC        | INC        | DEC   |
|           | Marietta  | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Conestoga | DEC   | INC  | DEC        | DEC        | DEC   |
| TP        | Towanda   | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Danville  | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Lewisburg | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Newport   | INC   | INC  | INC        | INC        | DEC   |
|           | Marietta  | INC   | DEC  | INC        | INC        | NS    |
|           | Conestoga | DEC   | DEC  | DEC        | DEC        | DEC   |
| SS        | Towanda   | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Danville  | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Lewisburg | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Newport   | INC   | DEC  | DEC        | INC        | DEC   |
|           | Marietta  | DEC   | DEC  | DEC        | DEC        | DEC   |
|           | Conestoga | DEC   | DEC  | DEC        | DEC        | DEC   |

INC = Increasing Trends DEC = Decreasing Trends N/A = Not Applicable

| Table 40. Summary of 2003 Flow-Adjusted Concentration Trends at all S | Table 40. | Adjusted Concentration Trends at all Site |
|-----------------------------------------------------------------------|-----------|-------------------------------------------|
|-----------------------------------------------------------------------|-----------|-------------------------------------------|

| Parameter | Towanda | Danville | Lewisburg | Newport | Marietta | Conestoga |
|-----------|---------|----------|-----------|---------|----------|-----------|
| TN        | DEC     | DEC      | DEC       | DEC     | DEC      | DEC       |
| DN        | DEC     | DEC      | DEC       | DEC     | DEC      | NS        |
| TON       | DEC     | DEC      | DEC       | DEC     | NS       | DEC       |
| DON       | DEC     | DEC      | DEC       | DEC     | INC      | INC       |
| DNH       | DEC     | DEC      | DEC       | DEC     | DEC      | DEC       |
| TNH       | DEC     | DEC      | BMDL      | BMDL    | DEC      | DEC       |
| DKN       | DEC     | DEC      | BMDL      | BMDL    | DEC      | DEC       |
| TKN       | DEC     | DEC      | DEC       | DEC     | DEC      | DEC       |
| TNOX      | DEC     | DEC      | DEC       | NS      | DEC      | DEC       |
| DNOX      | DEC     | DEC      | DEC       | NS      | DEC      | NS        |
| TP        | DEC     | DEC      | DEC       | DEC     | NS       | DEC       |
| DP        | DEC     | DEC      | DEC       | DEC     | NS       | DEC       |
| DOP       | INC     | INC      | BMDL      | INC     | INC      | DEC       |
| TOC       | DEC     | DEC      | NS        | DEC     | DEC      | DEC       |
| SS        | DEC     | DEC      | DEC       | DEC     | DEC      | DEC       |

#### REFERENCES

- Cohn, T.A., L.L DeLong, E.J. Gilroy, R.M. Hirsch, and D.E Wells. 1989. Estimating Constituent Loads. *Water Resources Research*, 25(5), pp. 937-942.
- Langland, M.J., J.D. Bloomquist, L.A. Sprague, and R.E. Edwards. 1999. Trends and Status of Flow, Nutrients, Sediments for Nontidal Sites in the Chesapeake Bay Watershed, 1985-98. U.S. Geological Survey (Open-File Report), 64 pp. (draft).
- Ott, A.N., L.A. Reed, C.S. Takita, R.E. Edwards, and S.W. Bollinger. 1991. Loads and Yields of Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1985-89. Susquehanna River Basin Commission (Publication No. 136), 254 pp.
- Susquehanna River Basin Study Coordination Committee. 1970. Susquehanna River Basin Study, 156 pp.
- Takita, C.S. 1996. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1992-93. Susquehanna River Basin Commission (Publication No. 174), 51 pp.
- 1998. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1994-96, and Loading Trends, Calendar Years 1985-96. Susquehanna River Basin Commission (Publication No. 194), 72 pp.
- Takita, C.S., and R.E. Edwards. 1993. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1990-91. Susquehanna River Basin Commission (Publication No. 150), 57 pp.
- U.S. Environmental Protection Agency. 1982. Chesapeake Bay Program Technical Studies: A Synthesis. 634 pp.

# APPENDIX A

2003 Storm Sampling Concentrations of Total Nitrogen, Total Phosphorus, and Suspended Sediment

# 2003 Storms

2003 ended as one of the wettest years on record. As part of this program, four storms were sampled targeting one per season. An additional storm was sampled during the spring. Figures 1 through 30 show the concentrations of total nitrogen, total phosphorus, and suspended sediment throughout the storm, plotted against the flow for the day of sample collection.



Figure 1. January 2-30, 2003, Storm at Towanda







Figure 2. March 12-April 24, 2003, Storm at Towanda



Figure 3. May 30-June 30, 2003, Storm at Towanda



Figure 4. August 21-September 28, 2003, Storm at Towanda



Figure 5. November 14-25, 2003, Storm at Towanda







Figure 6. January 2-30, 2003, Storm at Danville






Figure 7. March 12-April 11, 2003, Storm at Danville







Figure 8. May 30-June 30, 2003, Storm at Danville





-•



Figure 9. August 21-October 13, 2003, Storm at Danville





Figure 10. November 12-25, 2003, Storm at Danville

0.05

Days of Storm







Figure 11. January 2-30, 2003, Storm at Lewisburg



Figure 12. March 12-30, 2003, Storm at Lewisburg



Figure 13. May 12-June 30, 2003, Storm at Lewisburg



Figure 14. August 21-September 28, 2003, Storm at Lewisburg



Figure 15. November 14-25, 2003, Storm at Lewisburg







Figure 16. January 2-30, 2003, Storm at Newport







Figure 17. March 19-April 2, 2003, Storm at Newport







Figure 18. May 29-June 30, 2003, Storm at Newport







Figure 19. August 27-October 13, 2003, Storm at Newport



Figure 20. November 19-25, 2003, Storm at Newport







Figure 21. January 2-30, 2003, Storm at Marietta



Figure 22. March 12-April 4, 2003, Storm at Marietta





TP -----

– Flow



Figure 23. May 12-June 33, 2003, Storm at Marietta





TP -

- Flow



Figure 24. August 28-September 20, 2003, Storm at Marietta







Figure 25. November 19-25, 2003, Storm at Marietta







Figure 26. January 2-30, 2003, Storm at Conestoga



Figure 27. March 12-27, 2003, Storm at Conestoga







Figure 28. June 3-9, 2003, Storm at Conestoga





TP 🔶

– Flow



Figure 29. September 23-25, 2003, Storm at Conestoga



Figure 30. November 19-21, 2003, Storm at Conestoga