# Assessment of Interstate Streams in the Susquehanna River Basin

Monitoring Report No. 19 July 1, 2004, Through June 30, 2005

Publication 244

August 30, 2006

Prepared by Luanne Y. Steffy Biologist

Darryl L. Sitlinger Water Quality Technician

Watershed Assessment and Protection Division Susquehanna River Basin Commission



Printed on recycled paper

This report is prepared in cooperation with the U.S. Environmental Protection Agency under Contract No. I-003991-04.

# SUSQUEHANNA RIVER BASIN COMMISSION



Paul O. Swartz, Executive Director

Denise Sheehan, Commissioner Kenneth P. Lynch, NY Alternate Scott J. Foti, NY Alternate/Advisor

Kathleen A. McGinty, PA Commissioner Cathleen C. Myers, PA Alternate William A. Gast, PA Alternate/Advisor

Kendl P. Philbrick, MD Commissioner Dr. Robert M. Summers, MD Alternate Matthew G. Pajerowski, MD Alternate/Advisor

Major General William T. Grisoli, U.S. Commissioner Col. Peter W. Mueller, U.S. Alternate Col. Christopher J. Larsen, U.S. Alternate Lloyd C. Caldwell, U.S. Advisor Amy M. Guise, U.S. Advisor

The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact<sup>\*</sup> among the states of Maryland, New York, Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development and control of basin water resources among the public and private sectors.

\*Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976).

This report is available on our website (<u>www.SRBC.net</u>) by selecting Public Information/Technical Reports. For a CD Rom or for a hard copy, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, PA 17102-2391, (717) 238-0423, FAX (717) 238-2436, E-mail: <u>srbc@srbc.net</u>.

| ABSTRACT                                        | 1  |
|-------------------------------------------------|----|
| INTRODUCTION                                    |    |
| BASIN GEOGRAPHY                                 | 2  |
| METHODS                                         | 2  |
|                                                 |    |
| Field and Laboratory Methods                    | 2  |
| ·                                               |    |
| Sampling frequency.                             |    |
| Stream discharge                                |    |
| Water samples                                   | 4  |
| Field chemistry                                 | 5  |
| Macroinvertebrate and physical habitat sampling |    |
|                                                 |    |
| Data Synthesis Methods                          |    |
| Chemical water quality                          |    |
| Reference category designations                 |    |
| Biological and physical habitat conditions      |    |
| Trend analysis                                  |    |
|                                                 |    |
| RESULTS                                         |    |
|                                                 | 17 |
| Water Quality                                   |    |
| Biological Communities and Physical Habitat     |    |
| Now Vork Ponneylyonia strooms                   | 23 |
| Depressivenia Meruland streams                  |    |
| Pennsylvania-Maryland Streams                   |    |
| Crown 2 sites                                   |    |
| Group 3 sites                                   |    |
| BIOASSESSMENT OF INTERSTATE STREAMS             | 37 |
|                                                 |    |
| New York-Pennsylvania Border Streams            | 37 |
|                                                 |    |
| Apalachin Creek (APAL 6.9)                      |    |
| Bentley Creek (BNTY 0.9)                        |    |
| Cascade Creek (CASC 1.6)                        |    |
| Cavuta Creek (CAYT 1.7)                         |    |
| Choconut Creek (CHOC 9.1)                       |    |
| Holden Creek (HLDN 3.5)                         |    |
| Little Snake Creek (LSNK 7 6)                   | 42 |
| North Fork Cowanesque River (NFCR 7 6)          | 42 |
| Seelev Creek (SEEL 10.3)                        | 49 |
| Storey Creek (SDLL 10.5)                        |    |
| South Creek (SOUT 7.8)                          |    |
| Trouge Creek (TRUP / 5)                         |    |
| Trowbridge Creek (TROW 1.8)                     |    |
| Wappaganing Croak (WADD 2.6)                    |    |
| w appaseining Citck (WAFF 2.0)                  |    |

## TABLE OF CONTENTS

| Big Branch Door Crook (BBDC 4.1)                 | - 7      |
|--------------------------------------------------|----------|
| Dig Dialicii Deel Cleek (DDDC 4.1)               | 57       |
| Conowingo Creek (CNWG 4.4)                       | 57       |
| Deer Creek (DEER 44.2)                           | 60       |
| Ebaughs Creek (EBAU 1.5)                         | 60       |
| Falling Branch Deer Creek (FBDC 4.1)             | 63       |
| Long Arm Creek (LNGA 2.5)                        | 63       |
| Octoraro Creek (OCTO 6.6)                        | 63       |
| Scott Creek (SCTT 3.0)                           | 63       |
| South Branch Conewago Creek (SBCC 20.4)          | 68       |
| River Sites                                      | 70       |
| Chemung River (CHEM 12.0)                        | 70       |
| Cowanesque River (COWN 2.2)                      | 70       |
| Cowanesque River (COWN 1.0)                      | 70       |
| Susquehanna River at Windsor, N.Y. (SUSO 365.0)  | 74       |
| Susquehanna River at Kirkwood, N.Y. (SUSO 340.0) | 74       |
| Susquehanna River at Sayre, Pa. (SUSQ 289.1)     | 74       |
| Susquehanna River at Marietta, Pa. (SUSQ 44.5)   | 78       |
| Susquehanna River at Conowingo, Md. (SUSQ 10.0)  | 78       |
| Tioga River (TIOG 10.8)                          | 78       |
| Babcock Run (BABC)<br>Beagle Hollow Run (BEAG)   | 82<br>82 |
| Bill Hess Creek (BILL)                           | 82       |
| Bird Creek (BIRD)                                | 82       |
| Biscuit Hollow (BISC)                            | 82       |
| Briggs Hollow Run (BRIG)                         | 82       |
| Bulkley Brook (BULK)                             | 83       |
| Camp Brook (CAMP)                                | 83       |
| Cook Hollow (COOK)                               | 83       |
| Deep Hollow Brook (DEEP)                         | 83       |
| Denton Creek (DENT)                              | 83       |
| Dry Brook (DRYB)                                 | 84       |
| Little Wappasening Creek (LWAP)                  | 84       |
| Parks Creek (PARK)                               | 84       |
| Prince Hollow Run (PRIN)                         | 84       |
| Russell Run (RUSS).                              | 84       |
| Sackett Creek (SACK)                             | 85       |
| Smith Creek (SMIT).                              | 85       |
| Strait Creek (STRA)                              | 85       |
| White Branch Cowanesque River (WBCO)             | 85       |
| White Hollow (WHIT).                             | 85       |
| ANAGEMENT IMPLICATIONS                           | 86       |

| New York – Pennsylvania Sites |  |
|-------------------------------|--|
| Pennsylvania – Maryland Sites |  |
| River Sites                   |  |
| Group 3 Streams               |  |
| Future Study                  |  |
| CONCLUSIONS                   |  |
| REFERENCES                    |  |
|                               |  |

## TABLES

| Table 1.  | Interstate Streams in the Susquehanna River Basin                                                                                 | 3  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.  | Stream Stations Sampled Along the New York–Pennsylvania Border and Sampling                                                       |    |
|           | Rationale                                                                                                                         | 6  |
| Table 3.  | Stream Stations Sampled along the Pennsylvania–Maryland Border and Sampling Rationale                                             | 7  |
| Table 4.  | Monitored Parameters                                                                                                              | 12 |
| Table 5.  | Criteria Used to Evaluate Physical Habitat                                                                                        | 14 |
| Table 6.  | Summary of Metrics Used to Evaluate the Overall Biological Integrity of Stream and<br>River Benthic Macroinvertebrate Communities | 18 |
| Table 7.  | Summary of Criteria Used to Classify the Biological Conditions of Sample Sites                                                    | 19 |
| Table 8.  | Summary of Criteria Used to Classify the Habitat Conditions of Sample Sites                                                       | 20 |
| Table 9.  | Stream Classifications                                                                                                            | 21 |
| Table 10. | Water Quality Standard Summary                                                                                                    | 22 |
| Table 11. | Summary of New York-Pennsylvania Border RBP III Biological Data                                                                   | 24 |
| Table 12. | Summary of Pennsylvania-Maryland Border RBP III Biological Data                                                                   | 25 |
| Table 13. | Summary of River RBP III Biological Data                                                                                          | 26 |
| Table 14. | Summary of Group 3 Sites RBP III Biological Data                                                                                  | 27 |
| Table 15. | Summary of New York-Pennsylvania Sites Physical Habitat Data                                                                      | 29 |
| Table 16. | Summary of Pennsylvania-Maryland Sites Physical Habitat Data                                                                      | 30 |
| Table 17. | Summary of River Sites Physical Habitat Data                                                                                      | 31 |
| Table 18. | Summary of Group 3 Sites Physical Habitat Data                                                                                    | 32 |
| Table 18. | Summary of Group 3 Sites Physical Habitat Data - continued                                                                        | 33 |
| Table 19. | Abbreviations Used in Tables 20 Through 51                                                                                        | 38 |
| Table 20. | Water Quality Summary Apalachin Creek at Little Meadows, Pa                                                                       | 39 |
| Table 21. | Water Quality Summary Bentley Creek at Wellsburg, N.Y                                                                             | 40 |
| Table 22. | Water Quality Summary Cascade Creek at Lanesboro, Pa.                                                                             | 43 |
| Table 23. | Water Quality Summary Cayuta Creek at Waverly, N.Y                                                                                | 44 |
| Table 24. | Water Quality Summary Choconut Creek at Vestal Center, N.Y.                                                                       | 45 |
| Table 25. | Water Quality Summary Holden Creek at Woodhull, N.Y.                                                                              | 46 |
| Table 26. | Water Quality Summary Little Snake Creek at Brackney, Pa                                                                          | 47 |
| Table 27. | Water Quality Summary North Fork Cowanesque River at North Fork, Pa                                                               | 48 |
| Table 28. | Water Quality Summary Seeley Creek at Seeley Creek, N.Y.                                                                          | 50 |

| <ul><li>Table 30. Water Quality Summary South Creek at Fassett, Pa.</li><li>Table 31. Water Quality Summary Troups Creek at Austinburg, Pa.</li></ul> | 53<br>54<br>55 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Table 31.    Water Quality Summary Troups Creek at Austinburg, Pa.                                                                                    | 54<br>55       |
|                                                                                                                                                       | 55             |
| Table 32.    Water Quality Summary Trowbridge Creek at Great Bend, Pa.                                                                                |                |
| Table 33.    Water Quality Summary Wappasening Creek at Nichols, N.Y.                                                                                 | 56             |
| Table 34.    Water Quality Summary Big Branch Deer Creek at Fawn Grove, Pa                                                                            |                |
| Table 35.         Water Quality Summary Conowingo Creek at Pleasant Grove, Pa                                                                         | 59             |
| Table 36.    Water Quality Summary Deer Creek at Gorsuch Mills, Md.                                                                                   | 61             |
| Table 37.    Water Quality Summary Ebaughs Creek at Stewartstown, Pa                                                                                  |                |
| Table 38.         Water Quality Summary Falling Branch Deer Creek at Fawn Grove, Pa                                                                   | 64             |
| Table 39.    Water Quality Summary Long Arm Creek at Bandanna, Pa                                                                                     | 65             |
| Table 40.    Water Quality Summary Octoraro Creek at Rising Sun, Md                                                                                   |                |
| Table 41.    Water Quality Summary Scott Creek at Delta, Pa                                                                                           | 67             |
| Table 42.         Water Quality Summary South Branch Conewago Creek at Bandanna, Pa                                                                   | 69             |
| Table 43.    Water Quality Summary Chemung River at Chemung, N.Y.                                                                                     | 71             |
| Table 44.         Water Quality Summary Cowanesque River (COWN 2.2) at Lawrenceville, Pa                                                              | 72             |
| Table 45.         Water Quality Summary Cowanesque River (COWN 1.0) at Lawrenceville, Pa                                                              | 73             |
| Table 46.Water Quality Summary Susquehanna River (SUSQ 365.0) at Windsor, N.Y.                                                                        | 75             |
| Table 47.Water Quality Summary Susquehanna River (SUSQ 340.0) at Kirkwood, N.Y.                                                                       | 76             |
| Table 48.Water Quality Summary Susquehanna River (SUSQ 289.1) at Sayre, Pa                                                                            | 77             |
| Table 49.Water Quality Summary Susquehanna River (SUSQ 44.5) at Marietta, Pa                                                                          | 79             |
| Table 50.         Water Quality Summary Susquehanna River (SUSQ 10.0) at Conowingo, Md                                                                | 80             |
| Table 51.    Water Quality Summary Tioga River at Lindley, N.Y                                                                                        |                |

# FIGURES

| 0    |
|------|
| 8    |
|      |
| 9    |
|      |
| 10   |
| . 11 |
| 22   |
|      |
| 34   |
|      |
| 35   |
| 36   |
|      |

### APPENDIXES

| Appendix A. | Water Quality Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania-Maryland Borders     | 93  |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----|
| Appendix B. | Organic Pollution-Tolerance and Functional Feeding Group Designations of Benthic Macroinvertebrate Taxa            | 109 |
| Appendix C. | Macroinvertebrate Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania-Maryland Borders | 113 |
| Appendix D. | Water Classification and Best Usage Regulations                                                                    | 135 |

vi

### ACKNOWLEDGMENTS

The authors would like to acknowledge those who made significant contributions to the completion of this project. The Pennsylvania Department of Environmental Protection Bureau of Laboratories, in Harrisburg, PA, conducted all laboratory analysis of chemical water quality and the U.S. Environmental Protection Agency, provided funding for this project.

viii

# Assessment of Interstate Streams in the

# **SUSQUEHANNA RIVER BASIN**

Monitoring Report No. 19 July 1, 2004, Through June 30, 2005

Luanne Y. Steffy, Biologist Darryl L. Sitlinger, Water Quality Technician

#### ABSTRACT

The Susquehanna River Basin Commission (SRBC) used a water quality index (WQI) and the U.S. Environmental Protection Agency's (USEPA's) Rapid Bioassessment Protocol III (RBP III) to assess the chemical water quality, biological conditions, and physical habitat of 52 sample sites in the Interstate Streams Water Quality Network from July 1, 2004, to June 30, 2005. Seventy-two of 734 possible parameter observations exceeded water quality standards. Assessment results indicate that approximately 49 percent of the sites supported nonimpaired biological communities. Water quality impacts in the NY-PA border streams continue to be mostly from metals, while most PA-MD border sites continued to have higher nitrogen and nitrate values, in addition to some elevated metals.

#### INTRODUCTION

One of SRBC's functions is to review projects that may have interstate impacts on water resources in the Susquehanna River Basin. SRBC established a monitoring program in 1986 to collect data that were not available from monitoring programs implemented by state agencies in New York, Pennsylvania, and Maryland. The state agencies do not assess all of the interstate streams and do not produce comparable data needed to determine potential impacts on the water quality of interstate streams. SRBC's ongoing interstate monitoring program is partially funded through a grant from the USEPA.

The interstate water quality monitoring program includes periodic collection of water and biological samples from interstate streams, as well as assessments of their physical habitat. Water quality data are used to: (1) assess compliance with water quality standards; (2) characterize stream quality and seasonal variations; (3) build a database for assessment of water quality trends; (4) identify streams for reporting to USEPA under Section 305(b) of the Clean Water Act; (5) provide information to signatory states for 303(d) listing and possible Total Maximum Daily Load (TMDL) development; and (6) identify areas for restoration and protection. Biological conditions are assessed using benthic macroinvertebrate populations, which provide an indication of the biological health of a stream and serve as indicators of water quality. Habitat assessments provide information concerning potential stream impairment from erosion and sedimentation, as well as an indication of the stream's ability to support a healthy biological community.

SRBC's interstate monitoring program began in April 1986. For the first five years, results were reported for water years that ran from October to September. In 1991, SRBC changed the reporting periods to correspond with its fiscal year that covers the period from July to June. This report is presented for fiscal year 2005, which covers July 1, 2004, to June 30, 2005.

#### **BASIN GEOGRAPHY**

The Susquehanna River Basin is the largest river basin on the Atlantic Coast of the United States, draining 27,500 square miles. The Susquehanna River originates at the outlet of Otsego Lake, Cooperstown, NY, and flows 444 miles through New York, Pennsylvania, and Maryland to the Chesapeake Bay at Havre de Grace, MD. Eighty-three streams cross state lines in the basin (Table 1). Several streams traverse the state lines at multiple points, contributing to 91 crossings. Of those 91 crossings, 45 streams flow from New York into Pennsylvania, 22 from Pennsylvania into New York, 15 from Pennsylvania into Maryland, and nine from Maryland into Pennsylvania. Many streams are small, and 32 are unnamed.

#### METHODS

#### **Field and Laboratory Methods**

#### Sampling frequency

In Water Year 1989, the interstate streams were divided into three groups, according to the degree of water quality impairment, historical water quality impacts, and potential for degradation. These groupings were determined based on historical water quality and land use. To date, these groups remain consistent and are described below.

Streams with impaired water quality or judged to have a high potential for degradation due to large drainage areas or historical pollution were assigned to Group 1. During sampling period 2004-2005, NY-PA Group 1 streams were sampled July through September (depending on flow conditions), October, February, and May. Pennsylvania-Maryland Group 1 stations were sampled July or August, October, February, and May. Benthic macroinvertebrates were collected and habitat assessments were performed in Group 1 streams during July and August 2004.

Streams judged to have a moderate potential for impacts were assigned to Group 2. Water quality samples, benthic macroinvertebrate samples, and physical habitat information were obtained from Group 2 stations once a year; preferably during base flow conditions in the summer months. In this sampling period, water chemistry, macroinvertebrate, and physical habitat information were collected during July and August 2004.

| Stream<br>Name              | Monitoring<br>Group                   | Flow Direction<br>(from→to)        |
|-----------------------------|---------------------------------------|------------------------------------|
| Strea                       | ms Along the New York–Pennsylvania Bo | rder                               |
| Analachin Creek             | 2                                     |                                    |
| Babcock Run                 | 3                                     | $NV \rightarrow PA$                |
| Beagle Hollow               | 3                                     | NY->PA                             |
| Bentley Creek               | 1                                     | PA→NY                              |
| Bill Hess Creek             | 3                                     | NY→PA                              |
| Bird Creek                  | 3                                     | PA→NY                              |
| Biscuit Hollow              | 3                                     | NY→PA                              |
| Briggs Hollow Run           | 3                                     | NY→PA                              |
| Bulkley Brook               | 3                                     | NY→PA                              |
| Camp Brook                  | 3                                     | NY→PA                              |
| Cascade Creek               | 1                                     | NY→PA                              |
| Cayuta Creek                | 1                                     | NY→PA                              |
| Chemung River               | 1                                     | NY→PA→NY→PA                        |
| Choconut Creek              | 2                                     | PA→NY                              |
| Cook Hollow                 | 3                                     | NY→PA                              |
| Cowanesque River            | 1                                     | PA→NY                              |
| Deep Hollow Brook           | 3                                     | NY→PA                              |
| Denton Creek                | 3                                     | NY→PA                              |
| Dry Brook*                  | 3                                     | NY→PA                              |
| Holden Creek                | 2                                     | NY→PA                              |
| Little Snake Creek          | 1                                     | PA→NY                              |
| Little Wappasening Creek    | 3                                     | PA→NY                              |
| North Fork Cowanesque River | 2                                     | NY→PA                              |
| Parks Creek                 | 3                                     | PA→NY                              |
| Prince Hollow Run           | 3                                     | NY→PA                              |
| Russell Run                 | 3                                     | NY→PA                              |
| Sackett Creek               | 3                                     | PA→NY                              |
| Seeley Creek                | 1                                     | PA→NY                              |
| Smith Creek                 | 3                                     | PA→NY                              |
| Snake Creek                 | 2                                     | PA→NY                              |
| South Creek                 | 2                                     | PA→NY                              |
| Strait Creek                | 3                                     | NY→PA                              |
| Susquehanna River           | 1                                     | NY→PA→NY→PA                        |
| Tioga River                 | 1                                     | $PA \rightarrow NY$                |
| Troups Creek                | 1                                     | NY→PA                              |
| Trowbridge Creek            | 2                                     | NY→PA                              |
| Wappasening Creek           | 2                                     | $PA \rightarrow NY$                |
| White Branch                | 3                                     | NY→PA                              |
| White Hollow                | 3                                     | $PA \rightarrow NY$                |
| 17 Unnamed tributaries*     | 3                                     | NY→PA                              |
| 2 Unnamed tributaries*      | 3                                     | $PA \rightarrow NY$                |
| 2 Unnamed tributaries*      | 3                                     | $PA \rightarrow NY \rightarrow PA$ |

# Table 1. Interstate Streams in the Susquehanna River Basin

\*Not sampled in 2004-2005

| Stream Monitoring Flow Direction |                                      |           |  |
|----------------------------------|--------------------------------------|-----------|--|
| Name                             | Group                                | (from→to) |  |
| Stream                           | s Along The Pennsylvania–Maryland Be | order     |  |
| Big Branch Deer Creek            | 2                                    | PA→MD     |  |
| Conowingo Creek                  | 1                                    | PA→MD     |  |
| Deer Creek                       | 1                                    | PA→MD     |  |
| Ebaughs Creek                    | 1                                    | PA→MD     |  |
| Falling Branch Deer Creek        | 2                                    | PA→MD     |  |
| Island Branch*                   | 3                                    | PA→MD     |  |
| Long Arm Creek                   | 1                                    | MD→PA     |  |
| Octoraro Creek                   | 1                                    | PA→MD     |  |
| Scott Creek                      | 1                                    | MD→PA     |  |
| South Branch Conewago Creek      | 2                                    | MD→PA     |  |
| Susquehanna River                | 1                                    | PA→MD     |  |
| 6 Unnamed tributaries*           | 3                                    | MD→PA     |  |
| 7 Unnamed tributaries*           | 3                                    | PA→MD     |  |

#### Table 1. Interstate Streams in the Susquehanna River Basin—Continued

\*Not sampled in 2004-2005

Streams judged to have a low potential for impacts were assigned to Group 3 and were visually inspected only for signs of degradation once a year until fiscal year 2000 when the biological and habitat conditions of these streams were assessed during May. Field chemistry parameters also were measured on Group 3 streams at the time of biological sampling. New York-Pennsylvania border and PA-MD border stream stations sampled during fiscal year 2005 are listed in Tables 2 and 3, respectively, and are depicted in Figures 1 through 4.

#### Stream discharge

Stream discharge was measured at all stations unless high stream flows made access impossible. Several stations are located near U.S. Geological Survey (USGS) stream gages. These stations include the following: the Susquehanna River at Windsor, NY, Kirkwood, NY, Sayre, PA, Marietta, PA, and Conowingo, MD; the Chemung River at Chemung, NY; the Tioga River at Lindley, NY; and the Cowanesque River at Lawrenceville, PA. Recorded stages from USGS gaging stations and rating curves were used to determine instantaneous discharges in cubic feet per second (cfs). Instantaneous discharges for stations not located near USGS gaging stations were measured at the time of sampling, using standard USGS procedures (Buchanan and Somers, 1969). Stream discharges are tabulated according to station name and date in Appendix A.

#### Water samples

Water samples were collected at each of the sites to measure nutrient and metal concentrations. Chemical and physical parameters monitored are listed in Table 4. Water samples were collected using a depth-integrated sampler. Composite samples were obtained by collecting several depth-integrated samples across the stream channel and combining them in a churn splitter that was previously rinsed with stream water. Water samples were mixed thoroughly in the churn splitter and collected in a 500-ml bottle and two 250-ml bottles. The 500-ml bottle was for a raw sample. Each of the 250-ml bottles consisted of a whole water sample, one fixed with concentrated nitric acid (HNO<sub>3</sub>) for metal analysis and one fixed with concentrated sulfuric acid ( $H_2SO_4$ ) for nutrient analysis. The samples were chilled on ice and sent to the Pennsylvania Department of Environmental Protection (PADEP), Bureau of Laboratories in Harrisburg, PA, within 24 hours of collection.

#### Field chemistry

Temperature, dissolved oxygen, conductivity, pH, alkalinity, and acidity were measured in the field. Dissolved oxygen was measured using a YSI model 55-dissolved oxygen meter that was calibrated at the beginning of each day when water samples were collected. A VWR Scientific Model 2052 conductivity meter was used to measure conductivity. A Cole Parmer meter was used to measure pH. The pH meter was calibrated at the beginning of the day and randomly checked throughout the day. Alkalinity was determined by titrating a known volume of water to pH 4.5 with 0.02N H<sub>2</sub>SO<sub>4</sub>. Acidity was measured by titrating a known volume of sample water to pH 8.3 with 0.02N sodium hydroxide (NaOH). Total chlorine was measured at Cayuta and Ebaughs Creeks since CAYT 1.7 and EBAU 1.5 were located downstream of wastewater treatment plants. A HACH Datalogging Colorimeter model DR/890 was used with the DPD Test and Tube method (10101) to measure chlorine concentrations.

| Station      | Stream and Location                        | Monitoring<br>Group | Rationale                                   |
|--------------|--------------------------------------------|---------------------|---------------------------------------------|
| APAL 6.9     | Analachin Creek Little Meadows PA          | 2                   | Monitor for potential water quality impacts |
| BABC         | Babcock Run Cadis PA                       | 3                   | Monitor for potential impacts               |
| BEAG         | Beagle Hollow Run, Osceola, PA             | 3                   | Monitor for potential impacts               |
| BILL         | Bill Hess Creek, Nelson, PA                | 3                   | Monitor for potential impacts               |
| BIRD         | Bird Creek, Webb Mills, NY                 | 3                   | Monitor for potential impacts               |
| BISC         | Biscuit Hollow, Austinburg, PA             | 3                   | Monitor for potential impacts               |
| BNTY 0.9     | Bentley Creek Wellsburg NY                 | 1                   | Monitor for potential water quality impacts |
| BRIG         | Briggs Hollow, Nichols, NY                 | 3                   | Monitor for potential impacts               |
| BULK         | Bulkley Brook, Knoxville, PA               | 3                   | Monitor for potential impacts               |
| CAMP         | Camp Brook, Osceola, PA                    | 3                   | Monitor for potential impacts               |
| CASC 1.6     | Cascade Creek, Lanesboro, PA               | 1                   | Monitor for potential water quality impacts |
| CAYT 1.7     | Cavuta Creek, Waverly, NY                  | 1                   | Municipal discharge from Waverly, NY        |
| CHEM 12.0*   | Chemung River, Chemung, NY                 | 1                   | Municipal and industrial discharges from    |
| 0112101 12.0 | Cheming River, Cheming, IVI                | 1                   | Elmira. NY                                  |
| CHOC 9.1     | Choconut Creek, Vestal Center, NY          | 2                   | Monitor for potential water quality impacts |
| COOK         | Cook Hollow, Austinburg, PA                | 3                   | Monitor for potential impacts               |
| COWN 2.2     | Cowanesque River, Lawrenceville, PA        | 1                   | Impacts from flood control reservoir        |
| COWN 1.0     | Cowanesque River, Lawrenceville, PA        | 1                   | Recovery zone from upstream flood control   |
|              |                                            | _                   | reservoir                                   |
| DEEP         | Deep Hollow Brook, Danville, NY            | 3                   | Monitor for potential impacts               |
| DENT         | Denton Creek, Hickory Grove, PA            | 3                   | Monitor for potential impacts               |
| DRYB*        | Dry Brook, Waverly, NY                     | 3                   | Monitor for potential impacts               |
| HLDN 3.5     | Holden Creek, Woodhull, NY                 | 2                   | Monitor for potential water quality impacts |
| LSNK 7.6     | Little Snake Creek, Brackney, PA           | 1                   | Monitor for potential water quality impacts |
| LWAP         | Little Wappasening Creek, Nichols, NY      | 3                   | Monitor for potential impacts               |
| NFCR 7.6     | North Fork Cowanesque River. North Fork.   | 2                   | Monitor for potential water quality impacts |
|              | PA                                         |                     |                                             |
| PARK         | Parks Creek, Litchfield, NY                | 3                   | Monitor for potential impacts               |
| PRIN         | Prince Hollow Run Cadis, PA                | 3                   | Monitor for potential impacts               |
| RUSS         | Russell Run, Windham, PA                   | 3                   | Monitor for potential impacts               |
| SACK         | Sackett Creek, Nichols, NY                 | 3                   | Monitor for potential impacts               |
| SEEL 10.3    | Seeley Creek, Seeley Creek, NY             | 1                   | Monitor for potential water quality impacts |
| SMIT         | Smith Creek,                               | 3                   | Monitor for potential impacts               |
|              | East Lawrence, PA                          |                     |                                             |
| SNAK 2.3     | Snake Creek, Brookdale, PA                 | 2                   | Monitor for potential water quality impacts |
| SOUT 7.8     | South Creek, Fassett, PA                   | 2                   | Monitor for potential water quality impacts |
| STRA         | Strait Creek, Nelson, PA                   | 3                   | Monitor for potential impacts               |
| SUSQ 365.0   | Susquehanna River, Windsor, NY             | 1                   | Large drainage area (1,882 sq. mi.);        |
|              |                                            |                     | municipal discharges from Cooperstown,      |
|              |                                            |                     | Sidney, Bainbridge, and Oneonta             |
| SUSQ 340.0*  | Susquehanna River, Kirkwood, NY            | 1                   | Large drainage area (2,232 sq. mi.);        |
|              |                                            |                     | historical pollution due to sewage from     |
|              |                                            |                     | Lanesboro, Oakland, Susquehanna, Great      |
|              |                                            |                     | Bend, and Hallstead                         |
| SUSQ 289.1*  | Susquehanna River, Sayre, PA               | 1                   | Large drainage area (4,933 sq. mi.);        |
|              |                                            |                     | municipal and industrial discharges         |
| TIOG 10.8*   | Tioga River, Lindley, NY                   | 1                   | Pollution from acid mine discharges and     |
|              |                                            |                     | impacts from flood control reservoirs       |
| TRUP 4.5     | Troups Creek, Austinburg, PA               | 1                   | High turbidity and moderately impaired      |
|              |                                            |                     | macroinvertebrate populations               |
| TROW 1.8     | Trowbridge Creek, Great Bend, PA           | 2                   | Monitor for potential water quality impacts |
| WAPP 2.6     | Wappasening Creek, Nichols, NY             | 2                   | Monitor for potential water quality impacts |
| WBCO         | White Branch Cowanesque River, North Fork, | 3                   | Monitor for potential impacts               |
|              |                                            |                     |                                             |
| WHIT         | White Hollow, Wellsburg, NY                | 3                   | Monitor for potential impacts               |

# Table 2. Stream Stations Sampled Along the New York–Pennsylvania Border and SamplingRationale

\*No macroinvertebrate sample collected in 2004-2005

|            |                                              | Monitoring |                                                                                                                                                          |
|------------|----------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station    | Stream and Location                          | Group      | Rationale                                                                                                                                                |
| BBDC 4.1   | Big Branch Deer Creek,<br>Fawn Grove, PA     | 2          | Monitor for potential water quality impacts                                                                                                              |
| CNWG 4.4   | Conowingo Creek,<br>Pleasant Grove, PA       | 1          | High nutrient loads and other agricultural runoff; nonpoint runoff to Chesapeake Bay                                                                     |
| DEER 44.2  | Deer Creek,<br>Gorsuch Mills, MD             | 1          | Past pollution from Gorsuch Mills, MD,<br>Stewartstown, PA; nonpoint runoff to<br>Chesapeake Bay                                                         |
| EBAU 1.5   | Ebaughs Creek,<br>Stewartstown, PA           | 1          | Municipal discharge from Stewartstown, PA;<br>nonpoint runoff to Chesapeake Bay                                                                          |
| FBDC 4.1   | Falling Branch Deer Creek,<br>Fawn Grove, PA | 2          | Monitor for potential water quality impacts                                                                                                              |
| LNGA 2.5   | Long Arm Creek,<br>Bandanna, PA              | 1          | Monitor for potential water quality impacts                                                                                                              |
| OCTO 6.6   | Octoraro Creek,<br>Rising Sun, MD            | 1          | High nutrient loads due to agricultural runoff<br>from New Bridge, MD; water quality impacts<br>from Octoraro Lake; nonpoint runoff to<br>Chesapeake Bay |
| SBCC 20.4  | South Branch Conewago Creek,<br>Bandanna, PA | 2          | Monitor for potential water quality impacts                                                                                                              |
| SCTT 3.0   | Scott Creek,<br>Delta, PA                    | 1          | Historical pollution due to untreated sewage                                                                                                             |
| SUSQ 44.5* | Susquehanna River,<br>Marietta, PA           | 1          | Bracket hydroelectric dams near the state line                                                                                                           |
| SUSQ 10.0* | Susquehanna River,<br>Conowingo, MD          | 1          | Bracket hydroelectric dams near the state line                                                                                                           |

 Table 3. Stream Stations Sampled along the Pennsylvania–Maryland Border and Sampling Rationale

\* No macroinvertebrate sample collected in 2004-2005



Figure 1. Interstate Streams Along the New York-Pennsylvania Border Between Russell Run and Deep Hollow Brook



Figure 2. Interstate Streams Along the New York-Pennsylvania Border Between Seeley Creek and Briggs Hollow



Figure 3. Interstate Streams Along the New York-Pennsylvania Border Between White Branch Cowanesque River and Smith Creek



Figure 4. Interstate Streams Along the Pennsylvania-Maryland Border

| Parameter                  | STORET Code |  |
|----------------------------|-------------|--|
| Physical                   |             |  |
| Discharge                  | 00060       |  |
| Temperature                | 00010       |  |
| Chemical                   |             |  |
| Field Analyses             |             |  |
| Conductivity               | 00095       |  |
| Dissolved Oxygen           | 00300       |  |
| рН                         | 00400       |  |
| Alkalinity                 | 00410       |  |
| Acidity                    | 00435       |  |
| Laboratory Analyses        |             |  |
| Solids, Total              | 00500       |  |
| Ammonia as Nitrogen, Total | 00610       |  |
| Nitrite as Nitrogen, Total | 00615       |  |
| Nitrate as Nitrogen, Total | 00620       |  |
| Nitrogen, Total            | 00600       |  |
| Phosphorus, Total          | 00665       |  |
| Orthophosphate, Total      | 70507       |  |
| Organic Carbon, Total      | 00680       |  |
| Calcium, Total             | 00916       |  |
| Magnesium, Total           | 00927       |  |
| Chloride, Total            | 00940       |  |
| Sulfate, Total             | 00945       |  |
| Iron, Total                | 01045       |  |
| Manganese, Total           | 01055       |  |
| Aluminum, Total            | 01105       |  |
| Turbidity                  | 82079       |  |

Table 4. Monitored Parameters

#### Macroinvertebrate and physical habitat sampling

SRBC staff collected benthic macroinvertebrate samples from Group 1 and Group 2 stations between July 13 and August 26, 2004, and from Group 3 streams between May 23 and 25, 2004. The benthic macroinvertebrate community was sampled to provide an indication of the biological condition of the stream. Macroinvertebrates are defined as aquatic insects and other invertebrates too large to pass through a No. 30 sieve.

Benthic macroinvertebrate samples were analyzed using field and laboratory methods described in <u>Rapid Bioassessment Protocol for Use in Streams and Rivers</u> by Barbour and others (1999). Sampling was performed using a 1-meter-square kick screen with size No. 30 mesh. The kick screen was stretched across the current to collect organisms dislodged from riffle/run areas by physical agitation of the stream substrate. Two kick screen samples were collected from a representative riffle/run at each station. The two samples were composited and preserved in denatured ethyl alcohol for later laboratory analysis.

In the laboratory, composite samples were sorted into 200-organism subsamples using a gridded pan and a random numbers table. The organisms contained in the subsamples were identified to genus (except Chironomidae and Oligochaeta) and enumerated using keys developed by Merrit and Cummins (1996), Peckarsky and others (1990), and Pennak (1989). Each taxon was assigned an organic pollution tolerance value and a functional feeding category as outlined in Appendix B. A taxa list for each station can be found in Appendix C. Physical habitat conditions at each station were assessed using a slightly modified version of the habitat assessment procedure outlined by Barbour and others (1999). Eleven habitat parameters were field-evaluated at each site and used to calculate a site-specific habitat assessment score. Habitat parameters were evaluated on a scale of 0 to 20 and were based on instream composition, channel morphology, and riparian zone and bank conditions. Some of the parameters to be evaluated varied based on whether the stream was characterized by riffles and runs or by glides and pools. Table 5 summarizes criteria used to evaluate habitat parameters.

#### **Data Synthesis Methods**

#### **Chemical water quality**

Results of laboratory analysis for chemical parameters were compared to New York, Pennsylvania, and Maryland State water quality standards. In addition, a simple WQI was calculated, using procedures established by McMorran and Bollinger (1990). The WQI was used to make comparisons between sampling periods and stations within the same geographical region; therefore, the water quality data were divided into two groups. One group contained stations along the NY-PA border, and the other group contained stations along the PA-MD border. The data in each group were sorted by parameter and ranked by increasing order of magnitude, with several exceptions. Dissolved oxygen was ranked by decreasing order of magnitude, while pH, alkalinity, acidity, calcium, and magnesium were not included in the WQI analysis. The values of each chemical analysis were divided by the highest ranking value in the group to obtain a percentile. The WQI score was calculated by averaging all percentile ranks for each sample. WQI scores range from 1 to 100, and high WQI scores indicate poor water quality. Water quality scores and a list of parameters exceeding standards for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 33.

#### Reference category designations

Three reference sites were included in this study. These three sites represented the best available suite of conditions, in terms of biological community, water quality, and habitat for each of the categories. Sites located on the NY-PA border were compared to Cascade Creek (CASC 1.6) at Lanesboro, PA. Cascade Creek represented the best combination of biological, water quality, and habitat conditions in the Northern Appalachian Plateau and Uplands Ecoregion. Since only three macroinvertebrate samples were collected on the river stations during fiscal year 2005, these samples (SUSQ 365, COWN 1.0 and COWN 2.2) were included in the analysis for the NY-PA border sites. Deer Creek (DEER 44.2) near Gorsuch Mills, MD, served as the reference site for sampling stations located on the PA-MD border. Deer Creek had the best combination of biological, water quality, and habitat conditions in the Northern Piedmont Ecoregion (Omernik, 1987). Deep Hollow Brook (DEEP) near Danville, NY, served as the reference site for Group 3 sites, as it had the best biological, habitat, and field chemistry conditions of these sites.

 Table 5. Criteria Used to Evaluate Physical Habitat

| Habitat Parameter                               | OPTIMAL (20-16)                                                                                                                                                           | SUBOPTIMAL (15-11)                                                                                                           | MARGINAL (10-6)                                                                                                                    | POOR (5-0)                                                                                       |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1. Epifaunal Substrate<br>(R/R) <sup>1</sup>    | Well-developed riffle/run; riffle is<br>as wide as stream and length<br>extends 2 times the width of stream;<br>abundance of cobble.                                      | Riffle is as wide as stream but<br>length is less than 2 times width;<br>abundance of cobble; boulders and<br>gravel common. | Run area may be lacking; riffle not<br>as wide as stream and its length is<br>less than 2 times the width; some<br>cobble present. | Riffle or run virtually nonexistent;<br>large boulders and bedrock<br>prevalent; cobble lacking. |
| 1. Epifaunal Substrate<br>(G/P) <sup>2</sup>    | Preferred benthic substrate abundant<br>throughout stream site and at stage<br>to allow full colonization (i.e.<br>log/snags that are not new fall and<br>not transient). | Substrate common but not prevalent<br>or well suited for full colonization<br>potential.                                     | Substrate frequently disturbed or removed.                                                                                         | Substrate unstable or lacking.                                                                   |
| 2. Instream Cover (R/R)                         | > 50% mix of boulders, cobble,<br>submerged logs, undercut banks or<br>other stable habitat.                                                                              | 30-50% mix of boulder, cobble, or<br>other stable habitat; adequate<br>habitat.                                              | 10-30% mix of boulder, cobble, or<br>other stable habitat; habitat<br>availability less than desirable.                            | < 10% mix of boulder, cobble, or<br>other stable habitat; lack of habitat<br>is obvious.         |
| 2. Instream Cover (G/P)                         | > 50% mix of snags, submerged<br>logs, undercut banks or other stable<br>habitat; rubble, gravel may be<br>present.                                                       | 30-50% mix of stable habitat;<br>adequate habitat for maintenance of<br>populations.                                         | 10-30% mix of stable habitat;<br>habitat availability less than<br>desirable.                                                      | Less than 10% stable habitat; lack of habitat obvious.                                           |
| 3. Embeddedness <sup>a</sup> (R/R)              | Gravel, cobble, and boulder<br>particles are 0-25% surrounded by<br>fine sediments.                                                                                       | Gravel, cobble, and boulder<br>particles are 25-50% surrounded by<br>fine sediments.                                         | Gravel, cobble, and boulder<br>particles are 50-75% surrounded by<br>fine sediments.                                               | Gravel, cobble, and boulder<br>particles are >75% surrounded by<br>fine sediments.               |
| 3. Pool Substrate<br>Characterization<br>(G/P)  | Mixture of substrate materials, with<br>gravel and firm sand prevalent; root<br>mats and submerged vegetation<br>common.                                                  | Mixture of soft sand, mud, or clay;<br>mud may be dominant; some root<br>mats and submerged vegetation<br>present.           | All mud or clay or sand bottom;<br>little or no root mat; no submerged<br>vegetation.                                              | Hard-pan clay or bedrock; no root mat or vegetation.                                             |
| 4. Velocity/Depth<br>Regimes <sup>b</sup> (R/R) | All 4 velocity/depth regimes present<br>(slow/deep, slow/shallow, fast/deep,<br>fast/shallow).                                                                            | Only 3 of 4 regimes present (if fast/shallow is missing, score lower than if missing other regimes).                         | Only 2 of 4 regimes present (if fast/shallow or slow/shallow are missing, score low).                                              | Dominated by 1 velocity/depth regime.                                                            |
| 4. Pool Variability <sup>c</sup> (G/P)          | Even mix of large-shallow, large-<br>deep, small-shallow, small-deep<br>pools present.                                                                                    | Majority of pools large-deep; very few shallow.                                                                              | Shallow pools much more prevalent than deep pools.                                                                                 | Majority of pools small-shallow or pools absent.                                                 |

 Table 5. Criteria Used to Evaluate Physical Habitat—Continued

| Habitat Parameter                                 | <b>OPTIMAL (20-16)</b>                                                                                                                                                            | SUBOPTIMAL (15-11)                                                                                                                                                                                                                            | MARGINAL (10-6)                                                                                                                                                                              | POOR (5-0)                                                                                                                                                                                               |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Sediment Deposition<br>(R/R)                   | Little or no enlargement of islands<br>or point bars and <5% of the bottom<br>affected by sediment deposition.                                                                    | Some new increase in bar<br>formation, mostly from coarse<br>gravel; 5-30% of the bottom<br>affected; slight deposition in pools.                                                                                                             | Moderate deposition of new gravel,<br>coarse sand on old and new bars;<br>30-50% of the bottom affected;<br>sediment deposits at obstructions;<br>moderate deposition of pools<br>prevalent. | Heavy deposits of fine material,<br>increased bar development; >50%<br>of the bottom changing frequently;<br>pools almost absent due to sediment<br>deposition.                                          |
| 5. Sediment Deposition<br>(G/P)                   | Less than 20% of bottom affected;<br>minor accumulation of fine and<br>coarse material at snags and<br>submerged vegetation; little or no<br>enlargement of island of point bars. | 20-50% affected; moderate<br>accumulation; substantial sediment<br>movement only during major storm<br>event; some new increase in bar<br>formation.                                                                                          | 50-80% affected; major deposition;<br>pools shallow, heavily silted;<br>embankments may be present on<br>both banks; frequent and substantial<br>movement during storm events.               | Channelized; mud, silt, and/or sand<br>in braided or non-braided channels;<br>pools almost absent due to<br>substantial sediment deposition.                                                             |
| 6. Channel Flow Status<br>(R/R) (G/P)             | Water reaches base of both lower<br>banks and minimal amount of<br>channel substrate is exposed.                                                                                  | Water fills >75% of the available<br>channel; or <25% of channel<br>substrate exposed.                                                                                                                                                        | Water fills 25-75% of the available channel and/or riffle substrates are mostly exposed.                                                                                                     | Very little water in channel and<br>mostly present as standing pools.                                                                                                                                    |
| 7. Channel Alteration <sup>d</sup><br>(R/R) (G/P) | No channelization or dredging present.                                                                                                                                            | Some channelization present,<br>usually in areas of bridge<br>abutments; evidence of past<br>channelization (>20 yr) may be<br>present, but not recent.                                                                                       | New embankments present on both<br>banks; and 40-80% of stream reach<br>channelized and disrupted.                                                                                           | Banks shored with gabion or<br>cement; >80% of the reach<br>channelized and disrupted.                                                                                                                   |
| 8. Frequency of Riffles<br>(R/R)                  | Occurrence of riffles relatively<br>frequent; distance between riffles<br>divided by the width of the stream<br>equals 5 to 7; variety of habitat.                                | Occurrence of riffles infrequent;<br>distance between riffles divided by<br>the width of the stream equals 7 to<br>15.                                                                                                                        | Occasional riffle or bend; bottom<br>contours provide some habitat;<br>distance between riffles divided by<br>the stream width is between 15-25.                                             | Generally all flat water or shallow<br>riffles; poor habitat; distance<br>between riffles divided by the width<br>of the stream is >25.                                                                  |
| 8. Channel Sinuosity<br>(G/P)                     | The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line.                                                                         | The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line.                                                                                                                                     | The bend in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.                                                                                     | Channel straight; waterway has been channelized for a long time.                                                                                                                                         |
| 9. Condition of Banks <sup>e</sup><br>(R/R) (G/P) | Banks stable; no evidence of<br>erosion or bank failure, little<br>potential for future problems; <5%<br>of bank affected; on Glide/Pool<br>streams side slopes generally <30%.   | Moderately stable; infrequent, small<br>areas of erosion mostly healed over;<br>5-30% of bank in reach has areas of<br>erosion; on Glide/Pool streams side<br>slopes up to 40% on one bank;<br>slight erosion potential in extreme<br>floods. | Moderately unstable, 30-60% of<br>banks in reach have areas of<br>erosion; high erosion potential<br>during floods; on Glide/Pool<br>streams side slopes up to 60% on<br>some banks.         | Unstable; many eroded areas; "raw"<br>areas frequent along straight<br>sections and bends; on side slopes,<br>60-100% of bank has erosional<br>scars; on Glide/Pool streams side<br>slopes > 60% common. |
| (score each bank 0-10)                            | (9-10)                                                                                                                                                                            | (6-8)                                                                                                                                                                                                                                         | (3-5)                                                                                                                                                                                        | (0-2)                                                                                                                                                                                                    |

 Table 5. Criteria Used to Evaluate Physical Habitat—Continued

|     | Habitat Parameter                                | OPTIMAL (20-16)                                                                                                                                | SUBOPTIMAL (15-11)                                                                                                                                      | MARGINAL (10-6)                                                                                                                           | POOR (5-0)                                                                                                                   |
|-----|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 10. | Vegetative Protective<br>Cover (R/R) (G/P)       | >90% of the streambank surfaces<br>covered by vegetation; vegetative<br>disruption through grazing or<br>mowing minimal.                       | 70-90% of the streambank surfaces<br>covered by vegetation; disruption<br>evident but not affecting full plant<br>growth potential to any great extent. | 50-70% of the streambank surfaces<br>covered by vegetation; disruption<br>obvious; patches of bare soil or<br>closely cropped vegetation. | <50% of the streambank surfaces<br>covered by vegetation; disruption is<br>very high; vegetation removed to 5<br>cm or less. |
| (s  | score each bank 0-10)                            | (9-10)                                                                                                                                         | (6-8)                                                                                                                                                   | (3-5)                                                                                                                                     | (0-2)                                                                                                                        |
| 11. | Riparian Vegetative<br>Zone Width (R/R)<br>(G/P) | Width of riparian zone >18 meters;<br>human activities (i.e. parking lots,<br>roadbeds, clearcuts, lawns, or crops)<br>have not impacted zone. | Width or riparian zone 12-18<br>meters; human activities have<br>impacted zone only minimally.                                                          | Width of riparian zone 6-12 meters;<br>human activities have impacted<br>zone only minimally.                                             | Width of riparian zone <6 meters;<br>little or no riparian vegetation due<br>to human activities.                            |
| (s  | score each bank 0-10)                            | (9-10)                                                                                                                                         | (6-8)                                                                                                                                                   | (3-5)                                                                                                                                     | (0-2)                                                                                                                        |

| ${}^{1}R/{}^{1}$ | R – Riffle/Run         | Habitat assessment parameters used for streams characterized by riffles and runs.                                                                                                                                                                                                                                     |
|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{2}G/$         | P – Glide/Pool         | Habitat assessment parameters used for streams characterized by glides and pools.                                                                                                                                                                                                                                     |
| а                | Embeddedness           | The degree to which the substrate materials that serve as habitat for benthic macroinvertebrates and for fish spawning and egg incubation (predominantly cobble and/or gravel) are surrounded by fine sediment. Embeddedness is evaluated with respect to the suitability of these substrate materials as habitat for |
|                  |                        | macroinvertebrates and fish by providing shelter from the current and predators and by providing egg deposition and incubation sites.                                                                                                                                                                                 |
| b                | Velocity/Depth Regimes | The general guidelines are 0.5 m depth to separate shallow from deep, and 0.3 m/sec to separate fast from slow.                                                                                                                                                                                                       |
| с                | Pool Variability       | Rated based on the variety and spatial complexity of slow- or still-water habitat within the sample segment. It should be noted that even in high-gradient                                                                                                                                                            |
|                  |                        | segments, functionally important slow-water habitat may exist in the form of plunge-pools and/or larger eddies. General guidelines are any pool dimension (i.e.,                                                                                                                                                      |
|                  |                        | length, width, oblique) greater than half the cross-section of the stream for separating large from small and 1 m depth separating shallow and deep.                                                                                                                                                                  |
| d                | Channel Alteration     | A measure of large-scale changes in the shape of the stream channel. Channel alteration includes: concrete channels, artificial embankments, obvious                                                                                                                                                                  |
|                  |                        | straightening of the natural channel, rip-rap, or other structures.                                                                                                                                                                                                                                                   |
| e                | Condition of Banks     | Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks and are therefore considered to be unstable. Left and right bank orientation is determined by facing downstream.                                                                                                        |
| G                |                        |                                                                                                                                                                                                                                                                                                                       |

Source: Modified from Barbour and others, 1999.

#### **Biological and physical habitat conditions**

Benthic macroinvertebrate samples were assessed using procedures described by Barbour and others (1999), Klemm and others (1990), and Plafkin and others (1989). Using these methods, staff calculated a series of biological indexes for a stream and compared them to a reference station in the same region to determine the degree of impairment. The metrics used in this survey are summarized in Table 6. Metric 2 (Shannon Diversity Index) followed the methods described in Klemm and others (1990), and all other metrics were taken from Barbour and others (1999).

The 200-organism subsample data were used to generate scores for each of the seven metrics. Scores for metrics 1-4 were converted to a biological condition score, based on the percent similarity of the metric score, relative to the metric score of the reference site. Scores for metrics 5-7 were based on set scoring criteria developed for the percentages (Plafkin and others, 1989; Ohio Environmental Protection Agency, 1987b). The sum of the biological condition scores constituted the total biological score for the sample site, and total biological scores were used to assign each site to a biological condition category (Table 7). Habitat assessment scores of sample sites were compared to those of reference sites to classify each sample site into a habitat condition category (Table 8).

#### Trend analysis

Long-term trend analysis has been performed on Group 1 streams that have been sampled since April 1986 to identify increases and decreases over time in total suspended solids, total ammonia, total nitrogen, total phosphorus, total chloride, total sulfate, total iron, total manganese, total aluminum, and the WQI. Overall these long-term trends do not change very much from year to year. Therefore, SRBC has decided to analyze for trends every five years. A trend analysis will not be performed in this report. The next trend analysis will be in the 2008 Interstate Report.

The nonparametric trend test used in previous reports was the Seasonal Kendall Test, which is described by Bauer and others (1984), and Smith and others (1982). For more information on this test and how it was used to assess trends in the data see <u>Trends in Nitrogen</u>, <u>Phosphorus</u>, and <u>Suspended</u> <u>Sediment in the Susquehanna River Basin</u>, <u>1974-93</u> (Edwards, 1995), LeFevre (2003), and other previous Interstate reports.

#### RESULTS

#### Water Quality

During fiscal year 2005, water quality in approximately 40 percent of the Group 1 and Group 2 interstate streams continued to meet designated use classes and water quality standards (Table 9, Appendix D). Nineteen out of the 32 sites had parameters exceeding water quality standards, with 16 of those having more than one violation. The parameter that most frequently exceeded water quality standards was total iron (Table 10, Figure 5). Seventy-two out the 734 possible observations (based on the number of applicable water quality standards of each state) exceeded water quality standards.

| Table 6. | Summary of Metrics Used to Evaluate the Overall Biological Integrity of Stream and River |
|----------|------------------------------------------------------------------------------------------|
|          | Benthic Macroinvertebrate Communities                                                    |

| Metric                                  | Description                                                                                                                                                                         |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Taxonomic Richness (a)               | The total number of taxa present in the 200 organism subsample. Number decreases with increasing stress.                                                                            |
| 2. Shannon Diversity Index (b)          | A measure of biological community complexity based on<br>the number of equally or nearly equally abundant taxa in the<br>community. Index value decreases with increasing stress.   |
| 3. Modified Hilsenhoff Biotic Index (a) | A measure of the organic pollution tolerance of a benthic macroinvertebrate community. Index value increases with increasing stress.                                                |
| 4. EPT Index (a)                        | The total number of Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly) taxa present in the 200 organism subsample. Number decreases with increasing stress. |
| 5. Percent Ephemeroptera (a)            | The percentage of Ephemeroptera in the 200 organism subsample. Ratio decreases with increasing stress.                                                                              |
| 6. Percent Dominant Taxa (a)            | Percentage of the taxon with the largest number of individuals out of the total number of macroinvertebrates in the sample. Percentage increases with increasing stress.            |
| 7. Percent Chironomidae (a)             | The percentage of Chironomidae in a 200 organism subsample. Ratio increases with increasing stress.                                                                                 |

Sources: (a) Barbour and others, 1999

(b) Klemm and others, 1990

| Table 7. | Summary of Criteria | Used to Classify the | <b>Biological Conditi</b> | ons of Sample Sites |
|----------|---------------------|----------------------|---------------------------|---------------------|
|----------|---------------------|----------------------|---------------------------|---------------------|





| $\mathbf{V}$                            |              |                               |                   |       |
|-----------------------------------------|--------------|-------------------------------|-------------------|-------|
| TOTAL BIOL                              | OGICAL SCORE | DETERMINATIO                  | N                 |       |
|                                         | E            | Biological Condition          | on Scoring Criter | ia    |
| Metric                                  | 6            | 4                             | 2                 | 0     |
|                                         |              |                               |                   |       |
| 1. Taxonomic Richness (a)               | >80 %        | 79 – 60 %                     | 59 - 40 %         | <40 % |
| 2. Shannon Diversity Index (a)          | >75 %        | 74 - 50%                      | 49 - 25 %         | <25 % |
| 3. Modified Hilsenhoff Biotic Index (b) | >85 %        | 84 - 70 %                     | 69 - 50 %         | <50 % |
| 4. EPT Index (a)                        | >90 %        | 89 - 80 %                     | 79 – 70 %         | <70 % |
| 5. Percent Ephemeroptera (c)            | >25 %        | 10 - 25 %                     | 1-9%              | <1 %  |
| 6. Percent Chironomidae (c)             | <5 %         | 5 - 20 %                      | 21 - 35 %         | >36 % |
| 7. Percent Dominant Taxa (c)            | <20 %        | 20-30 %                       | 31 - 40 %         | >40 % |
|                                         |              |                               |                   |       |
| Total Biological Score (d)              |              |                               |                   |       |
|                                         |              |                               |                   |       |
| $\mathbf{\Psi}$                         |              |                               |                   |       |
|                                         |              |                               |                   |       |
|                                         | <b>₩</b>     |                               |                   |       |
|                                         | $\downarrow$ |                               |                   |       |
|                                         | BIOASSESSM   | FNT                           |                   |       |
| Percent Comparability of Study and Ref  | erence       |                               |                   |       |
| Site Total Biological Scores (e)        |              | Biological Condition Category |                   |       |
|                                         | <u> </u>     |                               |                   |       |
| × 92                                    |              | N                             | Jonimanoinad      |       |
| >05                                     |              | Nonimpaired                   |                   |       |
| 19 - 34                                 |              | Slightly Impaired             |                   |       |

(a) Score is study site value/reference site value X 100.

50 - 21

<17

(b) Score is reference site value/study site value X 100.

(c) Scoring criteria evaluate actual percent contribution, not percent comparability to the reference station.

(d) Total Biological Score = the sum of Biological Condition Scores assigned to each metric.

(e) Values obtained that are intermediate to the indicated ranges will require subjective judgment as to the correct placement into a biological condition category.

Moderately Impaired

Severely Impaired

| DETERMINATION OF HABITAT ASSESSMENT SCORES |                                    |       |      |      |  |
|--------------------------------------------|------------------------------------|-------|------|------|--|
|                                            | Habitat Parameter Scoring Criteria |       |      |      |  |
| Parameter                                  | Excellent                          | Good  | Fair | Poor |  |
|                                            |                                    |       |      |      |  |
| Epifaunal Substrate                        | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Instream Cover                             | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Embeddedness/Pool Substrate                | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Velocity/Depth Regimes/Pool Variability    | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Sediment Deposition                        | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Channel Flow Status                        | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Channel Alteration                         | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Frequency of Riffles/Channel Sinuosity     | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Condition of Banks (a)                     | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Vegetative Protective Cover (a)            | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Riparian Vegetative Zone Width (a)         | 20-16                              | 15-11 | 10-6 | 5-0  |  |
| Habitat Assessment Score (b)               |                                    |       |      |      |  |
| $\checkmark$                               |                                    |       |      |      |  |
| $\downarrow$                               |                                    |       |      |      |  |
| $\downarrow$                               |                                    |       |      |      |  |
| HARITAT ASSESSMENT                         |                                    |       |      |      |  |

# Table 8. Summary of Criteria Used to Classify the Habitat Conditions of Sample Sites

| HABITAT ASSESSMENT                                                             |                                                                                            |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Percent Comparability of Study and<br>Reference Site Habitat Assessment Scores | Habitat Condition Category                                                                 |  |  |
| >90<br>89-75<br>74-60<br><60                                                   | Excellent (comparable to reference)<br>Supporting<br>Partially Supporting<br>Nonsupporting |  |  |

(a) Combined score of each bank

(b) Habitat Assessment Score = Sum of Habitat Parameter Scores

| Stream                        | PA Classification * | NY Classification * |
|-------------------------------|---------------------|---------------------|
| Apalachin Creek               | CWF                 | С                   |
| Babcock Run                   | CWF                 | С                   |
| Beagle Hollow                 | WWF                 | С                   |
| Bentley Creek                 | WWF                 | С                   |
| Bill Hess Creek               | WWF                 | С                   |
| Bird Creek                    | CWF                 | С                   |
| Biscuit Hollow                | CWF                 | С                   |
| Briggs Hollow                 | CWF                 | С                   |
| Bulkley Brook                 | WWF                 | С                   |
| Camp Brook                    | WWF                 | С                   |
| Cascade Creek                 | CWF                 | С                   |
| Cayuta Creek                  | WWF                 | В                   |
| Chemung River                 | WWF                 | А                   |
| Choconut Creek                | WWF                 | С                   |
| Cook Hollow                   | CWF                 | С                   |
| Cowanesque River              | WWF                 | С                   |
| Deep Hollow Brook             | CWF                 | С                   |
| Denton Creek                  | CWF                 | С                   |
| Dry Brook                     | WWF                 | С                   |
| Little Snake Creek            | CWF                 | С                   |
| Little Wappasening Creek      | WWF                 | С                   |
| North Fork Cowanesque River   | CWF                 | С                   |
| Parks Creek                   | WWF                 | С                   |
| Prince Hollow Run             | CWF                 | С                   |
| Russell Run                   | CWF                 | С                   |
| Sackett Creek                 | WWF                 | С                   |
| Seeley Creek                  | CWF                 | C (T)               |
| Smith Creek                   | WWF                 | С                   |
| Snake Creek                   | CWF                 | С                   |
| South Creek                   | CWF                 | С                   |
| Strait Creek                  | WWF                 | С                   |
| Susquehanna River             | WWF                 | В                   |
| Tioga River                   | WWF                 | С                   |
| Trowbridge Creek              | CWF                 | С                   |
| Troups Creek                  | CWF                 | С                   |
| Wappasening Creek             | CWF                 | С                   |
| White Branch Cowanesque River | WWF                 | С                   |
| White Hollow                  | WWF                 | С                   |
|                               |                     |                     |
| Stream                        | PA Classification   | MD Classification * |
| Big Branch Deer Creek         | CWF                 | III-P               |
| Conowingo Creek               | CWF                 | I-P                 |
| Deer Creek                    | CWF                 | III-P               |
| Ebaughs Creek                 | CWF                 | III-P               |
| Falling Branch Deer Creek     | CWF                 | IV-P                |
| Long Arm Creek                | WWF                 | I-P                 |
| Octoraro Creek                | WWF-MF              | IV-P                |
| Scott Creek                   | TSF                 | I-P                 |
| South Branch Conewago Creek   | WWF                 | I-P                 |
| Susquehanna River             | WWF                 | I-P                 |

Table 9. Stream Classifications

\* See Appendix D for stream classification descriptions

Table 10. Water Quality Standard Summary

| Parameter            | Standard                                | Standard<br>Value     | Number of<br>Observations | Number<br>Exceeding Standards |
|----------------------|-----------------------------------------|-----------------------|---------------------------|-------------------------------|
| Alkalinity           | PA aquatic life                         | 20 mg/l               | 91                        | 5                             |
| Total Iron           | NY aquatic (chronic)<br>PA aquatic life | 300 μg/l<br>1500 ug/l | 59<br>91                  | 24<br>7                       |
| Total Aluminum       | NY aquatic (chronic)                    | 100 µg/l              | 59                        | 24                            |
| Total Chlorine       | NY aquatic (acute)                      | 0.019 mg/l            | 6                         | 5                             |
|                      | MD aquatic life                         | 0.019 mg/l            | 3                         | 3                             |
| Nitrite plus Nitrate | PA public water supply                  | 10 mg/l               | 91                        | 4                             |



Figure 5. Parameters Exceeding Water Quality Standards

#### **Biological Communities and Physical Habitat**

RBP III biological data for NY-PA, PA-MD, river sites, and Group 3 streams are summarized in Tables 11 through 14, respectively. A high rapid bioassessment protocol score indicates a low degree of impairment and a healthy macroinvertebrate population. RBP III results for each site can be found in the "Bioassessment of Interstate Streams" section, beginning on page 38.

RBP III physical habitat data for NY-PA, PA-MD, river sites, and Group 3 streams are presented in Tables 15 through 18, respectively. A high score indicates a high-quality physical habitat. RBP III physical habitat and biological data are summarized in Figures 6 through 8.

#### New York-Pennsylvania streams

New York-Pennsylvania sampling stations consisted of 14 sites located near or on the NY-PA border. The biological community of ten (71.4 percent) of these streams was nonimpaired, and four stream sites were slightly impaired (28.5 percent). None of the streams were moderately or severely impaired. Eight of the NY-PA sites had excellent habitats (57.1 percent), while six sites (42.9 percent) had supporting habitats. No sites had partially supporting or nonsupporting habitat.

#### Pennsylvania-Maryland streams

The PA-MD interstate streams included nine stations (biological data were collected at eight sites during fiscal year 2005) located on or near the PA-MD border. Two streams (25 percent) were designated nonimpaired, using RBP III protocol designations. Six sites (75 percent) were slightly impaired. Seven (77.8 percent) of the PA-MD border sites had excellent habitats, while one site (11.1 percent) had supporting habitats, and one site (11.1 percent) had partially supporting habitat. Island Branch is not sampled due to its small size.

#### **River sites**

River sites consisted of nine stations located on the Susquehanna, Chemung, Cowanesque, and Tioga Rivers. One station (SUSQ 10.0) is not sampled for macroinvertebrates due to deep water and a lack of riffle habitat at the site. During fiscal year 2005, high flows precluded macroinvertebrate sampling and habitat assessment of five stations: SUSQ 340.0, SUSQ289.1, SUSQ 44.5, CHEM 12.0, and TIOG 10.8. The biological community of the remaining stations, the Susquehanna River at Windsor, NY, and the two sites on the Cowanesque River, were compared to Cascade Creek, the reference site for the New York – Pennsylvania border streams. The biological communities of two of the river stations (SUSQ 365 and COWN 1.0) were designated as nonimpaired, while the Cowanesque River at Lawrenceville (COWN 2.2) was moderately impaired. The habitat for the Susquehanna River at Windsor, NY was rated as excellent, and the habitat at both Cowanesque River sites was rated as supporting.

#### Group 3 sites

Group 3 sampling stations consisted of 20 sites on small streams located along the NY-PA border. Eight of the 20 sites sampled (40 percent) had nonimpaired biological conditions. Eight sites (40 percent) were slightly impaired, and four sites (20 percent) were moderately impaired. Four (20 percent) of the Group 3 sites had excellent habitat scores. Ten sites (50 percent) had supporting habitat conditions, while six sites (30 percent) were designated partially supporting, and no sites were nonsupporting.

|                                          | APAL  | BNTY  | CASC        | CAYT  | CHOC  | HLDN  | LSNK | NFCR  | SEEL  | SNAK  | SOUT | TROW  | TRUP | WAPP  |
|------------------------------------------|-------|-------|-------------|-------|-------|-------|------|-------|-------|-------|------|-------|------|-------|
| Pau Summary                              | 6.9   | 0.9   | 1.0         | 1.7   | 9.1   | 3.5   | 7.0  | 7.0   | 10.3  | 2.3   | 1.0  | 1.0   | 4.0  | 2.0   |
| Number of Individuals                    | 265   | 226   | 220         | 220   | 240   | 109   | 245  | 210   | 255   | 222   | 210  | 222   | 249  | 222   |
|                                          | 203   | 250   | 229         | 258   | 248   | 198   | 243  | 210   | 233   | 255   | 218  | 222   | 248  | 225   |
| % Silleddels                             | 20.2  | 15.2  | 0.9         | 10.5  | 0.4   | 27.4  | 0.4  | 16.2  | 0.8   | 21.9  | 1.4  | 0.9   | 2.0  | 57.0  |
| % Collector-Odilleters                   | 12.5  | 36.0  | 0.7<br>16.3 | 10.5  | 30.1  | 31.4  | 55.0 | 20.0  | 26.3  | 23.6  | 7.0  | 13.1  | 10.0 | 20.2  |
| % Scrapers                               | 32.8  | 14.4  | 10.0        | 67.2  | 24.6  | 15.7  | 86   | 10.1  | 20.3  | 15.0  | 20.2 | 10.1  | 10.9 | 16.6  |
| % Predators                              | 24.5  | 32.6  | 33.2        | 97    | 19.8  | 10.6  | 26.5 | 22.4  | 10.6  | 22.8  | 26.6 | 25.2  | 77   | 5.4   |
| Number of EPT Taxa                       | 12    | 16    | 12          | 14    | 17.0  | 16.0  | 11   | 10    | 10.0  | 17    | 20.0 | 13    | 11   | 13    |
| Number of EPT Individuals                | 76    | 114   | 127         | 52    | 116   | 147   | 158  | 145   | 93    | 102   | 62   | 108   | 150  | 13    |
| Metric Scores                            | 70    | 114   | 127         | 52    | 110   | 147   | 150  | 145   | 75    | 102   | 02   | 100   | 150  | 150   |
| Taxonomic Richness                       | 25    | 27    | 25          | 25    | 25    | 26    | 23   | 19    | 21    | 29    | 20   | 23    | 16   | 23    |
| Shannon Diversity Index                  | 2.49  | 2.7   | 2.7         | 2.3   | 2.7   | 2.7   | 2.4  | 2.5   | 2.2   | 2.7   | 2.2  | 2.4   | 19   | 2.3   |
| Modified Hilsenhoff Biotic Index         | 4 51  | 4.2   | 3.8         | 43    | 43    | 4 5   | 3.8  | 3.2   | 5.1   | 3.9   | 4.0  | 4.4   | 5.0  | 4.8   |
| EPT Index                                | 12    | 16    | 12          | 14    | 13    | 16    | 11   | 10    | 12    | 17    | 9    | 13    | 11   | 13    |
| Percent Ephemeroptera                    | 12.1  | 19.9  | 12.2        | 5.0   | 12.5  | 36.4  | 2.0  | 17.6  | 15.7  | 12.5  | 1.8  | 20.7  | 47.9 | 52.5  |
| Percent Chironomidae                     | 24.2  | 9.3   | 7.9         | 3.8   | 10.5  | 7.6   | 5.7  | 6.2   | 34.1  | 24.9  | 6.4  | 15.8  | 34.3 | 23.3  |
| Percent Dominant Taxa                    | 24.2  | 20.3  | 15.7        | 27.7  | 18.9  | 20.2  | 26.9 | 21.2  | 34.1  | 24.9  | 24.8 | 19.4  | 34.3 | 27.8  |
| Percent of Reference or Percentage Score |       |       |             |       |       |       |      |       |       | •     | •    |       |      |       |
| Taxonomic Richness                       | 100.0 | 108.0 | 100.0       | 100.0 | 100.0 | 104.0 | 92.0 | 76.0  | 84.0  | 116.0 | 80.0 | 92.0  | 64.0 | 92.0  |
| Shannon Diversity Index                  | 91.5  | 97.4  | 100.0       | 85.3  | 97.4  | 98.2  | 87.5 | 90.8  | 79.4  | 99.3  | 80.5 | 89.7  | 69.9 | 85.7  |
| Hilsenhoff Index                         | 84.1  | 89.5  | 100.0       | 89.1  | 87.9  | 84.6  | 98.9 | 120.1 | 75.0  | 96.8  | 94.0 | 86.4  | 75.9 | 79.7  |
| EPT Index                                | 100.0 | 133.3 | 100.0       | 116.7 | 108.3 | 133.3 | 91.7 | 83.3  | 100.0 | 141.7 | 75.0 | 108.3 | 91.7 | 108.3 |
| Percent Ephemeroptera                    | 12.1  | 19.9  | 12.2        | 5.0   | 12.5  | 36.4  | 2.0  | 17.6  | 15.7  | 12.5  | 1.8  | 20.7  | 48.0 | 52.5  |
| Percent Chironomidae                     | 24.2  | 9.3   | 7.9         | 3.8   | 10.5  | 7.6   | 5.7  | 6.2   | 34.1  | 24.9  | 6.4  | 15.8  | 34.3 | 23.3  |
| Percent Dominant Taxa                    | 24.2  | 20.3  | 15.7        | 27.7  | 19.0  | 20.2  | 26.9 | 21.9  | 34.1  | 24.9  | 24.8 | 19.4  | 34.3 | 27.8  |
| Biological Condition Scores              |       |       |             |       |       |       |      |       |       |       |      |       |      |       |
| Taxonomic Richness                       | 6     | 6     | 6           | 6     | 6     | 6     | 6    | 4     | 6     | 6     | 6    | 6     | 4    | 6     |
| Shannon Diversity Index                  | 6     | 6     | 6           | 6     | 6     | 6     | 6    | 6     | 6     | 6     | 6    | 6     | 4    | 6     |
| Hilsenhoff Index                         | 4     | 6     | 6           | 6     | 6     | 4     | 6    | 4     | 4     | 6     | 6    | 6     | 4    | 6     |
| EPT Index                                | 6     | 6     | 6           | 6     | 6     | 6     | 6    | 4     | 6     | 6     | 2    | 6     | 6    | 6     |
| Percent Ephemeroptera                    | 4     | 4     | 4           | 2     | 4     | 4     | 2    | 4     | 4     | 4     | 2    | 4     | 6    | 6     |
| Percent Chironomidae                     | 2     | 4     | 4           | 6     | 4     | 4     | 6    | 4     | 2     | 2     | 4    | 4     | 2    | 2     |
| Percent Dominant Taxa                    | 4     | 4     | 6           | 4     | 6     | 6     | 4    | 4     | 2     | 4     | 4    | 6     | 4    | 4     |
| Total Biological Score                   |       |       |             |       |       |       |      |       |       |       |      |       |      |       |
| Total Biological Score                   | 32    | 36    | 38          | 36    | 38    | 36    | 36   | 30    | 30    | 34    | 30   | 38    | 30   | 36    |
| Biological % of Reference                | 84    | 95    | 100         | 95    | 100   | 95    | 95   | 79    | 79    | 89    | 79   | 100   | 79   | 95    |

 Table 11.
 Summary of New York-Pennsylvania Border RBP III Biological Data

|                                  | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.5 | EBAU<br>1.5 | LNGA<br>2.5 | OCTO<br>6.6 | SBCC<br>20.4 | SCTT<br>3.0 |  |
|----------------------------------|-------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|--|
| Raw Summary                      |             |             |              |             |             |             |              |             |  |
| Number of Individuals            | 218         | 263         | 269          | 231         | 150         | 259         | 217          | 126         |  |
| % Shredders                      | 22.0        | 0.0         | 2.2          | 1.3         | 7.3         | 4.3         | 4.2          | 9.5         |  |
| % Collector-Gatherers            | 15.1        | 32.3        | 11.9         | 29.0        | 47.3        | 39.4        | 8.3          | 30.9        |  |
| % Filterer-Collectors            | 23.9        | 31.6        | 41.3         | 43.7        | 8.7         | 23.6        | 44.7         | 53.9        |  |
| % Scrapers                       | 23.9        | 28.9        | 30.9         | 22.9        | 32.0        | 31.7        | 31.3         | 0.8         |  |
| % Predators                      | 15.1        | 7.2         | 13.8         | 3.0         | 4.7         | 1.2         | 11.5         | 4.8         |  |
| Number of EPT Taxa               | 12          | 6           | 13           | 10          | 8           | 10          | 9            | 4           |  |
| Number of EPT Individuals        | 96          | 142         | 151          | 140         | 68          | 171         | 133          | 83          |  |
|                                  | •           | •           | •            | •           | •           | •           |              |             |  |
| Taxonomic Richness               | 26          | 13          | 25           | 18          | 16          | 19          | 14           | 12          |  |
| Shannon Diversity Index          | 2.6         | 2.0         | 2.6          | 2.1         | 2.0         | 2.2         | 1.9          | 2.1         |  |
| Modified Hilsenhoff Biotic Index | 3.7         | 5.3         | 4.4          | 4.7         | 4.8         | 5.1         | 4.3          | 5.0         |  |
| EPT Index                        | 12          | 6           | 13           | 10          | 8           | 10          | 9            | 4           |  |
| Percent Ephemeroptera            | 9.2         | 21.3        | 12.3         | 16.9        | 32.7        | 48.3        | 10.6         | 13.5        |  |
| Percent Chironomidae             | 4.1         | 9.9         | 3.4          | 8.7         | 6.7         | 5.4         | 0.5          | 11.9        |  |
| Percent Dominant Taxa            | 21.6        | 27.0        | 19.7         | 29.4        | 32.7        | 32.8        | 35.5         | 31.8        |  |
|                                  |             |             |              |             |             |             |              |             |  |
| Taxonomic Richness               | 104.0       | 52.0        | 100.0        | 72.0        | 64.0        | 76.0        | 56.0         | 48.0        |  |
| Shannon Diversity Index          | 103.5       | 79.6        | 100.0        | 83.9        | 78.4        | 87.5        | 72.5         | 80.4        |  |
| Hilsenhoff Index                 | 121.3       | 83.8        | 100.0        | 93.7        | 91.8        | 86.6        | 104.2        | 88.6        |  |
| EPT Index                        | 92.3        | 46.2        | 100.0        | 76.9        | 61.5        | 76.9        | 69.2         | 30.8        |  |
| Percent Ephemeroptera            | 9.2         | 21.3        | 12.3         | 16.9        | 32.7        | 48.3        | 10.6         | 13.5        |  |
| Percent Chironomidae             | 4.1         | 9.9         | 3.3          | 8.7         | 6.7         | 5.4         | 0.5          | 11.9        |  |
| Percent Dominant Taxa            | 21.6        | 27.0        | 19.7         | 29.4        | 32.7        | 32.8        | 35.5         | 31.8        |  |
|                                  |             |             |              |             |             |             |              |             |  |
| Taxonomic Richness               | 6           | 2           | 6            | 4           | 4           | 4           | 2            | 2           |  |
| Shannon Diversity Index          | 6           | 6           | 6            | 6           | 6           | 6           | 4            | 6           |  |
| Hilsenhoff Index                 | 6           | 4           | 6            | 6           | 6           | 6           | 6            | 6           |  |
| EPT Index                        | 6           | 0           | 6            | 2           | 0           | 2           | 0            | 0           |  |
| Percent Ephemeroptera            | 2           | 4           | 4            | 4           | 6           | 6           | 4            | 4           |  |
| Percent Chironomidae             | 6           | 4           | 6            | 4           | 4           | 6           | 6            | 4           |  |
| Percent Dominant Taxa            | 4           | 4           | 6            | 4           | 2           | 2           | 2            | 2           |  |
|                                  |             |             |              |             |             |             |              |             |  |
| Total Biological Score           | 36          | 24          | 40           | 30          | 28          | 32          | 24           | 24          |  |
| Biological % of Reference        | 90          | 60          | 100          | 75          | 70          | 80          | 60           | 60          |  |

# Table 12. Summary of Pennsylvania-Maryland Border RBP III Biological Data

|                                          | COWN<br>1.0 | COWN<br>2.2 | SUSQ<br>365 |
|------------------------------------------|-------------|-------------|-------------|
| Raw Summary                              |             |             | •           |
| Number of Individuals                    | 242         | 210         | 324         |
| % Shredders                              | 5.0         | 12.9        | 0.3         |
| % Collector-Gatherers                    | 24.4        | 34.8        | 17.9        |
| % Filterer-Collectors                    | 38.0        | 50.0        | 39.8        |
| % Scrapers                               | 23.9        | 0.5         | 25.3        |
| % Predators                              | 8.7         | 1.9         | 16.7        |
| Number of EPT Taxa                       | 11          | 5           | 14          |
| Number of EPT Individuals                | 120         | 109         | 186         |
| Metric Scores                            |             |             |             |
| Taxonomic Richness                       | 20          | 13          | 23          |
| Shannon Diversity Index                  | 2.3         | 1.6         | 2.5         |
| Modified Hilsenhoff Biotic Index         | 5.1         | 6.1         | 4.2         |
| EPT Index                                | 11          | 5           | 14          |
| Percent Ephemeroptera                    | 13.2        | 1.9         | 11.4        |
| Percent Chironomidae                     | 22.7        | 28.1        | 12.3        |
| Percent Dominant Taxa                    | 22.7        | 44.3        | 24.1        |
| Percent of Reference or Percentage Score |             |             |             |
| Taxonomic Richness                       | 80.0        | 52.0        | 92.0        |
| Shannon Diversity Index                  | 83.1        | 59.6        | 91.9        |
| Hilsenhoff Index                         | 74.2        | 62.4        | 89.5        |
| EPT Index                                | 91.7        | 41.7        | 116.7       |
| Percent Ephemeroptera                    | 13.2        | 1.9         | 11.4        |
| Percent Chironomidae                     | 22.7        | 28.1        | 12.4        |
| Percent Dominant Taxa                    | 22.7        | 44.3        | 24.1        |
| Biological Condition Scores              |             |             |             |
| Taxonomic Richness                       | 6           | 2           | 6           |
| Shannon Diversity Index                  | 6           | 4           | 6           |
| Hilsenhoff Index                         | 4           | 2           | 6           |
| EPT Index                                | 6           | 0           | 6           |
| Percent Ephemeroptera                    | 4           | 2           | 4           |
| Percent Chironomidae                     | 2           | 2           | 4           |
| Percent Dominant Taxa                    | 4           | 0           | 4           |
| Total Biological Score                   |             |             |             |
| Total Biological Score                   | 26          | 12          | 36          |
| Biological % of Reference                | 68          | 32          | 95          |

 Table 13.
 Summary of River RBP III Biological Data
|                                          | BABC  | BEAG  | BILL  | BIRD  | BISC  | BRIG  | BULK | CAMP  | COOK  | DEEP  | DENT |
|------------------------------------------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|------|
| Raw Summary                              |       |       |       |       |       |       |      |       |       |       |      |
| Number of Individuals                    | 210   | 234   | 217   | 223   | 255   | 197   | 258  | 184   | 265   | 223   | 257  |
| % Shredders                              | 11.4  | 20.1  | 10.1  | 12.1  | 9.0   | 1.5   | 17.1 | 2.7   | 11.3  | 4.5   | 2.7  |
| % Collector-Gatherers                    | 58.6  | 47.0  | 86.2  | 74.9  | 59.2  | 82.7  | 62.0 | 83.7  | 67.6  | 51.1  | 50.9 |
| % Filterer-Collectors                    | 0.9   | 6.4   | 1.8   | 2.7   | 13.7  | 0.5   | 8.5  | 0.0   | 5.7   | 6.7   | 37.7 |
| % Scrapers                               | 8.6   | 6.4   | 0.9   | 2.2   | 10.6  | 0.0   | 2.7  | 1.6   | 3.8   | 22.9  | 0.0  |
| % Predators                              | 20.5  | 20.0  | 0.9   | 8.1   | 7.5   | 15.2  | 9.7  | 10.3  | 11.7  | 14.8  | 1.6  |
| Number of EPT Taxa                       | 18    | 16    | 10    | 16    | 16    | 12    | 12   | 10    | 19    | 16    | 5    |
| Number of EPT Individuals                | 113   | 152   | 136   | 95    | 177   | 89    | 145  | 102   | 126   | 145   | 93   |
| Metric Scores                            |       |       |       |       |       |       |      |       |       |       |      |
| Taxonomic Richness                       | 23    | 23    | 14    | 20    | 23    | 15    | 20   | 14    | 22    | 24    | 10   |
| Shannon Diversity Index                  | 2.2   | 2.5   | 1.8   | 1.7   | 2.3   | 1.7   | 2.1  | 1.8   | 1.9   | 2.66  | 1.5  |
| Modified Hilsenhoff Biotic Index         | 4.0   | 25.   | 3.7   | 4.0   | 4.8   | 3.5   | 4.1  | 3.1   | 4.2   | 3.78  | 5.6  |
| EPT Index                                | 18    | 16    | 10    | 16    | 16    | 12    | 12   | 10    | 19    | 16    | 5    |
| Percent Ephemeroptera                    | 24.8  | 20.0  | 50.7  | 22.9  | 42.4  | 23.4  | 24.8 | 20.7  | 18.5  | 48.0  | 0.4  |
| Percent Chironomidae                     | 42.4  | 27.8  | 35.9  | 54.7  | 22.4  | 52.8  | 39.9 | 40.8  | 50.6  | 25.6  | 50.6 |
| Percent Dominant Taxa                    | 42.4  | 27.8  | 35.9  | 54.7  | 33.3  | 52.8  | 39.9 | 40.8  | 50.6  | 25.6  | 50.6 |
| Percent of Reference or Percentage Score |       |       |       |       |       |       |      |       |       |       |      |
| Taxonomic Richness                       | 95.8  | 95.8  | 58.3  | 83.3  | 95.8  | 62.5  | 83.3 | 58.3  | 91.7  | 100.0 | 41.7 |
| Shannon Diversity Index                  | 81.6  | 94.0  | 67.7  | 65.0  | 86.8  | 62.8  | 77.8 | 68.0  | 72.9  | 100.0 | 57.9 |
| Hilsenhoff Index                         | 93.6  | 151.2 | 101.9 | 94.2  | 79.1  | 108.6 | 91.8 | 123.8 | 89.8  | 100.0 | 67.3 |
| EPT Index                                | 112.5 | 100.0 | 62.5  | 100.0 | 100.0 | 75.0  | 75.0 | 62.5  | 118.8 | 100.0 | 31.3 |
| Percent Ephemeroptera                    | 24.8  | 20.1  | 50.7  | 22.9  | 42.4  | 23.4  | 24.8 | 20.7  | 18.5  | 48.0  | 0.4  |
| Percent Chironomidae                     | 42.4  | 27.8  | 35.9  | 54.7  | 22.4  | 52.8  | 39.9 | 40.8  | 50.6  | 25.6  | 50.6 |
| Percent Dominant Taxa                    | 42.4  | 27.8  | 35.9  | 54.7  | 33.3  | 52.8  | 39.9 | 40.8  | 50.6  | 25.6  | 50.6 |
| Biological Condition Scores              |       |       |       |       |       |       |      |       |       |       |      |
| Taxonomic Richness                       | 6     | 6     | 2     | 6     | 6     | 4     | 6    | 2     | 6     | 6     | 2    |
| Shannon Diversity Index                  | 6     | 6     | 4     | 4     | 6     | 4     | 6    | 4     | 4     | 6     | 4    |
| Hilsenhoff Index                         | 6     | 6     | 6     | 6     | 4     | 6     | 6    | 6     | 6     | 6     | 2    |
| EPT Index                                | 6     | 6     | 0     | 6     | 6     | 2     | 2    | 0     | 6     | 6     | 0    |
| Percent Ephemeroptera                    | 6     | 6     | 6     | 4     | 6     | 4     | 4    | 4     | 4     | 6     | 0    |
| Percent Chironomidae                     | 0     | 2     | 0     | 0     | 2     | 0     | 0    | 0     | 0     | 2     | 0    |
| Percent Dominant Taxa                    | 0     | 4     | 2     | 0     | 2     | 0     | 2    | 0     | 0     | 4     | 0    |
| Total Biological Score                   |       |       |       |       |       |       |      |       |       |       |      |
| Total Biological Score                   | 30    | 36    | 20    | 26    | 32    | 20    | 26   | 16    | 26    | 36    | 8    |
| Biological % of Reference                | 83    | 100   | 56    | 72    | 89    | 56    | 72   | 44    | 72    | 100   | 22   |

# Table 14. Summary of Group 3 Sites RBP III Biological Data

|                                          | LWAP  | PARK  | PRIN | RUSS  | SACK | SMIT  | STRA  | WBCO | WHIT  |
|------------------------------------------|-------|-------|------|-------|------|-------|-------|------|-------|
| Raw Summary                              |       |       |      |       |      |       |       |      |       |
| Number of Individuals                    | 184   | 207   | 236  | 261   | 246  | 252   | 215   | 383  | 208   |
| % Shredders                              | 7.6   | 3.4   | 2.1  | 1.2   | 0.8  | 24.2  | 2.3   | 0.5  | 15.4  |
| % Collector-Gatherers                    | 70.1  | 75.4  | 64.8 | 64.4  | 83.7 | 10.3  | 81.8  | 64.0 | 40.4  |
| % Filterer-Collectors                    | 1.1   | 1.9   | 6.4  | 0.4   | 0.4  | 30.6  | 0.5   | 29.5 | 2.4   |
| % Scrapers                               | 1.6   | 0.0   | 15.3 | 7.7   | 4.5  | 12.3  | 5.1   | 1.8  | 1.9   |
| % Predators                              | 19.0  | 19.3  | 11.4 | 26.4  | 10.6 | 22.6  | 8.8   | 3.4  | 39.9  |
| Number of EPT Taxa                       | 12    | 11    | 13   | 12    | 7    | 15    | 16    | 6    | 13    |
| Number of EPT Individuals                | 125   | 125   | 139  | 156   | 89   | 171   | 182   | 133  | 171   |
| Metric Scores                            |       |       |      |       |      |       |       |      |       |
| Taxonomic Richness                       | 15    | 15    | 21   | 16    | 9    | 28    | 21    | 11   | 16    |
| Shannon Diversity Index                  | 2.1   | 2.0   | 2.3  | 1.9   | 1.2  | 2.6   | 2.3   | 1.3  | 2.2   |
| Modified Hilsenhoff Biotic Index         | 3.0   | 2.5   | 4.2  | 3.0   | 4.0  | 2.1   | 2.8   | 5.7  | 1.1   |
| EPT Index                                | 12    | 11    | 13   | 12    | 7    | 15    | 16    | 6    | 13    |
| Percent Ephemeroptera                    | 41.3  | 29.0  | 42.4 | 33.3  | 21.1 | 4.8   | 69.8  | 5.2  | 36.5  |
| Percent Chironomidae                     | 30.4  | 33.3  | 32.2 | 37.2  | 63.4 | 8.7   | 12.1  | 60.3 | 5.8   |
| Percent Dominant Taxa                    | 30.4  | 33.3  | 32.2 | 37.2  | 63.4 | 25.8  | 26.5  | 60.3 | 29.8  |
| Percent of Reference or Percentage Score |       |       |      |       |      |       |       |      |       |
| Taxonomic Richness                       | 62.5  | 62.5  | 87.5 | 66.7  | 37.5 | 116.7 | 87.5  | 45.8 | 66.7  |
| Shannon Diversity Index                  | 79.3  | 75.2  | 87.6 | 71.8  | 46.6 | 97.0  | 86.5  | 47.4 | 81.2  |
| Hilsenhoff Index                         | 125.1 | 148.8 | 89.7 | 125.7 | 93.9 | 177.7 | 133.7 | 66.2 | 333.2 |
| EPT Index                                | 75.0  | 68.8  | 81.3 | 75.0  | 43.8 | 93.8  | 100.0 | 37.5 | 81.3  |
| Percent Ephemeroptera                    | 41.3  | 29.0  | 42.4 | 33.3  | 21.1 | 4.8   | 69.8  | 5.2  | 36.5  |
| Percent Chironomidae                     | 30.4  | 33.3  | 32.2 | 37.2  | 63.4 | 8.7   | 12.1  | 60.3 | 5.8   |
| Percent Dominant Taxa                    | 30.4  | 33.3  | 32.2 | 37.2  | 63.4 | 25.8  | 26.5  | 60.3 | 29.8  |
| <b>Biological Condition Scores</b>       |       |       |      |       |      |       |       |      |       |
| Taxonomic Richness                       | 4     | 4     | 6    | 4     | 0    | 6     | 6     | 2    | 4     |
| Shannon Diversity Index                  | 6     | 4     | 6    | 4     | 2    | 6     | 6     | 2    | 6     |
| Hilsenhoff Index                         | 6     | 6     | 6    | 6     | 6    | 6     | 6     | 2    | 6     |
| EPT Index                                | 2     | 0     | 4    | 2     | 0    | 6     | 6     | 0    | 4     |
| Percent Ephemeroptera                    | 6     | 6     | 6    | 6     | 4    | 2     | 6     | 2    | 6     |
| Percent Chironomidae                     | 2     | 2     | 2    | 0     | 0    | 4     | 4     | 0    | 4     |
| Percent Dominant Taxa                    | 2     | 2     | 2    | 2     | 0    | 4     | 4     | 0    | 4     |
| Total Biological Score                   |       |       |      |       |      |       |       |      |       |
| Total Biological Score                   | 28    | 24    | 32   | 24    | 12   | 34    | 38    | 8    | 34    |
| Biological % of Reference                | 78    | 67    | 89   | 67    | 33   | 94    | 106   | 22   | 94    |

# Table 14. Summary of Group 3 Sites RBP III Biological Data—Continued

|                                         | BNTY<br>0.9 | CASC<br>1.6 | CAYT<br>1.7 | CHOC<br>9.1 | HLDN<br>3.5 | LSNK<br>7.6 | NFCR<br>7.6 | SEEL<br>10.3 | SNAK<br>2.3 | SOUT<br>7.8 | TROW<br>1.6 | TRUP<br>4.5 | WAPP<br>2.6 |
|-----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|
| Epifaunal Substrate                     | 17          | 15          | 16          | 17          | 17          | 16          | 17          | 16           | 18          | 16          | 18          | 12          | 17          |
| Instream Cover                          | 15          | 16          | 17          | 16          | 17          | 17          | 17          | 16           | 17          | 16          | 17          | 16          | 17          |
| Embeddedness/Pool Substrate             | 16          | 17          | 16          | 16          | 17          | 16          | 17          | 15           | 17          | 17          | 17          | 15          | 16          |
| Velocity/Depth Regimes/Pool Variability | 17          | 15          | 15          | 17          | 15          | 15          | 15          | 17           | 16          | 15          | 15          | 16          | 18          |
| Sediment Deposition                     | 11          | 15          | 16          | 17          | 16          | 18          | 16          | 11           | 16          | 12          | 18          | 12          | 11          |
| Channel Flow Status                     | 15          | 14          | 17          | 15          | 14          | 17          | 15          | 15           | 15          | 13          | 18          | 15          | 16          |
| Channel Alteration                      | 10          | 16          | 11          | 11          | 15          | 11          | 15          | 15           | 15          | 12          | 10          | 14          | 13          |
| Frequency of Riffles/Channel Sinuosity  | 17          | 17          | 17          | 16          | 17          | 17          | 16          | 16           | 16          | 16          | 17          | 15          | 16          |
| Condition of Banks                      | 6           | 14          | 11          | 10          | 14          | 15          | 15          | 10           | 10          | 14          | 10          | 10          | 10          |
| Left Bank                               | 2           | 7           | 6           | 4           | 7           | 8           | 7           | 5            | 5           | 7           | 4           | 3           | 5           |
| Right Bank                              | 4           | 7           | 5           | 6           | 7           | 7           | 8           | 5            | 5           | 7           | 6           | 7           | 5           |
| Vegetative Protective Cover             | 6           | 16          | 10          | 14          | 16          | 16          | 16          | 16           | 14          | 14          | 11          | 14          | 13          |
| Left Bank                               | 3           | 8           | 5           | 8           | 8           | 8           | 8           | 8            | 7           | 7           | 6           | 7           | 6           |
| Right Bank                              | 3           | 8           | 5           | 6           | 8           | 8           | 8           | 8            | 7           | 7           | 5           | 7           | 7           |
| Riparian Vegetative Zone Width          | 6           | 16          | 5           | 6           | 14          | 10          | 16          | 6            | 6           | 4           | 6           | 4           | 16          |
| Left Bank                               | 2           | 7           | 4           | 3           | 7           | 5           | 8           | 4            | 3           | 2           | 2           | 2           | 8           |
| Right Bank                              | 4           | 9           | 1           | 3           | 7           | 5           | 8           | 2            | 3           | 2           | 4           | 2           | 8           |
| Total Habitat Score                     |             |             |             |             |             |             |             |              |             |             |             |             |             |
| Total Habitat Score                     | 136         | 171         | 151         | 155         | 172         | 168         | 175         | 153          | 160         | 149         | 157         | 143         | 163         |
| Habitat Percent of Reference            | 80          | 100         | 88          | 91          | 101         | 98          | 102         | 89           | 94          | 87          | 92          | 84          | 95          |

Table 15. Summary of New York-Pennsylvania Sites Physical Habitat Data

|                                         | BBDC<br>4.1 | CNWG<br>4.4 | DEER<br>44.5 | EBAU<br>1.5 | FBDC<br>4.1 | LNGA<br>2.5 | ОСТО<br>6.6 | SBCC<br>20.4 | SCTT<br>3.0 |
|-----------------------------------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|--------------|-------------|
| Epifaunal Substrate                     | 17          | 17          | 16           | 15          | 16          | 7           | 17          | 16           | 14          |
| Instream Cover                          | 16          | 17          | 16           | 14          | 16          | 6           | 17          | 8            | 15          |
| Embeddedness/Pool Substrate             | 15          | 15          | 15           | 14          | 15          | 8           | 13          | 14           | 14          |
| Velocity/Depth Regimes/Pool Variability | 14          | 17          | 16           | 14          | 15          | 12          | 17          | 14           | 15          |
| Sediment Deposition                     | 14          | 14          | 15           | 15          | 10          | 7           | 14          | 10           | 14          |
| Channel Flow Status                     | 15          | 16          | 17           | 17          | 15          | 16          | 16          | 14           | 14          |
| Channel Alteration                      | 15          | 15          | 15           | 15          | 15          | 13          | 15          | 15           | 11          |
| Frequency of Riffles/Channel Sinuosity  | 16          | 15          | 16           | 15          | 16          | 10          | 16          | 15           | 14          |
| Condition of Banks                      | 10          | 12          | 11           | 11          | 15          | 14          | 12          | 12           | 10          |
| Left Bank                               | 6           | 7           | 7            | 7           | 9           | 7           | 6           | 6            | 6           |
| Right Bank                              | 4           | 5           | 4            | 4           | 6           | 7           | 6           | 6            | 4           |
| Vegetative Protective Cover             | 14          | 14          | 15           | 16          | 16          | 14          | 13          | 12           | 10          |
| Left Bank                               | 7           | 7           | 9            | 8           | 8           | 7           | 7           | 6            | 7           |
| Right Bank                              | 7           | 7           | 6            | 8           | 8           | 7           | 6           | 6            | 3           |
| Riparian Vegetative Zone Width          | 16          | 10          | 2            | 4           | 16          | 2           | 6           | 16           | 5           |
| Left Bank                               | 8           | 6           | 1            | 2           | 9           | 1           | 2           | 8            | 4           |
| Right Bank                              | 8           | 4           | 1            | 2           | 7           | 1           | 4           | 8            | 1           |
| Total Habitat Score                     |             |             |              |             |             |             |             |              |             |
| Total Habitat Score                     | 162         | 162         | 154          | 150         | 165         | 109         | 156         | 146          | 136         |
| Habitat Percent of Reference            | 105         | 105         | 100          | 97          | 107         | 71          | 101         | 95           | 88          |

Table 16. Summary of Pennsylvania-Maryland Sites Physical Habitat Data

|                                         | APAL<br>6.9* | COWN<br>1.0 | COWN<br>2.2 | SUSQ<br>365 |
|-----------------------------------------|--------------|-------------|-------------|-------------|
| Epifaunal Substrate                     | 15           | 16          | 12          | 18          |
| Instream Cover                          | 15           | 16          | 12          | 17          |
| Embeddedness/Pool Substrate             | 15           | 15          | 14          | 17          |
| Velocity/Depth Regimes/Pool Variability | 16           | 16          | 14          | 17          |
| Sediment Deposition                     | 15           | 16          | 12          | 15          |
| Channel Flow Status                     | 17           | 16          | 16          | 17          |
| Channel Alteration                      | 14           | 14          | 14          | 16          |
| Frequency of Riffles/Channel Sinuosity  | 5            | 5           | 5           | 8           |
| Condition of Banks                      | 11           | 10          | 12          | 11          |
| Left Bank                               | 6            | 5           | 6           | 5           |
| Right Bank                              | 5            | 5           | 6           | 6           |
| Vegetative Protective Cover             | 12           | 16          | 16          | 14          |
| Left Bank                               | 6            | 8           | 8           | 7           |
| Right Bank                              | 6            | 8           | 8           | 7           |
| Riparian Vegetative Zone Width          | 4            | 5           | 2           | 10          |
| Left Bank                               | 2            | 3           | 1           | 6           |
| Right Bank                              | 2            | 2           | 1           | 4           |
| Total Habitat Score                     |              |             |             |             |
| Total Habitat Score                     | 139          | 145         | 129         | 160         |
| Habitat Percent of Reference            | 81           | 85          | 75          | 94          |

 Table 17.
 Summary of River Sites Physical Habitat Data

\*Apalachin Creek exhibited glide/pool habitat characteristics

|                                         | BABC | BEAG | BILL | BIRD | BISC | BRIG | BULK | CAMP | COOK | DEEP | DENT |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Epifaunal Substrate                     | 15   | 16   | 13   | 10   | 13   | 10   | 15   | 13   | 15   | 14   | 10   |
| Instream Cover                          | 16   | 15   | 15   | 13   | 11   | 10   | 16   | 15   | 15   | 14   | 11   |
| Embeddedness/Pool Substrate             | 16   | 15   | 12   | 11   | 8    | 12   | 13   | 12   | 12   | 16   | 15   |
| Velocity/Depth Regimes/Pool Variability | 10   | 8    | 9    | 10   | 10   | 11   | 10   | 8    | 12   | 10   | 7    |
| Sediment Deposition                     | 15   | 11   | 11   | 10   | 10   | 12   | 10   | 11   | 11   | 17   | 12   |
| Channel Flow Status                     | 11   | 10   | 10   | 10   | 13   | 8    | 5    | 12   | 10   | 11   | 9    |
| Channel Alteration                      | 14   | 13   | 10   | 11   | 12   | 10   | 11   | 12   | 12   | 16   | 13   |
| Frequency of Riffles/Channel Sinuosity  | 15   | 16   | 16   | 16   | 16   | 10   | 13   | 16   | 16   | 16   | 10   |
| Condition of Banks                      | 10   | 8    | 5    | 6    | 14   | 10   | 10   | 10   | 12   | 11   | 14   |
| Left Bank                               | 4    | 4    | 3    | 3    | 7    | 5    | 6    | 7    | 6    | 5    | 7    |
| Right Bank                              | 6    | 4    | 2    | 3    | 7    | 5    | 4    | 3    | 6    | 6    | 7    |
| Vegetative Protective Cover             | 16   | 16   | 16   | 16   | 16   | 10   | 18   | 16   | 18   | 16   | 16   |
| Left Bank                               | 9    | 8    | 8    | 8    | 8    | 5    | 9    | 8    | 9    | 8    | 8    |
| Right Bank                              | 7    | 8    | 8    | 8    | 8    | 5    | 9    | 8    | 9    | 8    | 8    |
| Riparian Vegetative Zone Width          | 15   | 16   | 13   | 16   | 2    | 2    | 19   | 15   | 10   | 16   | 17   |
| Left Bank                               | 10   | 10   | 4    | 6    | 1    | 1    | 9    | 9    | 6    | 8    | 9    |
| Right Bank                              | 5    | 6    | 9    | 10   | 1    | 1    | 10   | 6    | 4    | 8    | 8    |
| Total Habitat Score                     |      |      |      |      |      |      |      |      |      |      |      |
| Total Habitat Score                     | 153  | 144  | 130  | 129  | 121  | 105  | 140  | 140  | 143  | 157  | 134  |
| Habitat Percent of Reference            | 97   | 92   | 83   | 82   | 77   | 67   | 89   | 89   | 91   | 100  | 85   |

# Table 18. Summary of Group 3 Sites Physical Habitat Data

|                                         | LWAP | PARK | PRIN | RUSS | SACK | SMIT | STRA | WBCO | WHIT |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|
| Epifaunal Substrate                     | 11   | 14   | 11   | 11   | 13   | 10   | 16   | 14   | 12   |
| Instream Cover                          | 13   | 15   | 14   | 11   | 13   | 11   | 14   | 12   | 14   |
| Embeddedness/Pool Substrate             | 13   | 12   | 14   | 14   | 12   | 5    | 13   | 8    | 11   |
| Velocity/Depth Regimes/Pool Variability | 5    | 8    | 10   | 10   | 7    | 6    | 8    | 8    | 9    |
| Sediment Deposition                     | 5    | 6    | 6    | 7    | 5    | 11   | 11   | 10   | 5    |
| Channel Flow Status                     | 5    | 6    | 10   | 9    | 6    | 10   | 8    | 10   | 10   |
| Channel Alteration                      | 5    | 5    | 10   | 10   | 4    | 15   | 12   | 11   | 10   |
| Frequency of Riffles/Channel Sinuosity  | 15   | 12   | 11   | 13   | 11   | 10   | 16   | 16   | 16   |
| Condition of Banks                      | 4    | 4    | 5    | 6    | 6    | 14   | 7    | 14   | 6    |
| Left Bank                               | 2    | 2    | 2    | 4    | 3    | 7    | 4    | 7    | 3    |
| Right Bank                              | 2    | 2    | 3    | 2    | 3    | 7    | 3    | 7    | 3    |
| Vegetative Protective Cover             | 16   | 14   | 14   | 11   | 14   | 18   | 10   | 16   | 16   |
| Left Bank                               | 8    | 7    | 7    | 5    | 7    | 9    | 5    | 8    | 8    |
| Right Bank                              | 8    | 7    | 7    | 6    | 7    | 9    | 5    | 8    | 8    |
| Riparian Vegetative Zone Width          | 16   | 18   | 8    | 10   | 16   | 16   | 9    | 2    | 16   |
| Left Bank                               | 8    | 9    | 4    | 4    | 7    | 9    | 4    | 1    | 6    |
| Right Bank                              | 8    | 9    | 4    | 6    | 9    | 7    | 5    | 1    | 10   |
| Total Habitat Score                     |      |      |      |      |      |      |      |      |      |
| Total Habitat Score                     | 108  | 114  | 113  | 112  | 107  | 126  | 124  | 121  | 125  |
| Habitat Percent of Reference            | 69   | 73   | 72   | 71   | 68   | 80   | 79   | 77   | 80   |

# Table 18. Summary of Group 3 Sites Physical Habitat Data - continued



Figure 6. Summary of New York–Pennsylvania Border Streams and River Habitat and Biological Condition Scores



Figure 7. Summary of Pennsylvania-Maryland Border Streams Habitat and Biological Condition Scores

35



Figure 8. Summary of Group 3 Streams Habitat and Biological Condition Scores

36

## **BIOASSESSMENT OF INTERSTATE STREAMS**

Abbreviations for water quality standards are provided in Table 19. Summaries of all stations include WQI scores, parameters that exceeded water quality standards, and parameters that exceeded the 90<sup>th</sup> percentile at each station. RBP III biological and habitat data also are provided, along with graphs depicting historical water quality and biological conditions over the past five years. A white bar indicates fiscal year 2005 WQI scores, and black bars in all WQI graphs indicate previous WQI scores.

## New York-Pennsylvania Border Streams

### Apalachin Creek (APAL 6.9)

Apalachin Creek at Little Meadows, PA, (APAL 6.9), showed a nonimpaired biological community during fiscal year 2005 for the second consecutive year. Habitat was rated as supporting, with low scores for frequency of riffles and riparian vegetative zone width. Staff noted that substrate had been disturbed due to a recent high water event.

There were no parameters that exceeded water quality standards during August 2004. This is the first time during the past five years that total iron has not exceeded water quality standards in Apalachin Creek. The WQI again decreased slightly from the previous year, reaching its lowest value in six years (Table 20).

### **Bentley Creek (BNTY 0.9)**

A nonimpaired biological community existed at Bentley Creek in Wellsburg, NY, (BNTY 0.9) in August 2004, after a rating of slightly impaired the previous year. This site received a high rating for taxonomic richness, Shannon Diversity Index and EPT Index. Habitat was rated supporting, with low scores given for channel alteration, condition of banks, and vegetative protective cover. The Bradford County Conservation District in Pennsylvania and the U.S. Fish and Wildlife Service conducted a stream stabilization project on this stream. Rock structures, such as cross vanes and single rock vanes, have been constructed in portions of the stream to redirect the force of the flow.

During fiscal year 2000, water quality sampling at BNTY 0.9 was increased to quarterly sampling, and the stream was added to the Group 1 stations. Total iron and total aluminum concentrations exceeded New York standards during February 2005, and dissolved oxygen and temperature each exceeded the 90<sup>th</sup> percentile one time during the year (Table 21).

| Abbreviation | Parameter          | Abbreviation | Parameter                    |
|--------------|--------------------|--------------|------------------------------|
| ALK          | Alkalinity         | TNO3         | Total Nitrate                |
| COND         | Conductivity       | TN           | Total Nitrogen               |
| TAl          | Total Aluminum     | DO           | Dissolved Oxygen             |
| TCa          | Total Calcium      | TP           | Total Phosphorus             |
| TCl          | Total Chloride     | TPO4         | Total Orthophosphate         |
| TFe          | Total Iron         | TS           | Total Solids                 |
| TMg          | Total Magnesium    | TSO4         | Total Sulfate                |
| TMn          | Total Manganese    | TOC          | Total Organic Carbon         |
| TNH3         | Total Ammonia      | TURB         | Turbidity                    |
| TNO2         | Total Nitrite      | WQI          | Water Quality Index          |
| TCln         | Total Chorine      | RBP          | Rapid Bioassessment Protocol |
| SS           | Suspended Sediment |              |                              |

Table 19.Abbreviations Used in Tables 20 Through 51

# Table 20. Water Quality Summary Apalachin Creek at Little Meadows, Pa.

|           | Parameters Exceeding Standards |       |          |       |  |  |  |  |  |  |  |
|-----------|--------------------------------|-------|----------|-------|--|--|--|--|--|--|--|
| Parameter | Date                           | Value | Standard | State |  |  |  |  |  |  |  |
| None      |                                |       |          |       |  |  |  |  |  |  |  |

| Date     | WQI  |      | Param | eters Excee | ding 90 <sup>th</sup> Per | centile |  |
|----------|------|------|-------|-------------|---------------------------|---------|--|
| 08/25/04 | 21.9 | None |       |             |                           |         |  |

| Biological and Habitat Summary |             |  |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|--|
| Number of Taxa                 | 25          |  |  |  |  |  |  |
| Diversity Index                | 2.49        |  |  |  |  |  |  |
| RBP Score                      | 32          |  |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |  |
| Total Habitat Score            | 139         |  |  |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |  |  |







**Biological Index** 

 Table 21.
 Water Quality Summary Bentley Creek at Wellsburg, N.Y.

| Parameters Exceeding Standards |          |          |          |                      |  |  |  |  |  |  |
|--------------------------------|----------|----------|----------|----------------------|--|--|--|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                |  |  |  |  |  |  |
| TAl                            | 02/15/05 | 298 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TFe                            | 02/15/05 | 337 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/20/04 | 26.6 | None |                                                  |  |  |  |  |  |  |
| 02/15/05 | 40.0 | DO   |                                                  |  |  |  |  |  |  |
| 05/10/05 | 36.0 | Temp |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 27          |  |  |  |  |
| Diversity Index                | 2.65        |  |  |  |  |
| RBP III Score                  | 36          |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 136         |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |







**Biological Index** 

### Cascade Creek (CASC 1.6)

Cascade Creek at Lanesboro, PA, (CASC 1.6) served as the reference site for the NY-PA streams in fiscal year 2005 because it had the best combination of biological, habitat, and water quality conditions. It had a nonimpaired biological community with high taxonomic richness and Shannon Diversity Index, as well as low values for percent Chironomidae and percent dominant taxa. Habitat conditions were rated as excellent, with high scores for embeddedness, instream cover, frequency of riffles, and riparian vegetative zone width.

Cascade Creek was added to the Group 1 streams during the 2000 sampling season to monitor conditions in the stream during the winter months. Cascade Creek did exceed the water quality standard for total iron in July 2004 and for alkalinity in October, February, and May (Table 22). High values for total iron and low alkalinity values are not uncommon in headwater glacial streams such as Cascade Creek and do occur naturally resulting from the local hydrogeology.

### Cayuta Creek (CAYT 1.7)

Biological conditions of Cayuta Creek at Waverly, NY (CAYT 1.7) were rated nonimpaired, as they were during fiscal year 2004. This site had the lowest percent Chironomidae of all streams along the Pennsylvania-New York border. Habitat conditions were rated as supporting, with low scores for riparian vegetative zone width, channel alteration, and conditions of banks as Cayuta Creek is located in an urbanized area of Waverly, NY. Abundant algal growth was noted on the stream substrate as it has been in previous years.

CAYT 1.7 exceeded the New York aquatic (chronic) standard for total aluminum in February 2005; however, all other Cayuta Creek total aluminum samples for 2004-2005 remained below the detection limit of 200 micrograms per liter ( $\mu$ g/l). New York state standards for total iron were exceeded at CAYT 1.7 in February 2005. Several parameters exceeded the 90<sup>th</sup> percentile including dissolved oxygen, total phosphorus, total orthophosphate, total nitrate, and total solids (Table 23). The total chlorine values were 0.06 milligrams per liter (mg/l) in August, 0.04 mg/l in October, 0.1 mg/l in February and 0.04 mg/l in May. These values all exceed the New York aquatic life standard for total residual chlorine. This site is downstream of wastewater discharges from the Waverly sewage treatment facility. Additional concerns in the watershed include runoff from the City of Waverly, malfunctioning septic systems, and agriculture.

### Choconut Creek (CHOC 9.1)

The biological index score for Choconut Creek at Vestal Center, NY, (CHOC 9.1) remained nonimpaired for the third consecutive year. The habitat was rated excellent; however it was given low ratings for riparian vegetative zone width and conditions of banks.

Total aluminum and total iron exceeded water quality standards in July 2004 with values of 226  $\mu$ g/l and 442  $\mu$ g/l, respectively. However, no parameters exceeded the 90<sup>th</sup> percentile (Table 24). The WQI increased slightly in 2005, indicating a decrease in overall water quality.

#### Holden Creek (HLDN 3.5)

The biological community at Holden Creek at Woodhull, NY (HLDN 3.5) was designated nonimpaired for the third consecutive year. During the July 2004 sampling event, Shannon Diversity Index and EPT index were both among the highest of all the NY-PA border streams. HLDN 3.5 was not sampled from in 2000 and 2001 due to low flow conditions.

No parameters exceeded water quality standards or the 90th percentile at HLDN 3.5 during July 2004. The WQI score was consistent with the WQI score that was calculated the past two years. The habitat was rated excellent, with high scores for epifaunal substrate, instream cover, and frequency of riffles. A salvage yard was located upstream of the sampling site.

### Little Snake Creek (LSNK 7.6)

Little Snake Creek at Brackney, PA, (LSNK 7.6) was designated nonimpaired in July 2004 after being slightly impaired the previous summer. LSNK 7.6 had one of the lowest scores for percent Chironomidae of any of the NY-PA border streams. Little Snake Creek was not sampled during 2001 due to low flow conditions.

Water quality values exceeded water quality standards for total iron in three out of the four sampling periods (Table 26). Aluminum and alkalinity also exceeded water quality standards. Dissolved oxygen was above the 90<sup>th</sup> percentile in February 2005. Habitat was mostly forested with logging activities occurring upstream of the site. The habitat at LSNK 7.6 was rated excellent during 2004 with high scores for sediment deposition, instream cover, and frequency of riffles.

#### North Fork Cowanesque River (NFCR 7.6)

North Fork Cowanesque River at North Fork, PA, (NFCR 7.6) had a slightly impaired biological community for the second consecutive year. This rating was due mainly to a very low EPT Index and low taxonomic richness. The Hilsenhoff Index was low, probably due to the large number of organic-pollution intolerant stonefly, *Leuctra* (Plecoptera: Leuctridae), as was the case in 2003.

Total iron and total aluminum both exceeded the New York water quality standards, and total nitrogen and total nitrate exceeded the 90<sup>th</sup> percentile (Table 27). Habitat was rated excellent with the highest overall habitat score of all the NY-PA border streams. High scores were given for epifaunal substrate, instream cover, riparian vegetative zone width, and frequency of riffles. Land use at NFCR 7.6 was predominantly forest. This sampling site is often dry during July and August when Group 1 and 2 sampling is performed; therefore, macroinvertebrate samples have not been collected every year.

| Parameters Exceeding Standards |           |          |          |                      |  |  |  |  |  |
|--------------------------------|-----------|----------|----------|----------------------|--|--|--|--|--|
| Parameter                      | Date      | Value    | Standard | State                |  |  |  |  |  |
| TFe                            | 07/19/04  | 868 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| ALK                            | 10/20/04  | 12 mg/l  | 20 mg/l  | PA aquatic life      |  |  |  |  |  |
| ALK                            | 02/14//05 | 16 mg/l  | 20 mg/l  | PA aquatic life      |  |  |  |  |  |
| ALK                            | 05/9/05   | 10 mg/l  | 20 mg/l  | PA aquatic life      |  |  |  |  |  |

Table 22. Water Quality Summary Cascade Creek at Lanesboro, Pa.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|
| 7/19/04  | 25.8 | DO   |                                                  |  |  |  |  |  |  |
| 10/20/04 | 21.0 | None |                                                  |  |  |  |  |  |  |
| 2/14/05  | 19.4 | DO   |                                                  |  |  |  |  |  |  |
| 5/9/05   | 35.9 | TFe  |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |           |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|
| Number of Taxa                 | 25        |  |  |  |  |  |
| Diversity Index                | 2.72      |  |  |  |  |  |
| RBP III Score                  | 38        |  |  |  |  |  |
| RBP III Condition              | Reference |  |  |  |  |  |
| Total Habitat Score            | 171       |  |  |  |  |  |
| Habitat Condition Category     | Reference |  |  |  |  |  |







**Biological Index** 

|           | Parameters Exceeding Standards |           |            |                      |  |  |  |  |  |  |  |
|-----------|--------------------------------|-----------|------------|----------------------|--|--|--|--|--|--|--|
| Parameter | Date                           | Value     | Standard   | State                |  |  |  |  |  |  |  |
| TCln      | 08/26/04                       | 0.06 mg/l | 0.019 mg/l | NY aquatic (acute)   |  |  |  |  |  |  |  |
| TCln      | 10/21/04                       | 0.04 mg/l | 0.019 mg/l | NY aquatic (acute)   |  |  |  |  |  |  |  |
| TFe       | 02/15/05                       | 372 ug/l  | 300 ug/l   | NY aquatic (chronic) |  |  |  |  |  |  |  |
| TCln      | 02/15/05                       | 0.1 mg/l  | 0.019 mg/l | NY aquatic (acute)   |  |  |  |  |  |  |  |
| TAl       | 02/15/05                       | 260 ug/l  | 100 ug/l   | NY aquatic (chronic) |  |  |  |  |  |  |  |
| TCln      | 05/09/05                       | 0.04 mg/l | 0.019 mg/l | NY aquatic (acute)   |  |  |  |  |  |  |  |

 Table 23.
 Water Quality Summary Cayuta Creek at Waverly, N.Y.

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |      |    |    |  |  |  |  |
|----------|------|--------------------------------------------------|------|----|----|--|--|--|--|
| 08/26/24 | 30.1 | None                                             |      |    |    |  |  |  |  |
| 10/21/04 | 51.0 | TPO4                                             | TP   |    |    |  |  |  |  |
| 02/15/05 | 45.6 | DO                                               |      |    |    |  |  |  |  |
| 05/09/05 | 63.3 | TPO4                                             | TNO3 | ТР | TS |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 25          |  |  |  |  |
| Diversity Index                | 2.32        |  |  |  |  |
| RBP Score                      | 36          |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 151         |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |







# Water Quality Index

**Biological Index** 

| Table 24. | Water Ouality | Summarv | Choconut | Creek at                                 | Vestal | Center. | . N.Y. |
|-----------|---------------|---------|----------|------------------------------------------|--------|---------|--------|
|           |               |         | 0        | C. C |        |         |        |

| Parameters Exceeding Standards |         |          |          |                      |  |  |  |  |  |
|--------------------------------|---------|----------|----------|----------------------|--|--|--|--|--|
| Parameter                      | Date    | Value    | Standard | State                |  |  |  |  |  |
| TAl                            | 7/20/04 | 226 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe                            | 7/20/04 | 442 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |

| Date    | WQI  |      | Param | eters Excee | ding 90 <sup>th</sup> Per | centile |  |
|---------|------|------|-------|-------------|---------------------------|---------|--|
| 7/20/04 | 28.1 | None |       |             |                           |         |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 25          |  |  |  |  |  |
| Diversity Index                | 2.65        |  |  |  |  |  |
| RBP Score                      | 38          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 155         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |







**Biological Index** 

# Table 25. Water Quality Summary Holden Creek at Woodhull, N.Y.

| Parameters Exceeding Standards |      |       |       |  |  |  |  |  |
|--------------------------------|------|-------|-------|--|--|--|--|--|
| Parameter                      | Date | Value | State |  |  |  |  |  |
| None                           |      |       |       |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|--|
| 07/21/04 | 27.0 | None |                                                  |  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 26          |  |  |  |  |
| Diversity Index                | 2.67        |  |  |  |  |
| RBP III Score                  | 36          |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 172         |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |







**Biological Index** 

| Parameters Exceeding Standards |          |          |          |                        |  |  |  |  |
|--------------------------------|----------|----------|----------|------------------------|--|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                  |  |  |  |  |
| TFe                            | 07/19/04 | 602 ug/l | 300 ug/l | NY aquatic (chronic)   |  |  |  |  |
| TFe                            | 10/20/04 | 345 ug/l | 300 ug/l | PA public water supply |  |  |  |  |
| ALK                            | 02/14/05 | 18 mg/l  | 20 mg/l  | PA aquatic life        |  |  |  |  |
| TFe                            | 02/14/05 | 411 ug/l | 300 ug/l | NY aquatic (chronic)   |  |  |  |  |
| TAl                            | 02/14/05 | 205 ug/l | 100 ug/l | NY aquatic (chronic)   |  |  |  |  |
| ALK                            | 05/09/05 | 16 mg/l  | 20 mg/l  | PA aquatic life        |  |  |  |  |

 Table 26.
 Water Quality Summary Little Snake Creek at Brackney, Pa.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/19/04 | 30.6 | None |                                                  |  |  |  |  |  |  |
| 10/20/04 | 27.2 | None |                                                  |  |  |  |  |  |  |
| 02/14/05 | 36.6 | DO   |                                                  |  |  |  |  |  |  |
| 05/09/05 | 40.6 | None |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 23          |  |  |  |  |
| Diversity Index                | 2.38        |  |  |  |  |
| RBP III Score                  | 34          |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 168         |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |



Water Quality Index



**Biological Index** 

Table 27. Water Quality Summary North Fork Cowanesque River at North Fork, Pa.

| Parameters Exceeding Standards      |          |          |          |                      |  |  |  |  |  |
|-------------------------------------|----------|----------|----------|----------------------|--|--|--|--|--|
| Parameter Date Value Standard State |          |          |          |                      |  |  |  |  |  |
| TFe                                 | 07/21/04 | 375 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TAl                                 | 07/21/04 | 209 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|------|----|--------------------------------------------------|--|--|--|--|--|--|--|
| 07/21/04 | 49.8 | TN | TNO3                                             |  |  |  |  |  |  |  |

| Biological and H           | labitat Summary |
|----------------------------|-----------------|
| Number of Taxa             | 19              |
| Diversity Index            | 2.47            |
| RBP III Score              | 32              |
| RBP III Condition          | Nonimpaired     |
| Total Habitat Score        | 175             |
| Habitat Condition Category | Excellent       |



Water Quality Index



**Biological Index** 

#### Seeley Creek (SEEL 10.3)

During the 1999-2000 sampling season, Seeley Creek was added to the Group 1 streams in the ISWQN. In 2004, Seeley Creek at Seeley Creek, NY, (SEEL 10.3) contained a slightly impaired biological community for the third consecutive year, after being moderately impaired for the previous five years. However, this site had the worst scores for Hilsenhoff Biotic Index, percent Chironomidae, and percent dominant taxa of all the NY-PA border streams. Total aluminum exceeded NY water quality standards in October 2004. Dissolved oxygen exceeded the 90<sup>th</sup> percentile during three of the four sampling events (Table 28).

Habitat was rated as supporting in Seeley Creek, with low scores for riparian vegetative zone width, conditions of banks, and sediment deposition. Habitat conditions may be a possible cause for the impaired macroinvertebrate community. New York State Department of Conservation (NYSDEC) listed Seeley Creek as "threatened" in its publication, <u>The 1998 Chemung River Basin Waterbody Inventory</u> and Priority Waterbodies List (NYSDEC, 1998). According to this publication, the stream is threatened by habitat alteration, streambank erosion, and instability of the stream channel.

### Snake Creek (SNAK 2.3)

Snake Creek at Brookdale, PA, (SNAK 2.3) had a nonimpaired biological community and excellent physical habitat. There were no parameters exceeding water quality standards or the 90<sup>th</sup> percentile at SNAK 2.3 during fiscal year 2005 (Table 29). The biological community has remained nonimpaired for the past eight years. Snake Creek supported many pollution intolerant taxa, including *Atherix* (Diptera: Athericidae), *Hexatoma* (Diptera: Tipulidae), *Leucrocuta* (Ephemeroptera: Heptageniidae), *Isonychia* (Ephemeroptera: Isonychiidae), *Paraleptophlebia* (Ephemeroptera: Leptophlebiidae), *Nigronia* (Megaloptera: Corydalidae), *Acroneuria* (Plecoptera: Perlidae), *Paragnetina* (Plecoptera: Perlidae), *Leuctra*, and Dolophilodes (Trichoptera: Philopotamidae). This site was given high habitat scores for epifaunal substrate, instream cover, and embeddedness.

In 2000, SRBC staff conducted a small watershed study on the Snake Creek Watershed during the second year of the Upper Susquehanna Subbasin Survey (Diehl and Sitlinger, 2001). Ten sites in the Snake Creek Watershed and three sites on the Little Snake Creek Watershed were monitored during low and high flow for water quality, macroinvertebrates, and physical habitat. The study concluded that the Snake Creek Watershed was healthy and recommended that this watershed be protected. The Little Snake Creek Watershed showed signs of extensive dredging, and the study recommended that the riparian vegetation along areas of the stream be reestablished.

|           | Parameters Exceeding Standards |       |          |       |  |  |  |  |
|-----------|--------------------------------|-------|----------|-------|--|--|--|--|
| Paramotor | Data                           | Value | Standard | State |  |  |  |  |

200 ug/l

TAl

10/21/04

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |      |  |  |  |  |  |
|----------|------|--------------------------------------------------|------|--|--|--|--|--|
| 07/20/04 | 31.5 | DO                                               | TEMP |  |  |  |  |  |
| 10/21/04 | 36.8 | TOC                                              |      |  |  |  |  |  |
| 02/15/05 | 40.6 | DO                                               |      |  |  |  |  |  |
| 05/10/05 | 41.7 | DO                                               | TEMP |  |  |  |  |  |

100 ug/l

NY aquatic (chronic)

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 21                |  |  |  |  |  |
| Diversity Index                | 2.16              |  |  |  |  |  |
| RBP III Score                  | 30                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 153               |  |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |  |







**Biological Index** 

# Table 29. Water Quality Summary Snake Creek at Brookdale, Pa.

| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|
| 07/19/04 | 30.6 | None |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 29          |  |  |  |  |
| Diversity Index                | 2.70        |  |  |  |  |
| RBP III Score                  | 34          |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 160         |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |







**Biological Index** 

### South Creek (SOUT 7.8)

During fiscal year 2005, South Creek at Fassett, PA, (SOUT 7.8) had a slightly impaired biological community for the second consecutive year. This site showed poor scores for EPT Index, Shannon Diversity Index, and percentage of Ephemeroptera.

Total iron exceeded New York water quality standards with a value of 787  $\mu$ g/l in July 2004. Additionally, temperature and total organic carbon both exceeded the 90<sup>th</sup> percentile (Table 30). The habitat was rated supporting, with high scores for epifaunal substrate and embeddedness, but low scores for riparian vegetative zone width and channel alteration. Staff noted an abundance of algae covering much of the substrate. In past sampling seasons, staff has noted extremes in flow regimes; therefore, biological impairment at this site may be due to large fluctuations in flow and periodic drying of the streambed.

### Troups Creek (TRUP 4.5)

Troups Creek at Austinburg, PA, (TRUP 4.5) had a slightly impaired biological community in July 2004 as it had the previous summer. Taxonomic richness was the lowest of the PA-NY border streams, and this site also had the worst scores for percent dominant taxa and percent Chironomidae. Staff noted the stream was very turbid, and there was evidence of recent high flow events and new point bar formation. The habitat was rated supporting, with low scores for epifaunal substrate, condition of banks, sediment deposition, and riparian vegetative zone width.

Total iron and total aluminum concentrations exceeded New York State water quality standards during three of the four sampling periods, including a February sample that also exceeded Pennsylvania water quality standards at 3,527 ug/l. Numerous parameters exceeded the 90<sup>th</sup> percentile, including total aluminum, total iron, turbidity, and total organic carbon (Table 31).

### Trowbridge Creek (TROW 1.8)

Trowbridge Creek at Great Bend, PA, (TROW 1.8) showed nonimpaired biological conditions, after being slightly impaired last year. During July 2004, the macroinvertebrates at TROW 1.8 had good scores for EPT Index and percent Chironomidae. Total iron exceeded New York water quality standards in July 2004, although no parameters exceeded the 90<sup>th</sup> percentile (Table 32). Habitat was rated excellent, primarily due to high scores for epifaunal substrate, sediment deposition, instream cover, and channel flow status. However, low scores were given for riparian vegetative zone width and condition of banks.

#### Wappasening Creek (WAPP 2.6)

The biological index rating for Wappasening Creek at Nichols, NY, (WAPP 2.6) seems to be increasing over the past five years, improving from two years of moderately impaired and two years of slightly impaired to a nonimpaired ranking in July 2004 (Table 33). This site had the highest score for percent Ephemeroptera of all NY-PA border sites, as well as a good score for taxonomic richness. The habitat was rated excellent, with high scores for velocity/flow regimes, epifaunal substrate, instream cover, and riparian vegetative zone width. Staff noted evidence of recent extremely high flows at the time of sampling, as well as an abundance of algae covering the stream bed. No parameters exceeded water quality standards or the 90<sup>th</sup> percentile.

| Parameters Exceeding Standards |          |          |               |                                     |  |  |  |
|--------------------------------|----------|----------|---------------|-------------------------------------|--|--|--|
| Parameter                      | Date     | Value    | Standard      | State                               |  |  |  |
| TFe                            | 07/20/04 | 787 ug/l | 300 ug/l      | NY aquatic (chronic)                |  |  |  |
|                                |          |          |               |                                     |  |  |  |
| Data                           | WOL      |          | Deremetere Et | vegeding 00 <sup>th</sup> Decentile |  |  |  |

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |     |  |  |  |  |  |  |
|----------|------|--------------------------------------------------|-----|--|--|--|--|--|--|
| 07/20/04 | 34.8 | TEMP                                             | TOC |  |  |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|
| Number of Taxa                 | 20                |  |  |  |  |
| Diversity Index                | 2.19              |  |  |  |  |
| RBP III Score                  | 30                |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |
| Total Habitat Score            | 149               |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |



Water Quality Index



**Biological Index** 

|           | Parameters Exceeding Standards |           |           |                      |  |  |  |  |  |  |
|-----------|--------------------------------|-----------|-----------|----------------------|--|--|--|--|--|--|
| Parameter | Date                           | State     |           |                      |  |  |  |  |  |  |
| TFe       | 07/21/04                       | 462 ug/l  | 300 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |
| TAl       | 07/21/04                       | 371 ug/l  | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |
| TFe       | 10/21/04                       | 2000 ug/l | 300 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |
| TAl       | 10/21/04                       | 1760 ug/l | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |
| TFe       | 02/16/05                       | 3527 ug/l | 1500 ug/l | PA aquatic life      |  |  |  |  |  |  |
| TFe       | 02/16/05                       | 3527 ug/l | 300 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |
| TAI       | 02/16/05                       | 3843 ug/l | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |

 Table 31.
 Water Quality Summary Troups Creek at Austinburg, Pa.

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |     |      |    |      |    |  |  |
|----------|------|--------------------------------------------------|-----|------|----|------|----|--|--|
| 07/21/04 | 43.7 | None                                             |     |      |    |      |    |  |  |
| 10/21/04 | 58.2 | TAl                                              | TFe | TURB |    |      |    |  |  |
| 02/16/05 | 72.0 | TAl                                              | TFe | TP   | TS | TURB | SS |  |  |
| 05/10/05 | 46.2 | TOC                                              |     |      |    |      |    |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|
| Number of Taxa                 | 16                |  |  |  |  |
| Diversity Index                | 1.90              |  |  |  |  |
| RBP Score                      | 28                |  |  |  |  |
| RBP Condition                  | Slightly Impaired |  |  |  |  |
| Total Habitat Score            | 143               |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |







Nonimpaired

10

Slightly Impaired

**Biological Index** 

| Table 32. Water Quality Summary Trowbridg | ge Creek | t at Great | Bend, Pa. |
|-------------------------------------------|----------|------------|-----------|
|-------------------------------------------|----------|------------|-----------|

| Parameters Exceeding Standards |          |          |          |                       |  |  |  |
|--------------------------------|----------|----------|----------|-----------------------|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                 |  |  |  |
| TFe                            | 07/19/04 | 337 ug/l | 300 ug/l | NY aquatic (chronic)  |  |  |  |
| IFe                            | 0//19/04 | 557 ug/1 | 500 ug/1 | NT aquatic (cilionic) |  |  |  |

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |  |
|----------|------|--------------------------------------------------|--|--|--|--|--|--|--|
| 07/19/04 | 22.4 | None                                             |  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 23          |  |  |  |  |
| Diversity Index                | 2.44        |  |  |  |  |
| RBP III Score                  | 38          |  |  |  |  |
| RBP III Condition              | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 157         |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |







**Biological Index** 

| Table 33. | Water Quality | Summary | Wappasening | Creek at 1 | Nichols, N.Y. |
|-----------|---------------|---------|-------------|------------|---------------|
|-----------|---------------|---------|-------------|------------|---------------|

| Parameters Exceeding Standards |      |       |          |       |  |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |  |
| None                           |      |       |          |       |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|--|
| 08/25/04 | 21.0 | None |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|
| Number of Taxa                 | 23          |  |  |  |  |
| Diversity Index                | 2.33        |  |  |  |  |
| RBP Score                      | 34          |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |
| Total Habitat Score            | 163         |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |







**Biological Index** 

## **Pennsylvania-Maryland Streams**

### Big Branch Deer Creek (BBDC 4.1)

Big Branch Deer Creek at Fawn Grove, PA, (BBDC 4.1) had a nonimpaired biological community during fiscal year 2005, as it has for at least the past seven years. It had the highest taxonomic richness of the Maryland-Pennsylvania sites and good scores for Hilsenhoff Biotic Index, Shannon Diversity Index, and EPT Index; however, the community scored poorly for percentage of Ephemeroptera. Water quality was good in Big Branch Deer Creek in July 2004, with no parameters exceeding PA state standards and only dissolved oxygen exceeding the 90<sup>th</sup> percentile (Table 34). BBDC 4.1 had one of the best habitat conditions of all the PA-Maryland border sites, with high scores for a number of parameters, including epifaunal substrate, instream cover, and frequency of riffles.

## Conowingo Creek (CNWG 4.4)

Conowingo Creek at Pleasant Grove, PA, (CNWG 4.4) had a slightly impaired community for the fifth year in a row, with a very low taxonomic richness and EPT Index and the poorest score of all Maryland-Pennsylvania streams for Hilsenhoff Biotic Index. This stream was impacted primarily by agricultural activities, as evidenced by high sediment deposition and elevated nutrients. Parameters that exceeded the 90<sup>th</sup> percentile were predominantly nutrients and dissolved oxygen (Table 35). Nitrate plus nitrite exceeded the Pennsylvania standards for public water supply during all four sampling events: August 2004, October 2004, February 2005, and May 2005. Habitat was rated as excellent, with high scores for instream cover and channel flow status.

| Table 34. | Water Quality S | Summary Big | Branch Deer | Creek at | Fawn ( | Grove, | Pa. |
|-----------|-----------------|-------------|-------------|----------|--------|--------|-----|
|           |                 |             |             |          |        |        |     |

| Parameters Exceeding Standards |      |       |          |       |  |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |  |
| None                           |      |       |          |       |  |  |  |  |

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |  |
|----------|------|----|--------------------------------------------------|--|--|--|--|--|--|
| 07/14/04 | 31.5 | DO |                                                  |  |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 26          |  |  |  |  |  |
| Diversity Index                | 2.64        |  |  |  |  |  |
| RBP Score                      | 36          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 162         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |



Water Quality Index



**Biological Index** 

| Parameters Exceeding Standards |          |            |          |                        |  |  |  |  |
|--------------------------------|----------|------------|----------|------------------------|--|--|--|--|
| Parameter                      | Date     | Value      | Standard | State                  |  |  |  |  |
| Nitrate + Nitrite              | 08/9/04  | 11.21 mg/l | 10 mg/l  | PA public water supply |  |  |  |  |
| Nitrate + Nitrite              | 10/14/04 | 11.84 mg/l | 10 mg/l  | PA public water supply |  |  |  |  |
| Nitrate + Nitrite              | 02/8/05  | 11.09 mg/l | 10 mg/l  | PA public water supply |  |  |  |  |
| Nitrate + Nitrite              | 05/03/05 | 11.55 mg/l | 10 mg/l  | PA public water supply |  |  |  |  |

Table 35. Water Quality Summary Conowingo Creek at Pleasant Grove, Pa.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |    |    |  |  |  |
|----------|------|------|--------------------------------------------------|------|----|----|--|--|--|
| 08/9/04  | 67.1 | TNH3 | TNO3                                             | TNO2 | TN |    |  |  |  |
| 10/14/04 | 48.1 | DO   | TNO3                                             | TN   |    |    |  |  |  |
| 02/8/05  | 46.5 | DO   | TNO3                                             |      |    |    |  |  |  |
| 05/03/05 | 57.8 | DO   | COND                                             | TNO3 | TN | TS |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 13                |  |  |  |  |  |
| Diversity Index                | 2.03              |  |  |  |  |  |
| RBP III Score                  | 24                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 162               |  |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |  |







**Biological Index** 

### Deer Creek (DEER 44.2)

Deer Creek at Gorsuch Mills, MD, (DEER 44.2) served as the reference site for fiscal year 2005. DEER 44.2 had the highest EPT Index and the lowest percent dominant taxa of the PA-MD streams, as well as a high taxonomic richness and low percent Chironomidae. Organic-pollution intolerant organisms included: *Atherix, Antocha* (Diptera: Tipulidae), *Isonychia, Nigronia, Stylogomphus* (Odonata: Gomphidae), *Leuctra, Acroneuria, Agnetina* (Plecoptera: Perlidae), and *Paragnetina*. This site had fairly good water quality, with no parameters exceeding standards. However, during each of the four sampling periods dissolved oxygen exceeded the 90<sup>th</sup> percentile, and temperature and total chloride each exceeded the 90<sup>th</sup> percentile one time (Table 36). This sampling site was located adjacent to agricultural activities.

### Ebaughs Creek (EBAU 1.5)

Ebaughs Creek at Stewartstown, PA, (EBAU 1.5) had a slightly impaired macroinvertebrate community in July 2004, and the biological condition seemed to show some improvement from 2003. This site scored in the median range for the Maryland-Pennsylvania streams with regard to many of the metrics; including taxonomic richness, EPT Index, and percent Chironomidae. EBAU 1.5 usually has slightly or moderately impaired biological conditions, with the July 2001 rating of nonimpaired being an anomaly. Habitat was rated as excellent, with highest scores given for channel flow status and vegetative protective cover.

Total chlorine values exceeded state standards during three of the four sampling periods (Table 37). Parameters exceeding the 90<sup>th</sup> percentile at least two times during the year included total manganese, dissolved oxygen, and total nitrite. EBAU 1.5 is located downstream of the Stewartstown Treatment Plant.

| Parameters Exceeding Standards |      |       |          |       |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |
| None                           |      |       |          |       |  |  |  |

|  | Table 36. | Water Q | Juality , | Summary | Deer C | Creek a | t Gorsuch | Mills, | Md. |
|--|-----------|---------|-----------|---------|--------|---------|-----------|--------|-----|
|--|-----------|---------|-----------|---------|--------|---------|-----------|--------|-----|

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |
|----------|------|----|--------------------------------------------------|--|--|--|--|--|
| 07/13/04 | 36.7 | DO | TEMP                                             |  |  |  |  |  |
| 10/13/04 | 33.9 | DO |                                                  |  |  |  |  |  |
| 02/07/05 | 28.6 | DO |                                                  |  |  |  |  |  |
| 05/02/05 | 40.7 | DO | TCl                                              |  |  |  |  |  |

| Biological and Habitat Summary |           |  |  |  |  |  |  |
|--------------------------------|-----------|--|--|--|--|--|--|
| Number of Taxa                 | 25        |  |  |  |  |  |  |
| Diversity Index                | 2.55      |  |  |  |  |  |  |
| RBP Score                      | 40        |  |  |  |  |  |  |
| RBP Condition                  | Reference |  |  |  |  |  |  |
| Total Habitat Score            | 154       |  |  |  |  |  |  |
| Habitat Condition Category     | Reference |  |  |  |  |  |  |







**Biological Index** 

| Parameters Exceeding Standards |          |           |            |                 |  |  |  |
|--------------------------------|----------|-----------|------------|-----------------|--|--|--|
| Parameter                      | Date     | Value     | Standard   | State           |  |  |  |
| TCln                           | 07/13/04 | 0.06 mg/l | 0.019 mg/l | MD aquatic life |  |  |  |
| TCln                           | 10/13/04 | 0.06 mg/l | 0.019 mg/l | MD aquatic life |  |  |  |
| TCln                           | 05/02/05 | 0.07 mg/l | 0.019 mg/l | MD aquatic life |  |  |  |

| Table 37.  | Water   | <b>Ouality</b> | Summary | Ebaughs | Creek at  | Stewartstown  | , <i>Pa</i> . |
|------------|---------|----------------|---------|---------|-----------|---------------|---------------|
| 1 4010 571 | 11 4101 | Quanty         | Summery | Doungno | ci cen ai | Stenartstonit | ,             |

| Date     | WQI  |     | Parameters Exceeding 90 <sup>th</sup> Percentile |      |  |  |  |  |  |
|----------|------|-----|--------------------------------------------------|------|--|--|--|--|--|
| 07/13/04 | 54.7 | DO  | TMn                                              |      |  |  |  |  |  |
| 10/13/04 | 44.6 | TMn |                                                  |      |  |  |  |  |  |
| 02/07/05 | 35.1 | DO  | TNO2                                             |      |  |  |  |  |  |
| 05/02/05 | 52.1 | DO  | TNH3                                             | TNO2 |  |  |  |  |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 18                |  |  |  |  |  |
| Diversity Index                | 2.14              |  |  |  |  |  |
| RBP Score                      | 30                |  |  |  |  |  |
| RBP Condition                  | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 150               |  |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |  |









**Biological Index**
#### Falling Branch Deer Creek (FBDC 4.1)

There were no macroinvertebrates present in the sample collected at Falling Branch Deer Creek at Fawn Grove, PA, (FBDC 4.1). The reason for this is unknown; however there was evidence of recent high flows, which may have negatively impacted the macroinvertebrate community. The habitat was rated as excellent, with a dense vegetative cover, high frequency of riffles, and an abundance of instream cover. Water quality was very good, with no parameters exceeding water quality standards and only dissolved oxygen exceeding the 90<sup>th</sup> percentile (Table 38).

## Long Arm Creek (LNGA 2.5)

Long Arm Creek at Bandanna, PA, and (LNGA 2.5) had a slightly impaired biological community, which is an improvement from the previous two years. This site had low metric scores for Shannon Diversity Index and percent dominant taxa but scored as one of the highest sites in percent Ephemeroptera. LNGA 2.5 was previously used as a cow pasture, but SRBC staff noted in July 2004 that there was no evidence that the area surrounding the sampling station had been used as a pasture recently and that the stream banks were revegetated. These changes were reflected in the improved biological community. However, habitat conditions were rated as partially supporting when compared to other Maryland-Pennsylvania streams, due to low scores for epifaunal substrate, instream cover, embeddedness, sediment deposition, and riparian vegetative zone width.

During the 2000 sampling season, Long Arm Creek was elevated to a Group 1 stream. Although no water quality standards were exceeded in fiscal year 2005, both metals and nutrients, such as total aluminum, total phosphorus, and total orthophosphate, exceeded the 90<sup>th</sup> percentile at this site. Dissolved oxygen and conductivity also exceeded the 90<sup>th</sup> percentile (Table 39).

#### Octoraro Creek (OCTO 6.6)

Octoraro Creek at Rising Sun, MD, and (OCTO 6.6) had a slightly impaired biological community for the third consecutive year, with a low score for percent dominant taxa. However, it had the highest percent Ephemeroptera of all the Maryland-Pennsylvania streams. Unfortunately, a large number of these mayflies were the pollution-tolerant taxon, *Baetis* (Ephemeroptera: Baetidae). No parameters exceeded PA state standards during the sampling period. However, dissolved oxygen, temperature, total phosphorus, total orthophosphate, total solids, total organic carbon, turbidity, and conductivity all exceeded the 90<sup>th</sup> percentile. Total nitrogen and total nitrate were elevated but did not exceed the 90<sup>th</sup> percentile. Habitat was rated as excellent with high scores for epifaunal substrate, instream cover, and velocity/depth regimes.

#### Scott Creek (SCTT 3.0)

Scott Creek at Delta, PA (SCTT 3.0) was rated slightly impaired in July 2004, after being designated severely impaired for numerous years and moderately impaired last year. This site has consistently had the worst macroinvertebrate metric scores of all the Maryland-Pennsylvania sites. This year the conditions were similar, although there did appear to be some improvement. As in 2004, there were again several pollution sensitive organisms in the 2005 macroinvertebrate sample, including *Nigronia*, *Dicranota* (Diptera: Tipulidae), and *Dolophilodes*. No parameters exceeded state standards in fiscal year 2005; however, a variety of parameters, including dissolved oxygen, conductivity, total chloride, total sulfate, total phosphorus, total iron, and total organic carbon exceeded the 90<sup>th</sup> percentile. The habitat was rated supporting, with poor scores for riparian vegetative zone width, condition of banks, and channel alteration. SRBC staff noted an abundance of litter at the site during the time of sampling.

| Table 38. | Water Quality | Summary | Falling | Branch I | Deer | Creek at | Fawn | Grove, | Pa. |
|-----------|---------------|---------|---------|----------|------|----------|------|--------|-----|
|           | ~ ~ ~         |         |         |          |      |          |      |        |     |

| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |

| Date     | WQI  |    | Param | eters Exceed | ding 90 <sup>th</sup> Per | centile |  |
|----------|------|----|-------|--------------|---------------------------|---------|--|
| 07/14/04 | 38.6 | DO |       |              |                           |         |  |

| Biological and Habitat Summary       |    |  |  |  |  |  |
|--------------------------------------|----|--|--|--|--|--|
| Number of Taxa                       | NA |  |  |  |  |  |
| Diversity Index                      | NA |  |  |  |  |  |
| RBP Score                            | NA |  |  |  |  |  |
| RBP Condition                        | NA |  |  |  |  |  |
| Total Habitat Score 165              |    |  |  |  |  |  |
| Habitat Condition Category Excellent |    |  |  |  |  |  |



Water Quality Index



**Biological Index** 

| Table 39. | Water Quality S | ummary Long A | rm Creek at Bo | ındanna, Pa. |
|-----------|-----------------|---------------|----------------|--------------|
|-----------|-----------------|---------------|----------------|--------------|

| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |     |  |  |  |  |
|----------|------|------|--------------------------------------------------|-----|--|--|--|--|
| 07/13/04 | 57.5 | DO   | COND                                             | TAl |  |  |  |  |
| 10/13/04 | 44.4 | None |                                                  |     |  |  |  |  |
| 02/7/05  | 28.6 | DO   |                                                  |     |  |  |  |  |
| 05/2/05  | 51.9 | DO   | TPO4                                             | TP  |  |  |  |  |

| Biological and Habitat Summary |                      |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|
| Number of Taxa                 | 16                   |  |  |  |  |  |
| Diversity Index                | 2.00                 |  |  |  |  |  |
| RBP III Score                  | 28                   |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired    |  |  |  |  |  |
| Total Habitat Score            | 109                  |  |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |  |









| Table 40. | Water | Quality  | Summary | Octoraro | Creek | at Rising | Sun, | Md. |
|-----------|-------|----------|---------|----------|-------|-----------|------|-----|
|           |       | <b>.</b> |         |          |       |           |      |     |

| Parameters Exceeding Standards |                                     |  |  |  |  |  |  |
|--------------------------------|-------------------------------------|--|--|--|--|--|--|
| Parameter                      | Parameter Date Value Standard State |  |  |  |  |  |  |
| None                           |                                     |  |  |  |  |  |  |

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |      |    |     |      |  |
|----------|------|----|--------------------------------------------------|------|----|-----|------|--|
| 08/9/04  | 66.2 | DO | TEMP                                             | TPO4 | ТР | TOC | TURB |  |
| 10/14/04 | 58.2 | DO | TEMP                                             | TPO4 | TP | TOC | TS   |  |
| 02/08/05 | 36.4 | DO |                                                  |      |    |     |      |  |
| 05/03/05 | 57.4 | DO | COND                                             | TS   |    |     |      |  |

| Biological and Habitat Summary |                   |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|
| Number of Taxa                 | 19                |  |  |  |  |  |
| Diversity Index                | 2.23              |  |  |  |  |  |
| RBP III Score                  | 32                |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |
| Total Habitat Score            | 156               |  |  |  |  |  |
| Habitat Condition Category     | Excellent         |  |  |  |  |  |







**Biological Index** 

|           | Parameters Exceeding Standards |                          |      |      |           |             |                         |      |    |    |  |  |
|-----------|--------------------------------|--------------------------|------|------|-----------|-------------|-------------------------|------|----|----|--|--|
| Parameter | r Da                           | ate Value Standard State |      |      |           |             |                         |      |    |    |  |  |
| None      |                                |                          |      |      |           |             |                         |      |    |    |  |  |
|           |                                |                          |      |      |           |             |                         |      |    |    |  |  |
| Date      | WQI                            |                          |      | Pa   | arameters | Exceeding 9 | 90 <sup>th</sup> Percen | tile |    |    |  |  |
| 07/14/04  | 53.9                           | DO                       | TCl  | TFe  | TS        | TSO4        |                         |      |    |    |  |  |
| 10/13/04  | 46.6                           | DO                       | COND | TCl  | TS        |             |                         |      |    |    |  |  |
| 02/07/05  | 77.3                           | DO                       | COND | TNH3 | TCI       | TMn         | TN                      | TPO4 | TP | TS |  |  |

## Table 41. Water Quality Summary Scott Creek at Delta, Pa.

TSO4

DO

55.7

05/02/05

TOC

SS

TCl

| Biological and Habitat Summary |                   |  |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|--|
| Number of Taxa                 | 12                |  |  |  |  |  |  |
| Diversity Index                | 2.05              |  |  |  |  |  |  |
| RBP III Score                  | 24                |  |  |  |  |  |  |
| RBP III Condition              | Slightly Impaired |  |  |  |  |  |  |
| Total Habitat Score            | 136               |  |  |  |  |  |  |
| Habitat Condition Category     | Supporting        |  |  |  |  |  |  |

TFe

TMn





Water Quality Index

**Biological Index** 

## South Branch Conewago Creek (SBCC 20.4)

South Branch Conewago Creek near Bandanna, PA, and (SBCC 20.4) contained a slightly impaired biological community, as it has been for five of the last six years. This site had low scores for Shannon Diversity Index and percent dominant taxa, but high scores for Hilsenhoff Biotic Index and percent Chironomidae. No water quality standards were exceeded, and only dissolved oxygen exceeded the 90<sup>th</sup> percentile (Table 42). The habitat was rated excellent, with high scores for epifaunal substrate, frequency of riffles, and riparian vegetative zone. However, SRBC staff noted a lack of cobble and a large amount of sediment deposition.

|  | Table 42. | Water Quality | Summary South | Branch Conewago | Creek at Bandanna, Pa. |
|--|-----------|---------------|---------------|-----------------|------------------------|
|--|-----------|---------------|---------------|-----------------|------------------------|

| Parameter     Date     Value     Standard     State       None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None     Parameters Exceeding 90 <sup>th</sup> Percentile       Date     WQI     Parameters Exceeding 90 <sup>th</sup> Percentile       07/13/04     30.6     DO       Biological and Habitat Summary     Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Date     WQI     Parameters Exceeding 90 <sup>th</sup> Percentile       07/13/04     30.6     DO     Image: Second se |
| Date     WQI     Parameters Exceeding 90 <sup>th</sup> Percentile       07/13/04     30.6     DO       Biological and Habitat Summary     I4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07/13/04 30.6 DO Biological and Habitat Summary Number of Taxa 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Biological and Habitat Summary Number of Taxa 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Biological and Habitat Summary     Number of Taxa   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of Taxa 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Diversity Index 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RBP III Score 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RBP III Condition Slightly Impaired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Habitat Score 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Habitat Condition Category Excellent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



Water Quality Index



Nonimpaired Slightly Impaired

**Biological Index** 

## **River Sites**

#### Chemung River (CHEM 12.0)

Due to high flows throughout the sampling season, no macroinvertebrate sample was collected at the Chemung River at Chemung, NY, (CHEM 12.0). Total iron and total aluminum exceeded the New York water quality standards during September and October 2004 and February 2005. Numerous parameters exceeded the 90<sup>th</sup> percentile including conductivity, total chloride, total solids, total nitrate, and total organic carbon, among others (Table 43). The WQI scores for this site seem to have decreased slightly, indicating an improvement in overall water quality.

#### Cowanesque River (COWN 2.2)

The Cowanesque River downstream of the Cowanesque Reservoir (COWN 2.2) at Lawrenceville, PA, had a moderately impaired biological community in July 2004. This site is routinely rated as moderately impaired, and this year it showed very low scores for taxonomic richness, Shannon Diversity Index, EPT Index, percent Ephemeroptera, and percent Chironomidae. Since very few macroinvertebrate samples were collected on the larger rivers due to high flow conditions, COWN 2.2 was compared to CASC 1.6, the reference station for NY-PA border streams for fiscal year 2005. Habitat was rated as supporting, and the site was given low scores for riparian vegetative zone width, epifaunal substrate, instream cover, and sediment deposition.

Total iron and total aluminum exceeded New York state standards in October 2004 (Table 44). A variety of parameters exceeded the 90<sup>th</sup> percentile at COWN 2.2, including dissolved oxygen, temperature, total phosphorus, and total organic carbon.

#### Cowanesque River (COWN 1.0)

A site was added on the Cowanesque River near the mouth of the stream (COWN 1.0) during the 1999-2000 sampling season to determine the extent of impairment in the river. Biological condition at COWN 1.0 was rated as nonimpaired in July 2004 after being moderately impaired for two of the last three years (no sample was taken last year due to high flows). COWN 1.0 also was compared to CASC 1.6 due to lack of macroinvertebrates collected at river sites. Habitat was rated as supporting, with the lowest scores given for channel sinuosity, riparian vegetative zone, and condition of banks.

Total iron, total aluminum and total chlorine exceeded the New York water quality standards during the October sampling period. Parameters that exceeded the 90<sup>th</sup> percentile included dissolved oxygen, temperature, turbidity, total organic carbon, and various nutrients (Table 45). The Cowanesque Reservoir and a wastewater treatment plant discharge are located upstream of COWN 1.0.

| Parameters Exceeding Standards |          |          |          |                      |  |  |  |  |  |
|--------------------------------|----------|----------|----------|----------------------|--|--|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                |  |  |  |  |  |
| TFe                            | 09/29/04 | 698 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TAl                            | 09/29/04 | 382 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe                            | 10/20/04 | 344 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TAl                            | 10/20/04 | 255 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe                            | 02/15/05 | 582 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TA1                            | 02/15/05 | 534 ug/l | 100 µg/l | NY aquatic (chronic) |  |  |  |  |  |

 Table 43.
 Water Quality Summary Chemung River at Chemung, N.Y.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |     |      |    |     |  |  |  |
|----------|------|------|--------------------------------------------------|-----|------|----|-----|--|--|--|
| 09/29/04 | 53.0 | COND | TCl                                              | TS  |      |    |     |  |  |  |
| 10/20/04 | 53.7 | COND | TNO3                                             | TS  | TCl  | TN |     |  |  |  |
| 02/15/05 | 64.0 | COND | DO                                               | TCl | TNO3 | TS | TOC |  |  |  |
| 05/10/05 | 58.0 | COND | TEMP                                             | TCl | TN   | TS | TOC |  |  |  |

| Biological and Habitat Summary |    |  |  |  |  |  |
|--------------------------------|----|--|--|--|--|--|
| Number of Taxa                 | NA |  |  |  |  |  |
| Diversity Index                | NA |  |  |  |  |  |
| RBP Score                      | NA |  |  |  |  |  |
| RBP Condition                  | NA |  |  |  |  |  |
| Total Habitat Score            | NA |  |  |  |  |  |
| Habitat Condition Category     | NA |  |  |  |  |  |







**Biological Index** 

 Table 44.
 Water Quality Summary Cowanesque River (COWN 2.2) at Lawrenceville, Pa.

| Parameters Exceeding Standards |          |          |          |                      |  |  |  |  |  |
|--------------------------------|----------|----------|----------|----------------------|--|--|--|--|--|
| Parameter                      | Date     | Value    | Standard | State                |  |  |  |  |  |
| TFe                            | 10/21/04 | 759 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TAl                            | 10/21/04 | 631 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |      |    |     |  |  |  |  |  |
|----------|------|----|--------------------------------------------------|------|----|-----|--|--|--|--|--|
| 07/22/04 | 35.7 | DO | TEMP                                             | TNH3 |    |     |  |  |  |  |  |
| 10/21/04 | 59.9 | DO | TEMP                                             | TOC  |    |     |  |  |  |  |  |
| 02/16/05 | 68.1 | DO | TEMP                                             | TPO4 | TP | TOC |  |  |  |  |  |
| 05/10/05 | 40.7 | DO |                                                  |      |    |     |  |  |  |  |  |

| Biological and Habitat Summary |                      |  |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|--|
| Number of Taxa                 | 13                   |  |  |  |  |  |  |
| Diversity Index                | 1.62                 |  |  |  |  |  |  |
| RBP Score                      | 12                   |  |  |  |  |  |  |
| RBP Condition                  | Moderately Impaired  |  |  |  |  |  |  |
| Total Habitat Score            | 129                  |  |  |  |  |  |  |
| Habitat Condition Category     | Partially Supporting |  |  |  |  |  |  |



YEAR

Water Quality Index



**Biological Index** 

|           | Parameters Exceeding Standards |           |            |                      |  |  |  |  |  |  |
|-----------|--------------------------------|-----------|------------|----------------------|--|--|--|--|--|--|
| Parameter | Date                           | Value     | Standard   | State                |  |  |  |  |  |  |
| TFe       | 10/21/04                       | 1090 ug/l | 300 ug/l   | NY aquatic (chronic) |  |  |  |  |  |  |
| TAI       | 10/21/04                       | 972 ug/l  | 100 ug/l   | NY aquatic (chronic) |  |  |  |  |  |  |
| TCln      | 10/21/04                       | 1.0 mg/l  | 0.019 mg/l | NY aquatic (acute)   |  |  |  |  |  |  |

 Table 45.
 Water Quality Summary Cowanesque River (COWN 1.0) at Lawrenceville, Pa.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |      |    |     |  |  |  |
|----------|------|------|--------------------------------------------------|------|------|----|-----|--|--|--|
| 07/21/04 | 31.4 | TEMP |                                                  |      |      |    |     |  |  |  |
| 10/21/04 | 62.9 | DO   | TEMP                                             | TNH3 | TOC  |    |     |  |  |  |
| 02/16/05 | 70.8 | DO   | TEMP                                             | TN   | TPO4 | TP | TOC |  |  |  |
| 05/10/05 | 52.3 | DO   | TOC                                              | TURB |      |    |     |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 20          |  |  |  |  |  |
| Diversity Index                | 2.26        |  |  |  |  |  |
| RBP Score                      | 32          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 145         |  |  |  |  |  |
| Habitat Condition Category     | Supporting  |  |  |  |  |  |







**Biological Index** 

#### Susquehanna River at Windsor, NY (SUSQ 365.0)

The biological community at Susquehanna River at Windsor, NY, (SUSQ 365.0) was designated nonimpaired during fiscal year 2005 for the fourth consecutive year. Like both Cowanesque River sites, SUSQ 365.0 was compared to CASC 1.6, the reference station for the NY-PA border streams. This site showed high scores for taxonomic richness and EPT Index. Habitat was rated as excellent, with high ratings for epifaunal substrate, instream cover, and pool substrate characterization. Logs and woody debris were noted in the stream, as was the presence of deep pools and deep riffle/run areas.

Total iron slightly exceeded New York aquatic standards in October 2004 and February 2005. Dissolved oxygen, total ammonia, suspended sediment, and turbidity all exceeded the 90<sup>th</sup> percentile one time during the sample period at this site (Table 46).

#### Susquehanna River at Kirkwood, NY (SUSQ 340.0)

Due to high river flows throughout the 2004 sampling season, no macroinvertebrate sample was collected at Susquehanna River at Kirkwood, NY, (SUSQ 340.0). Total iron and total aluminum each exceeded New York water quality standards on two occasions. Additional water quality analysis indicated that total phosphorus, dissolved oxygen, and total solids all exceeded the 90<sup>th</sup> percentile one time (Table 47).

#### Susquehanna River at Sayre, PA. (SUSQ 289.1)

Due to high river flows throughout the 2004 sampling season, no macroinvertebrate sample was collected at the Susquehanna River at Sayre, PA, (SUSQ 289.1). Total aluminum and total iron exceeded New York water quality standards during September and October 2004 and February 2005. Other parameters that were elevated compared to other Group 1 and 2 NY-PA streams were total ammonia, total nitrogen, dissolved oxygen, and total chloride (Table 48).

Table 46.Water Quality Summary Susquehanna River (SUSQ 365.0) at Windsor, N.Y.

| Parameters Exceeding Standards      |          |          |          |                      |  |  |  |  |  |
|-------------------------------------|----------|----------|----------|----------------------|--|--|--|--|--|
| Parameter Date Value Standard State |          |          |          |                      |  |  |  |  |  |
| TFe                                 | 10/20/04 | 326 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe                                 | 02/14/05 | 339 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|------|--|--|--|--|--|
| 07/19/04 | 36.0 | DO   |                                                  |      |  |  |  |  |  |
| 10/20/04 | 35.9 | None |                                                  |      |  |  |  |  |  |
| 02/14/05 | 42.7 | None |                                                  |      |  |  |  |  |  |
| 05/09/05 | 54.4 | TNH3 | SS                                               | TURB |  |  |  |  |  |

| Biological and Habitat Summary |             |  |  |  |  |  |
|--------------------------------|-------------|--|--|--|--|--|
| Number of Taxa                 | 23          |  |  |  |  |  |
| Diversity Index                | 2.50        |  |  |  |  |  |
| RBP Score                      | 36          |  |  |  |  |  |
| RBP Condition                  | Nonimpaired |  |  |  |  |  |
| Total Habitat Score            | 160         |  |  |  |  |  |
| Habitat Condition Category     | Excellent   |  |  |  |  |  |







**Biological Index** 

|           | Parameters Exceeding Standards |           |          |                      |  |  |  |  |  |
|-----------|--------------------------------|-----------|----------|----------------------|--|--|--|--|--|
| Parameter | State                          |           |          |                      |  |  |  |  |  |
| TAl       | 09/29/04                       | 1166 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe       | 10/20/04                       | 752 ug/l  | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TAl       | 10/20/04                       | 436 ug/l  | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |
| TFe       | 02/14/05                       | 364 ug/l  | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |

 Table 47.
 Water Quality Summary Susquehanna River (SUSQ 340.0) at Kirkwood, N.Y.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|--|--|--|--|--|
| 09/29/04 | 52.1 | ТР   |                                                  |  |  |  |  |  |
| 10/20/04 | 39.2 | None |                                                  |  |  |  |  |  |
| 02/14/05 | 46.8 | DO   | TS                                               |  |  |  |  |  |
| 05/09/05 | 46.8 | None |                                                  |  |  |  |  |  |

| Biological and Habitat Summary |    |  |  |  |  |  |
|--------------------------------|----|--|--|--|--|--|
| Number of Taxa                 | NA |  |  |  |  |  |
| Diversity Index                | NA |  |  |  |  |  |
| RBP Score                      | NA |  |  |  |  |  |
| RBP Condition                  | NA |  |  |  |  |  |
| Total Habitat Score            | NA |  |  |  |  |  |
| Habitat Condition Category     | NA |  |  |  |  |  |







**Biological Index** 

|           | Parameters Exceeding Standards |          |          |                      |  |  |  |  |  |  |
|-----------|--------------------------------|----------|----------|----------------------|--|--|--|--|--|--|
| Parameter | Date                           | Value    | Standard | State                |  |  |  |  |  |  |
| TFe       | 09/29/04                       | 911 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TAl       | 09/29/04                       | 546 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TFe       | 10/21/04                       | 589 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TAl       | 10/21/04                       | 319 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TFe       | 02/14/05                       | 513 ug/l | 300 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |
| TAI       | 02/14/05                       | 280 ug/l | 100 ug/l | NY aquatic (chronic) |  |  |  |  |  |  |

 Table 48.
 Water Quality Summary Susquehanna River (SUSQ 289.1) at Sayre, Pa.

| Date     | WQI  | Parameters Exceeding 90 <sup>th</sup> Percentile |      |     |  |  |  |  |
|----------|------|--------------------------------------------------|------|-----|--|--|--|--|
| 09/29/04 | 44.0 | None                                             |      |     |  |  |  |  |
| 10/21/04 | 51.5 | TNH3                                             | TN   |     |  |  |  |  |
| 02/14/05 | 53.7 | DO                                               | TNH3 | TC1 |  |  |  |  |
| 05/09/05 | 53.2 | None                                             |      |     |  |  |  |  |

| Biological and Habitat Summary |    |  |  |  |  |  |
|--------------------------------|----|--|--|--|--|--|
| Number of Taxa                 | NA |  |  |  |  |  |
| Diversity Index                | NA |  |  |  |  |  |
| RBP Score                      | NA |  |  |  |  |  |
| RBP Condition                  | NA |  |  |  |  |  |
| Total Habitat Score            | NA |  |  |  |  |  |
| Habitat Condition Category     | NA |  |  |  |  |  |







**Biological Index** 

## Susquehanna River at Marietta, PA (SUSQ 44.5)

As river flows were very high throughout summer 2004, no macroinvertebrate sample or habitat information was collected on the Susquehanna River at Marietta, PA, (SUSQ 44.5). No parameters exceeded Pennsylvania or Maryland water quality standards during the sampling period. Several parameters did exceed the 90<sup>th</sup> percentile multiple times, including dissolved oxygen, total sulfate, total iron, and total organic carbon (Table 49).

## Susquehanna River at Conowingo, MD (SUSQ 10.0)

No macroinvertebrate sampling was performed in the Susquehanna River at Conowingo, MD, (SUSQ 10.0) due to deep waters and a lack of riffle habitat. During this sampling season, no parameters exceeded Pennsylvania or Maryland state standards. Parameters that exceeded the 90<sup>th</sup> percentile included temperature, dissolved oxygen, total sulfate, total manganese, conductivity, and turbidity (Table 50).

#### Tioga River (TIOG 10.8)

No macroinvertebrate sampling or habitat assessments occurred during 2004 on the Tioga River at Lindley, NY, (TIOG 10.8) due to high flows throughout the sampling season. Total aluminum exceeded New York water quality standards on three occasions, while total iron exceeded New York standards in October 2004 and February 2005. Total iron also exceeded Pennsylvania state standards in February 2005 (Table 51). Additional water quality analysis indicated that total manganese and total sulfate were consistently high through the sampling period, as they were last year.

Abandoned mine drainage problems exist in the headwaters of the Tioga River. The Tioga-Hammond Reservoir, located upstream of TIOG 10.8, alleviates some of the effects of abandoned mine drainage by buffering the outflow of Tioga Lake with alkaline waters stored in Hammond Lake. However, the effects of the acid mine drainage still may be observed downstream. Poor quality water from the Cowanesque River also may affect the Tioga River downstream of their confluence.

In 2001 and 2002, SRBC and Gannett Fleming, Inc. assessed the Pennsylvania portion of the Tioga River Watershed and developed a remediation strategy through the aid of a Pennsylvania Growing Greener Grant. SRBC created a report identifying acid mine drainage problem areas and prioritizing sites for treatment (Orr, 2003). This report also discusses treatment alternatives and makes predictions as to the possible treatment results.

 Table 49.
 Water Quality Summary Susquehanna River (SUSQ 44.5) at Marietta, Pa.

| Parameters Exceeding Standards |      |       |          |       |  |  |  |  |  |
|--------------------------------|------|-------|----------|-------|--|--|--|--|--|
| Parameter                      | Date | Value | Standard | State |  |  |  |  |  |
| None                           |      |       |          |       |  |  |  |  |  |

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |     |      |      |     |      |     |
|----------|------|------|--------------------------------------------------|-----|------|------|-----|------|-----|
| 10/14/04 | 715  | DO   | TEMP                                             | TAl | TNH3 | TFe  | TMn | TSO4 | TOC |
|          |      | TURB |                                                  |     |      |      |     |      |     |
| 03/28/05 | 41.7 | DO   |                                                  |     |      |      |     |      |     |
| 05/03/05 | 60.8 | DO   | COND                                             | TFe | TS   | TSO4 | TOC |      |     |

| Biological and Habitat Summary |    |  |  |  |  |  |  |
|--------------------------------|----|--|--|--|--|--|--|
| Number of Taxa                 | NA |  |  |  |  |  |  |
| Diversity Index                | NA |  |  |  |  |  |  |
| RBP Score                      | NA |  |  |  |  |  |  |
| RBP Condition                  | NA |  |  |  |  |  |  |
| Total Habitat Score            | NA |  |  |  |  |  |  |
| Habitat Condition Category     | NA |  |  |  |  |  |  |







**Biological Index** 

 Table 50.
 Water Quality Summary Susquehanna River (SUSQ 10.0) at Conowingo, Md.

| Parameters Exceeding Standards      |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Parameter Date Value Standard State |  |  |  |  |  |  |  |  |  |  |  |
| None                                |  |  |  |  |  |  |  |  |  |  |  |

| Date     | WQI  |    | Parameters Exceeding 90 <sup>th</sup> Percentile |      |     |      |      |  |  |  |  |  |  |
|----------|------|----|--------------------------------------------------|------|-----|------|------|--|--|--|--|--|--|
| 03/28/05 | 49.9 | DO | O SS TEMP TAI TSO4 TURB TFe                      |      |     |      |      |  |  |  |  |  |  |
| 05/02/05 | 59.8 | DO | COND                                             | TEMP | TMn | TSO4 | TURB |  |  |  |  |  |  |



Water Quality Index

|           | Parameters Exceeding Standards |           |           |                      |  |  |  |  |  |  |  |  |  |
|-----------|--------------------------------|-----------|-----------|----------------------|--|--|--|--|--|--|--|--|--|
| Parameter | Date                           | Value     | Standard  | State                |  |  |  |  |  |  |  |  |  |
| TAl       | 09/29/04                       | 1420 ug/l | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |  |  |  |
| TFe       | 10/20/04                       | 393 ug/l  | 300 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |  |  |  |
| TAl       | 10/20/04                       | 272 ug/l  | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |  |  |  |
| TAl       | 02/15/05                       | 1670 ug/l | 100 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |  |  |  |
| TFe       | 02/15/05                       | 1540 ug/l | 300 ug/l  | NY aquatic (chronic) |  |  |  |  |  |  |  |  |  |
| TFe       | 02/15/05                       | 1540 ug/l | 1500 ug/l | PA aquatic life      |  |  |  |  |  |  |  |  |  |

 Table 51.
 Water Quality Summary Tioga River at Lindley, N.Y.

| Date     | WQI  |      | Parameters Exceeding 90 <sup>th</sup> Percentile |      |     |      |      |  |  |  |  |  |  |
|----------|------|------|--------------------------------------------------|------|-----|------|------|--|--|--|--|--|--|
| 09/29/04 | 65.0 | TAI  | TMn                                              | TSO4 | TFe | TPO4 | TURB |  |  |  |  |  |  |
| 10/20/04 | 59.2 | TEMP | TMn                                              | TSO4 |     |      |      |  |  |  |  |  |  |
| 02/15/05 | 65.9 | DO   | TMn                                              | TSO4 | TOC |      |      |  |  |  |  |  |  |
| 05/10/05 | 58.9 | TMn  | TSO4                                             | TURB |     |      |      |  |  |  |  |  |  |

| Biological and Habitat Summary |    |  |  |  |  |  |  |
|--------------------------------|----|--|--|--|--|--|--|
| Number of Taxa                 | NA |  |  |  |  |  |  |
| Diversity Index                | NA |  |  |  |  |  |  |
| RBP III Score                  | NA |  |  |  |  |  |  |
| RBP III Condition              | NA |  |  |  |  |  |  |
| Total Habitat Score            | NA |  |  |  |  |  |  |
| Habitat Condition Category     | NA |  |  |  |  |  |  |







**Biological Index** 

## **Group 3 Sites**

#### Babcock Run (BABC)

During May 2005, the macroinvertebrate community of Babcock Run near Cadis, PA, was designated as nonimpaired, with low metric scores for percentage of Chironomidae and percent dominant taxa. Physical habitat conditions were rated excellent, with good scores for instream cover, embeddedness, and vegetative protective cover. Staff noted that the stream was scoured from a recent high water event. All field chemistry parameters were within acceptable limits. BABC is located in a mostly forested watershed, and the stream bed is dominated by cobble substrate.

#### **Beagle Hollow Run (BEAG)**

Nonimpaired biological conditions existed at Beagle Hollow Run near Osceola, PA, during May 2005. The sample contained a large number of organic pollution-intolerant organisms and showed a high EPT Index; however, the percentage of Chironomidae was rather high. Habitat conditions were considered excellent, with a large amount of woody debris located in this forested stream and an abundance of epifaunal substrate. All field chemistry parameters were within natural ranges.

#### Bill Hess Creek (BILL)

Bill Hess Creek near Nelson, PA, was designated slightly impaired, with a high percentage of Ephemeroptera but a low taxonomic richness and Shannon Diversity Index. The habitat was rated supporting, with low scores given for condition of banks, velocity/depth regimes, channel alteration, and channel flow status. All field chemistry parameters were within acceptable limits. Staff noted evidence of recent high water.

#### Bird Creek (BIRD)

Bird Creek near Webb Mills, NY, was designated slightly impaired. This site had good scores for EPT Index and taxonomic richness but poor scores for a high percentage of Chironomidae and percent dominant taxa. The habitat was designated as supporting primarily due to poor conditions of banks and sediment deposition, which are likely the result of a high water event prior to sampling. All field chemistry parameters fell within acceptable ranges. Staff noted that nearly all of the cobble substrate was covered in algae.

#### **Biscuit Hollow (BISC)**

Nonimpaired biological conditions existed at Biscuit Hollow near Austinburg, PA, during this survey, with a high percentage of Ephemeroptera and a high EPT Index. This is the second consecutive year of nonimpaired biological conditions, which is a dramatic improvement from the moderately impaired conditions found during FY-03. The physical habitat at this site was considered supporting, with poor scores given for instream cover, velocity/depth regimes, sediment deposition, and riparian vegetative zone width. The site had slightly eroded banks and was located in an area dominated by abandoned fields and an overgrown pasture, downstream of numerous old beaver dams. Staff noted the presence of cows in the stream. Field chemistry parameters were within acceptable ranges.

#### Briggs Hollow Run (BRIG)

Briggs Hollow Run near Nichols, NY, was designated slightly impaired during the 2005 sampling season, with poor metric scores for EPT Index, percent dominant taxa and percent Chironomidae.

However, this site did have a very low metric score for Hilsenhoff Index, meaning there were a large number of pollution intolerant organisms in the sample. The physical habitat was designated as partially supporting and was given low scores for epifaunal substrate, instream cover, channel flow status, frequency of riffles, and riparian vegetative zone width. All field chemistry parameters were within acceptable limits. Staff noted that much of the substrate was covered with algae.

## Bulkley Brook (BULK)

Bulkley Brook near Knoxville, PA, had a slightly impaired biological community and supporting habitat conditions during the 2004-2005 sampling season. The two lowest biological scores for this site were percent dominant taxa and percent Chironomidae. Habitat assessment showed low scores for channel flow status, channel alteration, conditions of banks, and sediment deposition. BULK is located in a forested area downstream of a beaver dam and did have a well developed riparian zone. Field chemistry indicated that all parameters were within acceptable limits.

## Camp Brook (CAMP)

Camp Brook near Osceola, PA, had a moderately impaired biological community in May 2005, with low scores for EPT Index, Shannon Diversity Index, percent dominant taxa, and percentage of Chironomidae. The physical habitat of the stream was designated supporting; low scores were given for condition of banks, sediment deposition, velocity/depth regimes, and epifaunal substrate. All field chemistry parameters were normal.

## Cook Hollow (COOK)

Cook Hollow near Austinburg, PA, had a slightly impaired biological community. This site had a high EPT Index and taxonomic richness, but scored poorly for percentage of Chironomidae and Shannon Diversity Index. The habitat was rated excellent, and field chemistry parameters were all within acceptable limits. Staff noted logging activities downstream of the sampling site.

## Deep Hollow Brook (DEEP)

The biological community of Deep Hollow Brook near Danville, NY, served as the reference site for the Group 3 streams in 2005. This site had the best combination of biological, habitat, and field chemistry conditions of the Group 3 streams. DEEP had the highest Shannon Diversity Index value of all Group 3 streams, as well as high scores for taxonomic richness, EPT Index and percent Ephemeroptera. Alkalinity had exceeded the Pennsylvania aquatic life standard in previous years, but this year was at an acceptable level. Habitat at DEEP was designated as excellent, with high scores for sediment deposition, frequency of riffles, vegetative protective cover, and riparian vegetative zone width. This watershed was located in a mostly forested area, interspersed with scattered cropland and old fields, and the station was located downstream of a beaver dam. Staff noted that, at the time of sampling, the beaver dam had been breached, creating a large wetland area upstream of the sampling site.

## **Denton Creek (DENT)**

Denton Creek near Hickory Grove, PA, had a moderately impaired biological community during May 2005. DENT was dominated by pollution tolerant Chironomidae and had poor scores for several metrics, including EPT Index, percentage of Chironomidae, taxonomic richness, Shannon Diversity Index, and percent Ephemeroptera. The habitat was rated supporting, with low scores for channel flow status, frequency of riffles, and velocity/depth regimes. Higher scores were given for riparian vegetative zone width and vegetative protective cover. The sampling site was located downstream of Hawkins Lake, and

staff noted that the stream went underground downstream of the sampling site. As in previous years, alkalinity values at DENT exceeded the water quality standards, but other field chemistry parameters were within acceptable limits in May 2005.

## Dry Brook (DRYB)

Dry Brook at Waverly, NY, was not sampled in 2005 due to insufficient flow levels to take a water quality or macroinvertebrate sample.

## Little Wappasening Creek (LWAP)

The biological community of Little Wappasening Creek near Nichols, NY, was designated slightly impaired in May 2005, due to low taxonomic richness and an abundance of midges. Staff noted dramatic changes at this site from previous years, including major stream channel disruption and a completely scoured stream bottom. The stream was approximately four times its normal width, and concrete and metal debris were observed in the channel. The high-cut banks with areas of erosion indicated large fluctuations in flow. The land cover is mostly forested, with some agriculture in the headwaters. The habitat was rated as partially supporting this year after being rated as excellent last year. Low scores were given for sediment deposition, channel flow status, channel alteration, velocity/flow regimes, and condition of banks. In 2001, dredging equipment was found in the stream, and timber was being removed from the streambanks. Since that time no evidence of dredging or timber removal was noted. All field chemistry parameters remained normal.

## Parks Creek (PARK)

In 2003, the location of the site for Parks Creek near Litchfield, NY, was moved upstream slightly due to logging at the previous sampling site. PARK had a slightly impaired biological community during the 2005 sampling season. This site scored low for EPT Index and percentage of Chironomidae, which was the dominant taxon. The site had partially supporting habitat, with low scores for a number of parameters, including velocity/depth regimes, sediment deposition, condition of banks, and channel alteration. The predominant land use is forested, with a considerable amount of woody debris and fallen trees in the stream channel. At the time of sampling, staff noted a scoured channel, major bed movement, and eroded banks from a recent high water event. All field chemistry parameters were within acceptable ranges.

## Prince Hollow Run (PRIN)

Prince Hollow Run near Cadis, PA, was designated nonimpaired in May 2005, improving from slightly impaired last year and severely impaired in 2002. This site showed high scores for taxonomic richness and percent Ephemeroptera. The habitat was rated as partially supporting, with low scores for condition of banks, sediment deposition, channel flow status, and riparian vegetative zone width. At the time of sampling, very low flow was noted, but there was evidence of channel scarring and severe bank erosion from recent high water.

## Russell Run (RUSS)

Russell Run near Windham, PA, was designated slightly impaired in May 2005, as it was the previous year. Poor metric scores were given for percent dominant taxon and percent Chironomidae, which was the dominant taxon. The habitat was considered partially supporting, with low scores given for sediment deposition, channel flow status, channel alteration, and condition of banks. RUSS is located

in a primarily forested area, and staff noted large log jams and much woody debris. The substrate was covered with an abundance of algae. All field chemistry parameters were normal.

## Sackett Creek (SACK)

The biological condition of Sackett Creek near Nichols, NY, was designated moderately impaired, and the physical habitat was partially supporting. SACK had the lowest taxonomic richness and Shannon Diversity Index and the highest percent of Chironomidae of all the Group 3 streams. Habitat was rated low for condition of banks, channel flow status, sediment deposition, and channel alteration. Staff noted major changes from May 2004, with the stream bottom having been bulldozed and regraded. Recent flooding left the stream bottom scoured and produced numerous new gravel bars. All field chemistry parameters were within normal ranges.

#### Smith Creek (SMIT)

Smith Creek near East Lawrence, PA, was designated as nonimpaired with supporting habitat. SMIT had the highest taxonomic richness of all the Group 3 streams and also had above average scores for Shannon Diversity Index, percent Ephemeroptera, and percent Chironomidae. This small stream drains a wetland area and mixed coniferous forest. Low habitat scores were given for a number of parameters, including epifaunal substrate, embeddedness, velocity/depth regimes, and frequency of riffles. Staff noted there was very low flow at this site at the time of sampling, as well as a small dump on the right bank. There were no field chemistry parameters that exceeded state limits.

## Strait Creek (STRA)

A nonimpaired biological community existed at Strait Creek near Nelson, PA, during fiscal year 2005. The site had the highest percent Ephemeroptera of all the Group 3 sites and also showed good scores for EPT Index and Hilsenhoff Biotic Index. The physical habitat was designated supporting, and all field chemistry parameters were within normal limits. Low habitat scores were given for velocity/depth regimes, channel flow status, condition of banks, and sediment deposition. Staff noted very low flow at time of sampling, but there was evidence of a recent high water event.

## White Branch Cowanesque River (WBCO)

In May 2004, White Branch Cowanesque River near North Fork, PA, was designated moderately impaired for the second consecutive year, with the worst metric scores for Shannon Diversity Index and Hilsenhoff Biotic Index. Additionally, it scored very low for EPT Index, percent Chironomidae, and percent dominant taxa. This site had been nonimpaired in May 2000 with a number of pollution intolerant taxa, but degraded to severely impaired by May 2003. The sample was dominated by midges, comprising 60.3 percent of the sample. The habitat was supporting due to low scores for embeddedness, velocity/depth regimes, and riparian vegetative zone width. WBCO is located downstream of an impoundment. Field chemistry measurements were within acceptable ranges.

#### White Hollow (WHIT)

White Hollow near Wellsburg, NY, was designated nonimpaired in fiscal year 2005 and showed the highest metric scores of all Group 3 streams for Hilsenhoff Biotic Index and percent Chironomidae. This site was dominated by the pollution intolerant mayfly, *Epeorus* (Ephemeroptera: Heptageniidae). The physical habitat was supporting, with lower scores for channel flow status, sediment deposition, and condition of banks; but high scores for riparian zone and vegetative protective cover. All water chemistry parameters were normal.

## MANAGEMENT IMPLICATIONS

Long-term studies of this nature are critical to establish water quality trends and understand biological conditions. To effectively manage the resources, officials and local interest groups must have a true picture of ecological dynamics and possible problem areas, which can only be obtained through long-term studies such as this one.

Several management implications can be extracted from the chemical water quality, macroinvertebrate community, and physical habitat data collected from sampling areas. These observations, although based on a small sample size, are presented as possible subject areas for future research and as issues to be considered by aquatic resource managers, local interest groups, elected officials, and other policy-makers.

#### New York – Pennsylvania Sites

The sites in this reference category have shown and continue to show a large degree of variability in water quality; however, they do not vary much in biological or habitat condition. The biological conditions overall are nonimpaired or only slightly impaired. Habitat conditions were rated as excellent or supporting at all the NY-PA border sites, with the degradation at numerous sites due to dredging in the stream, inadequate riparian vegetative buffers, and the unstable nature of these glacial streams. Of particular interest is the prevalence of elevated total iron and total aluminum values throughout the sampling period, although there were fewer samples exceeding water quality standards in 2004-2005 than in 2003-2004.

## Pennsylvania – Maryland Sites

In fiscal year 2005, total nitrogen and total nitrate concentrations continued to be elevated in the PA-MD interstate sites. The area surrounding the PA-MD border monitoring stations was largely agricultural. Intensive agricultural activities without proper Best Management Practices often result in streambank erosion and sedimentation, contributing to poor instream habitat quality and to nutrient enrichment. Nutrient enrichment encourages excessive plant growth, which can depress dissolved oxygen levels during plant decomposition. The most common habitat problem at the PA-MD sites was lack of riparian vegetative buffer zones along the stream corridors.

## **River Sites**

Due to high river flows, staff collected biological samples at only three of the river stations during summer 2004. SUSQ 365.0 has continuously exhibited higher quality conditions than other river stations in the ISWQN. The Cowanesque River (COWN 2.2) downstream of the Cowanesque Reservoir had the poorest conditions with moderately impaired biological conditions and supporting habitat. Overall, high total iron and total aluminum concentrations were prevalent in the water quality conditions of the river sites during fiscal year 2005.

#### **Group 3 Streams**

The Group 3 streams were located on the NY-PA border, so many of them were glacial streams that were dredged for gravel. These disturbances in habitat may have attributed to degradation in the biological community. Conversely, many of the Group 3 streams were small order streams that were largely forested. These protective habitat conditions may have attributed to nonimpaired biological conditions. In fiscal year 2005, these sites were sampled after a high water event which caused noticeable

degradation at many of the Group 3 sites and resulted in lower habitat scores this year than in previous years.

## Future Study

Future study and remediation efforts should focus on those streams that had moderately impaired macroinvertebrate communities or exceeded water quality standards. Moderately impaired biological conditions were found at Camp Brook, White Branch Cowanesque River, Denton Creek, Sackett Creek, and the Cowanesque River downstream of the Cowanesque Reservoir (COWN 2.2). Additional study of stream water chemistry, biology, and habitat at varying flows may help explain some impairment problems.

During this sampling period, a large number of streams had water quality parameters that exceeded standards. These streams included Bentley Creek, Cascade Creek, Cayuta Creek, Choconut Creek, Little Snake Creek, North Fork Cowanesque River, Seeley Creek, South Creek, Troups Creek, Trowbridge Creek, Conowingo Creek, Ebaughs Creek, Chemung River, Cowanesque River (1.0 and 2.2), the Susquehanna River (289.1, 340.0, and 365.0), Tioga River, and Denton Creek. The water quality conditions of these streams should be monitored for future violations. Furthermore, the source of these pollutants should be identified. State water quality standards vary across state lines, and problems may arise when the source of these pollutants is located in an adjacent state.

## CONCLUSIONS

Twenty-two (48.9 percent) of the 45 interstate streams sites at which macroinvertebrate samples were collected contained nonimpaired biological communities. Biological conditions at another 18 sites (40.0 percent) were slightly impaired, while five sites (11.1 percent) were moderately impaired. No sites were designated severely impaired. Six sites (SUSQ 10.0, SUSQ 44.5, SUSQ 289.1, SUSQ 340.0, TIOG, and CHEM) were not sampled using RBP III techniques and, thus, were not averaged into the final scores. Nineteen sites (42.2 percent) had excellent habitats. Nineteen sites (42.2 percent) had partially supporting habitats.

Overall, 72 observations (9.8 percent) of water chemistry parameters exceeded state standards, which is approximately the same proportion of exceedance values as the previous year. Total iron exceeded standards most frequently with 31 violations (43 percent). Total iron and total aluminum appear to be naturally high in some of these watersheds. Tioga River is the only stream that has documented abandoned mine discharge indicated by high metals and high acidity. Elevated aluminum and depressed alkalinity may be due to acid precipitation, especially in the NY-PA border streams. Total dissolved solids, nitrate plus nitrite, and dissolved oxygen are all indicators of organic pollution.

Of the NY-PA border streams, the biological community of ten (71.4 percent) of these streams was nonimpaired, and four sites (28.6 percent) were slightly impaired. Eight sites had excellent habitats (57.1 percent), and six sites (42.8 percent) had supporting habitats. Overall, biological conditions improved at four sites and stayed the same at the other 10 stations. High metal concentrations, particularly total iron and total aluminum, appeared to be the most common sources of water quality degradation in this region. The parameters that exceeded New York and Pennsylvania state standards were total iron, total aluminum, total chlorine, and alkalinity. Iron standards were exceeded at Bentley Creek, Cascade Creek, Cayuta Creek, Choconut Creek, Little Snake Creek, North Fork Cowanesque River, South Creek, Cayuta Creek, Choconut Creek, Little Snake Creek, North Fork Cowanesque River, Seeley Creek, and Troups Creek. Total chlorine was exceeded at Cayuta Creek, while Cascade Creek and Little Snake Creek exceeded

alkalinity standards. In fiscal year 2005, high flows may have impacted the water quality and biological conditions at the NY-PA border streams.

Nonimpaired biological conditions existed at two (25.0 percent) of the eight PA-MD interstate streams and six sites (75.0 percent) were slightly impaired. Six (75.0 percent) of the PA-MD border sites had excellent habitats, one (12.5 percent) had supporting habitat, and one site (12.5 percent) had partially supporting habitat. Biological conditions at PA-MD sites appeared to improve or remain the same, with the exception of South Branch Conewago Creek, which showed some degradation. Water quality at two sites exceeded Pennsylvania and Maryland water quality standards: nitrite plus nitrate at CNWG 4.4 and total chlorine at EBAU 1.5. The PA-MD border streams are located in a heavily agricultural region, and many of the parameters that exceeded the 90<sup>th</sup> percentile at these sites were nutrients. Also, streambank erosion and sedimentation created instream habitat problems in this region.

River sites consisted of nine stations located on the Susquehanna River, Chemung River, Cowanesque River, and Tioga River. One station (SUSQ 10.0) is never sampled for macroinvertebrates due to a lack of riffle habitat and deep water at the site, while five stations were not sampled for macroinvertebrates during fiscal year 2005 due to high river flows throughout the summer sampling period. The remaining sites (SUSQ 365.0, COWN 1.0, and COWN 2.2) were compared to Cascade Creek, the reference station for the NY-PA stations. The biological communities of two sites (66.7 percent) were nonimpaired, while COWN 2.2 was moderately impaired. Habitat at SUSQ 365.0 was excellent, and both Cowanesque River sites had supporting habitat. Water quality parameters that exceeded state standards were total iron and total aluminum. Standards were exceeded at CHEM 12.0, COWN 2.2, COWN 1.0, SUSQ 365.0, SUSQ 340.0, SUSQ 289.1, and TIOG 10.8. The biological condition at the one Susquehanna River site sampled remained the same from previous years. COWN 1.0 improved from the last time it was sampled in 2002-2003, while COWN 2.2 remained moderately impaired as in the past. Water quality appeared to improve with a decreased number of state water quality standard violations.

Of the 20 Group 3 sites, eight stations (40.0 percent) were considered nonimpaired. Eight sites (40.0 percent) had slightly impaired biological communities, and four stations (20.0 percent) had moderately impaired conditions. Four (20.0 percent) of the 20 stations sampled had excellent habitat conditions, while 10 (50.0 percent) had supporting and six had partially supporting habitats. Most of the Group 3 streams remained the same as previous years, although five sites did show slight degradation in the biological community.

The current and historical data contained in this report provide a database that enables SRBC staff and others to better manage water quality, water quantity, and biological resources of interstate streams in the Susquehanna River Basin. The data can be used by SRBC's member states and local interest groups to gain a better understanding of water quality in upstream and downstream areas outside of their jurisdiction. Information in this report also can serve as a starting point for more detailed assessments and remediation efforts that may be planned on these streams.

## REFERENCES

- Aroner, E.R. 1994. WQHYDRO—Water Quality/Hydrology/Graphics/Analysis System User's Manual. WQHYDRO Consulting, Portland, Oregon.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Bauer, K.M., W.D. Glove, and J.D. Flodo. 1984. Methodologies for Determining Trends in Water Quality Data. Industrial Research Laboratories, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.
- Bollinger, S.W. 1992. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #5, October 1, 1990-June 30, 1991. Susquehanna River Basin Commission (Publication No. 146), Harrisburg, Pennsylvania.
- 1993. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #6, July 1, 1991-June 30, 1992. Susquehanna River Basin Commission (Publication No. 151), Harrisburg, Pennsylvania.
- 1994. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #7, July 1, 1992-June 30, 1993. Susquehanna River Basin Commission (Publication No. 160), Harrisburg, Pennsylvania.
- 1995. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #8, July 1, 1993-June 30, 1994. Susquehanna River Basin Commission (Publication No. 165), Harrisburg, Pennsylvania.
- Bollinger, S.W. and D.L. Sitlinger. 1996. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #9, July 1, 1994-June 30, 1995. Susquehanna River Basin Commission (Publication No. 173), Harrisburg, Pennsylvania.
- 1997. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #10, July 1, 1995-June 30, 1996. Susquehanna River Basin Commission (Publication No. 185), Harrisburg, Pennsylvania.
- Buchanan, T.J. and W.P. Somers. 1969. Discharge Measurements at Gaging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A8, 65 pp. Washington, D.C.
- The Commonwealth of Pennsylvania. 1999. Pennsylvania Code: Title 25 Environmental Protection Chapter 93 Water Quality Standards. Department of Environmental Protection. Bureau of Watershed Conservation. Harrisburg, Pennsylvania.
- Diehl, D.L. and D.L. Sitlinger. 2001. Upper Susquehanna Subbasin Survey: Small Watershed Study, Monitoring Report #1A, October 1, 1999-August 31, 2000. Susquehanna River Basin Commission (Publication No. 213), Harrisburg, Pennsylvania.

- Edwards, R.E. 1995. Trends in Nitrogen, Phosphorus, and Suspended Sediment in the Susquehanna River Basin, 1974-1993. Susquehanna River Basin Commission (Publication No. 163), Harrisburg, Pennsylvania.
- Hirsch, R.M., R.B. Alexander, and R.A. Smith. 1991. Selection of Methods for the Detection and Estimation of Trends in Water Quality. *Water Resources Research* 27(5): 803-813.
- Hoffman, J.L.R. and D.L. Sitlinger. 2001. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #14, July 1, 1999-June 30, 2000. Susquehanna River Basin Commission (Publication No. 215), Harrisburg, Pennsylvania.
- Klemm, D. J., P. A. Lewis, F. Fulk, and J. M. Lazorchak. 1990. Macroinvertebrate field and laboratory methods for evaluating the biological integrity of surface waters. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio.
- Kovach, W.I. 1993. A Multivariate Statistical Package for IBM-PC's, Version 2.1. Kovach Computing Services, Pentraeth, Wales, U.K., 55 pp.
- LeFevre, S.R. and D.L. Sitlinger. 2002. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #15, July 1, 2000-June 30, 2001. Susquehanna River Basin Commission (Publication No. 223), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 2003. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #16, July 1, 2001-June 30, 2002. Susquehanna River Basin Commission (Publication No. 227), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 2004. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #17, July 1, 2002 June 30, 2003. Susquehanna River Basin Commission (Publication No. 233), Harrisburg, Pennsylvania.
- Maryland Department of the Environment. 1993. Water Quality Regulations for Designated Uses, COMAR 26.08.02. Annapolis, Maryland.
- McMorran, C.P. 1988. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report for 1986 and 1987 Water Years. Susquehanna River Basin Commission (Publication No. 118), Harrisburg, Pennsylvania.
- McMorran, C.P. and S.W. Bollinger. 1989. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #2, 1988 Water Year. Susquehanna River Basin Commission (Publication No. 122), Harrisburg, Pennsylvania.
- ——. 1990. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #3, 1989 Water Year. Susquehanna River Basin Commission (Publication No. 131), Harrisburg, Pennsylvania.
- Merrit, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America (3<sup>rd</sup> ed.). Kendall/Hunt Publishing Company, Dubuque, Iowa, 862 pp.
- New York State Department of Environmental Conservation. 1998. The 1998 Chemung River Basin Waterbody Inventory and Priority Waterbodies List. Division of Water, Albany, New York.

- ——. 1992. Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705. Division of Water, Albany, New York.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- Ohio River Valley Water Sanitation Commission. 1990. Water Quality Trends Ohio River and Its Tributaries. Water Quality Assessment Program, Cincinnati, Ohio.
- Omernik, J.M. 1987. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geograph. 77(1):118-125.
- Orr, J. 2003. Watershed Assessment and Remediation Strategy for Abandoned Mine Drainage in the Upper Tioga River Watershed. Susquehanna River Basin Commission (Publication No. 230), Harrisburg, Pennsylvania.
- Peckarsky, B.L., P.R. Fraissinet, M.J. Penton, and D.J. Conklin, Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York.
- Pennak, R.W. 1989. Fresh-Water Invertebrates of the United States: Protozoa to Mollusca. 3<sup>rd</sup> ed. John Wiley & Sons, New York, New York.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish. U.S. Environmental Protection Agency, Office of Water, Document No. EPA/444/4-89-001, Washington, D.C.
- Rowles, J.L. and D.L. Sitlinger. 1998. Water Quality of Interstate Streams in the Susquehanna River Basin, Monitoring Report #11, July 1, 1996-June 30, 1997. Susquehanna River Basin Commission (Publication No. 196), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 1999. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #12, July 1, 1997-June 30, 1998. Susquehanna River Basin Commission (Publication No. 205), Harrisburg, Pennsylvania.
- \_\_\_\_\_. 2000. Assessment of Interstate Streams in the Susquehanna River Basin, Monitoring Report #13, July 1, 1998-June 30, 1999. Susquehanna River Basin Commission (Publication No. 211), Harrisburg, Pennsylvania.
- Smith, R.A., R.M. Hirsch, and J.R. Slack. 1982. A Study of Trends in Total Phosphorus Measurements at Stations in the NASQAN Network. U.S. Geological Survey, Water Supply Paper 2254.
- U.S. Environmental Protection Agency. 1990. Freshwater Macroinvertebrate Species List Including Tolerance Values and Functional Feeding Group Designations for Use in Rapid Bioassessment Protocols. Assessment and Watershed Protection Division, Report No. 11075.05, Washington, D.C.
- Zar, J. H. 1996. Biostatistical Analysis. (3rd ed.). Prentice Hall, Upper Saddle River, New Jersey, 662 pp.

# Appendix A

WATER QUALITY DATA FOR INTERSTATE STREAMS CROSSING THE NEW YORK-PENNSYLVANIA AND PENNSYLVANIA-MARYLAND BORDERS

| Parameter             | Units    | APAL 6.9 | BNTY 0.9 | BNTY 0.9 | BNTY 0.9 | CASC1.6  | CASC 1.6 | CASC 1.6 | CASC 1.6 |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date                  | yyyymmdd | 20040825 | 20040720 | 20050215 | 20050510 | 20040719 | 20041020 | 20050214 | 20050509 |
| Time                  | hhmm     | 1210     | 1210     | 1110     | 1335     | 1215     | 1030     | 1045     | 1010     |
| Discharge             | cfs      | 22.221   | 31.915   | 32.355   | 9.327    | 3.013    | 6.48     | 6.733    | 2.13     |
| Temperature           | degree C | 19.3     | 20.7     | 1.2      | 17.7     | 18.8     | 9        | 0.4      | 10.7     |
| Conductance           | umhos/cm | 86       | 193      | 117      | 180      | 63       | 46       | 46       | 62       |
| Dissolved Oxygen      | mg/l     | 7.81     | 7.75     | 10.57    | 8.74     | 6.62     | 9.03     | 10.22    | 9.32     |
| pН                    |          | 6.8      | 8.1      | 7.8      | 8.2      | 6.9      | 6.9      | 6.8      | 6.5      |
| Alkalinity            | mg/l     | 28       | 64       | 54       | 60       | 24       | 12       | 16       | 10       |
| Acidity               | mg/l     | 4        | 2        | 6        | 2        | 6        | 2        | 4        | 4        |
| Solids, Total         | mg/l     | 66       | 158      | 76       | 106      | 50       | 48       | 56       | 64       |
| Ammonia, Total        | mg/l     | < 0.02   | < 0.02   | 0.02     | 0.03     | 0.02     | < 0.02   | < 0.02   | 0.03     |
| Nitrite, Total        | mg/l     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01   |
| Nitrate, Total        | mg/l     | 0.15     | 0.14     | 0.61     | < 0.04   | 0.07     | 0.04     | 0.2      | 0.05     |
| Nitrogen, Total       | mg/l     | 0.28     | 0.51     | 0.9      | 0.6      | 0.33     | 0.19     | 0.24     | 0.47     |
| Phosphorus, Total     | mg/l     | 0.021    | < 0.01   | 0.012    | 0.022    | 0.029    | 0.012    | < 0.01   | 0.032    |
| Orthophosphate, Total | mg/l     | 0.012    | < 0.01   | 0.016    | < 0.01   | 0.018    | 0.01     | < 0.01   | 0.02     |
| Organic Carbon, Total | mg/l     | 3.2      | 3.6      | 2.23     | 2.45     | 3.8      | 2.8      | 1.34     | 1.92     |
| Calcium               | mg/l     | 7.85     | 22.9     | 13.9     | 17.8     | 6.814    | 4.57     | 4.33     | 5.315    |
| Magnesium             | mg/l     | 2.42     | 4.32     | 2.88     | 3.8      | 1.843    | 1.37     | 1.37     | 1.582    |
| Chloride              | mg/l     | 4.06     | 12.6     | 8.04     | 9.24     | 1.71     | 1.53     | 1.72     | 1.86     |
| Sulfate               | mg/l     | 7.35     | 9.6      | 10.5     | 10.6     | 5.4      | 5.97     | 8.29     | 8.25     |
| Turbidity             | ntu      | 2.55     | <1       | 9.08     | 1.11     | 3.09     | 2.26     | 3.72     | 2.91     |
| Iron, Total           | µg/l     | 240      | 73       | 337      | 33       | 868      | 275      | 261      | 255      |
| Manganese, Total      | µg/l     | 52       | <10      | <10      | <10      | 96       | 55       | 41       | 39       |
| Aluminum, Total       | µg/l     | <200     | <200     | 298      | <200     | <200     | <200     | <200     | <200     |
| Suspended Sediment    | ppm      | NA       | NA       | 14       | 3        | NA       | NA       | 5        | 2        |

Table A1. Water Quality Data for New York-Pennsylvania Border Streams

| Parameter             | Units    | CAYT 1.7 | <b>CAYT 1.7</b> | <b>CAYT 1.7</b> | <b>CAYT 1.7</b> | CHEM 12.0 | CHEM 12.0 | CHEM 12.0 | CHEM 12.0 |
|-----------------------|----------|----------|-----------------|-----------------|-----------------|-----------|-----------|-----------|-----------|
| Date                  | yyyymmdd | 20040826 | 20041021        | 20050215        | 20050509        | 20040929  | 20041020  | 20050215  | 20050510  |
| Time                  | hhmm     | 0850     | 1020            | 0835            | 1515            | 1250      | 1450      | 0945      | 1425      |
| Discharge             | cfs      | 137.292  | 76.2            | 72.35           | 47.912          | 2050      | 3470      | 4150      | 1290      |
| Temperature           | degree C | 17.5     | 9.7             | 0.8             | 14.9            | 16.4      | 9.9       | 1.1       | 16.2      |
| Conductance           | umhos/cm | 257      | 235             | 175             | 325             | 341       | 304       | 228       | 372       |
| Dissolved Oxygen      | mg/l     | 7.28     | 9.25            | 9.7             | 10.01           | 7.44      | 8.65      | 10.1      | 10.9      |
| pН                    |          | 7.25     | 7.6             | 7.7             | 8.2             | 6.55      | 7.95      | 8         | 8.5       |
| Alkalinity            | mg/l     | 82       | 70              | 84              | 56              | 120       | 94        | 72        | 88        |
| Acidity               | mg/l     | 8        | 4               | 2               | 2               | 28        | 2         | 4         | 0         |
| Solids, Total         | mg/l     | 174      | 158             | 104             | 214             | 242       | 230       | 170       | 216       |
| Ammonia, Total        | mg/l     | < 0.02   | < 0.02          | 0.03            | 0.03            | 0.03      | < 0.02    | 0.04      | 0.03      |
| Nitrite, Total        | mg/l     | < 0.01   | < 0.01          | < 0.01          | < 0.01          | < 0.01    | < 0.01    | < 0.01    | < 0.01    |
| Nitrate, Total        | mg/l     | 0.39     | 0.57            | 0.58            | 0.76            | 0.96      | 0.69      | 0.87      | 0.52      |
| Nitrogen, Total       | mg/l     | 0.55     | 0.75            | 0.74            | 0.81            | 1.28      | 0.98      | 1.12      | 0.96      |
| Phosphorus, Total     | mg/l     | 0.07     | 0.125           | 0.022           | 0.226           | 0.062     | 0.034     | 0.033     | 0.057     |
| Orthophosphate, Total | mg/l     | 0.016    | 0.113           | 0.02            | 0.2             | 0.063     | 0.022     | 0.017     | 0.029     |
| Organic Carbon, Total | mg/l     | 2.7      | 3.3             | 2.17            | 2.25            | 3.3       | 3.6       | 2.65      | 3.21      |
| Calcium               | mg/l     | 26.5     | 23.1            | 18.9            | 29.1            | 37.3      | 33.3      | 24.6      | 33.8      |
| Magnesium             | mg/l     | 5.45     | 5               | 3.92            | 6.217           | 7.59      | 7.61      | 5.19      | 8.14      |
| Chloride              | mg/l     | 25.1     | 24.1            | 17.3            | 30.5            | 31.6      | 29.3      | 26        | 36.7      |
| Sulfate               | mg/l     | 10.3     | 10.1            | 11.6            | 14.9            | 16        | 18.8      | 15.7      | 19.7      |
| Turbidity             | ntu      | 2.14     | 2.82            | 6.73            | 1.32            | 23.07     | 9.15      | 20.71     | 1.8       |
| Iron, Total           | µg/l     | 158      | 164             | 408             | 89              | 698       | 344       | 582       | 93        |
| Manganese, Total      | µg/l     | 12       | <10             | 14              | <10             | 51        | 30        | 61        | 34        |
| Aluminum, Total       | µg/l     | <200     | <200            | 282             | <200            | 382       | 225       | 534       | <200      |
| Suspended Sediment    | ppm      | NA       | NA              | 9               | 5               | NA        | NA        | 35        | 3         |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

| Parameter             | Units    | CHOC 9.1 | <b>COWN 1.0</b> | <b>COWN 1.0</b> | <b>COWN 1.0</b> | <b>COWN 1.0</b> | <b>COWN 2.2</b> | <b>COWN 2.2</b> | <b>COWN 2.2</b> |
|-----------------------|----------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Date                  | yyyymmdd | 20040720 | 20040721        | 20041021        | 20050216        | 20050510        | 20040722        | 20041021        | 20050216        |
| Time                  | hhmm     | 0845     | 1300            | 1220            | 0800            | 0950            | 0820            | 1310            | 0930            |
| Discharge             | cfs      | 51.617   | 158             | 181             | 983             | 91              | 137             | 181             | 992             |
| Temperature           | degree C | 16.9     | 24.1            | 12.6            | 2               | 11              | 22.5            | 13.1            | 1.8             |
| Conductance           | umhos/cm | 82       | 69              | 166             | 135             | 150             | 68              | 165             | 130             |
| Dissolved Oxygen      | mg/l     | 7.28     | 6.81            | 7.91            | 9.87            | 7.58            | 6.2             | 7.39            | 10.11           |
| pH                    |          | 6.85     | 7.5             | 7.35            | 7.3             | 6.8             | 7.6             | 7.3             | 7.4             |
| Alkalinity            | mg/l     | 22       | 58              | 54              | 54              | 48              | 68              | 50              | 58              |
| Acidity               | mg/l     | 2        | 4               | 2               | 4               | 4               | 4               | 2               | 6               |
| Solids, Total         | mg/l     | 74       | 142             | 152             | 120             | 94              | 124             | 162             | 108             |
| Ammonia, Total        | mg/l     | 0.03     | 0.04            | 0.03            | 0.05            | 0.03            | 0.08            | 0.02            | 0.05            |
| Nitrite, Total        | mg/l     | < 0.01   | < 0.01          | < 0.01          | < 0.01          | < 0.01          | < 0.01          | < 0.01          | < 0.01          |
| Nitrate, Total        | mg/l     | 0.18     | 0.12            | 0.58            | 0.74            | 0.47            | 0.09            | 0.57            | 0.74            |
| Nitrogen, Total       | mg/l     | 0.89     | 0.53            | 0.87            | 1.25            | 0.83            | 0.44            | 0.87            | 1.01            |
| Phosphorus, Total     | mg/l     | 0.025    | 0.028           | 0.053           | 0.052           | 0.072           | 0.019           | 0.055           | 0.049           |
| Orthophosphate, Total | mg/l     | 0.013    | 0.019           | 0.087           | 0.029           | 0.048           | 0.017           | 0.087           | 0.029           |
| Organic Carbon, Total | mg/l     | 4.1      | 1.4             | 4.3             | 2.81            | 3.14            | 4.3             | 4.4             | 2.9             |
| Calcium               | mg/l     | 6.81     | 21.6            | 17.4            | 16.2            | 15              | 22.5            | 17.8            | 16              |
| Magnesium             | mg/l     | 2.17     | 4.4             | 3.96            | 3.664           | 3.37            | 4.35            | 3.85            | 3.606           |
| Chloride              | mg/l     | 5.31     | 10.4            | 6.8             | 8.57            | 7.42            | 9.98            | 6.75            | 8.49            |
| Sulfate               | mg/l     | 6.7      | 11.5            | 10.1            | 12.4            | 11.5            | 11.5            | 10              | 12.2            |
| Turbidity             | ntu      | 5.63     | 8.45            | 40.54           | 54.1            | 4.4             | 10.07           | 41.2            | 54.4            |
| Iron, Total           | µg/l     | 474      | 282             | 1090            | 2174            | 196             | 145             | 759             | 1858            |
| Manganese, Total      | µg/l     | 34       | 78              | 63              | 96              | 33              | 95              | 60              | 93              |
| Aluminum, Total       | µg/l     | 226      | <200            | 972             | 2416            | <200            | <200            | 631             | 2140            |
| Suspended Sediment    | ppm      | NA       | NA              | NA              | 24              | 5               | NA              | NA              | 33              |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

|                       |          | 10.11 10.110    | <u> </u>        |          | 00              |                 |                 |                 |                  |  |
|-----------------------|----------|-----------------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|------------------|--|
| Parameter             | Units    | <b>COWN 2.2</b> | <b>HLDN 3.5</b> | LSNK 7.6 | <b>LSNK 7.6</b> | <b>LSNK 7.6</b> | <b>LSNK 7.6</b> | <b>NFCR 7.6</b> | <b>SEEL 10.3</b> |  |
| Date                  | yyyymmdd | 20050510        | 20040721        | 20040719 | 20041020        | 20050214        | 20050509        | 20040721        | 20040720         |  |
| Time                  | hhmm     | 0910            | 1140            | 1445     | 1215            | 1325            | 1240            | 0900            | 1420             |  |
| Discharge             | cfs      | 91              | 2.326           | 7.895    | 10.638          | 8.884           | 6.211           | 3.041           | 48.334           |  |
| Temperature           | degree C | 10.7            | 20.2            | 19.9     | 9.7             | 0.1             | 12.9            | 16.2            | 22               |  |
| Conductance           | umhos/cm | 147             | 65              | 130      | 100             | 102             | 120             | 45              | 242              |  |
| Dissolved Oxygen      | mg/l     | 7.47            | 7.01            | 7.1      | 9.06            | 10.47           | 9.33            | 7.16            | 6.66             |  |
| pH                    |          | 6.8             | 7.45            | 7        | 7               | 7.1             | 6.7             | 7.15            | 7.9              |  |
| Alkalinity            | mg/l     | 46              | 64              | 26       | 22              | 18              | 16              | 36              | 78               |  |
| Acidity               | mg/l     | 4               | 6               | 4        | 2               | 4               | 2               | 4               | 2                |  |
| Solids, Total         | mg/l     | 66              | 120             | 88       | 80              | 106             | 90              | 138             | 190              |  |
| Ammonia, Total        | mg/l     | 0.03            | < 0.02          | 0.02     | < 0.02          | 0.03            | 0.03            | 0.05            | < 0.02           |  |
| Nitrite, Total        | mg/l     | < 0.01          | < 0.01          | < 0.01   | < 0.01          | < 0.01          | < 0.01          | < 0.01          | < 0.01           |  |
| Nitrate, Total        | mg/l     | 0.37            | 0.04            | 0.06     | < 0.04          | 0.26            | < 0.04          | 2.16            | 0.26             |  |
| Nitrogen, Total       | mg/l     | 0.71            | 0.28            | 0.26     | 0.26            | 0.49            | 0.49            | 2.6             | 0.64             |  |
| Phosphorus, Total     | mg/l     | 0.061           | 0.024           | 0.025    | 0.021           | 0.014           | 0.064           | 0.107           | 0.013            |  |
| Orthophosphate, Total | mg/l     | 0.038           | 0.018           | 0.017    | 0.013           | 0.011           | 0.05            | 0.091           | PBQ              |  |
| Organic Carbon, Total | mg/l     | 2.56            | 5.1             | 4.7      | 3.9             | 2.28            | 2.27            | 5.8             | 3.9              |  |
| Calcium               | mg/l     | 12              | 21.8            | 9.493    | 7.62            | 7.04            | 8.025           | 16.3            | 30               |  |
| Magnesium             | mg/l     | 2.66            | 4.33            | 2.354    | 2.02            | 1.94            | 2.208           | 4.57            | 4.66             |  |
| Chloride              | mg/l     | 5.83            | 13.7            | 17.8     | 11.9            | 15.6            | 12.7            | 9.02            | 15.8             |  |
| Sulfate               | mg/l     | 9.22            | 9.4             | 7.27     | 6.15            | 8.45            | 8.2             | 10.5            | 10.6             |  |
| Turbidity             | ntu      | 3.46            | 2.64            | 4.32     | 3.66            | 6.71            | 1.97            | 8.96            | PBQ              |  |
| Iron, Total           | µg/l     | 72              | 185             | 602      | 345             | 411             | 208             | 359             | 56               |  |
| Manganese, Total      | µg/l     | 26              | 12              | 66       | 34              | 50              | 23              | 38              | PBQ              |  |
| Aluminum, Total       | µg/l     | <200            | <200            | <200     | <200            | 205             | <200            | <200            | <200             |  |
| Suspended Sediment    | ppm      | 1               | NA              | NA       | NA              | 21              | 3               | NA              | NA               |  |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued
| Parameter             | Units    | SEEL 10.3 | SEEL 10.3 | SEEL 10.3 | SNAK 2.3 | <b>SOUT 7.8</b> | SUSQ 289.1 | SUSQ 289.1 |
|-----------------------|----------|-----------|-----------|-----------|----------|-----------------|------------|------------|
| Date                  | yyyymmdd | 20041021  | 20050215  | 20050510  | 20040719 | 20040720        | 20040929   | 20041021   |
| Time                  | hhmm     | 1135      | 1245      | 1155      | 1400     | 1315            | 1145       | 0830       |
| Discharge             | cfs      | 68.43     | 29.742    | 32.385    | 113.425  | 12.394          | 10700      | 8780       |
| Temperature           | degree C | 10.1      | 1.3       | 16.2      | 19       | 21.7            | 17.3       | 10.1       |
| Conductance           | umhos/cm | 186       | 158       | 250       | 102      | 168             | 235        | 215        |
| Dissolved Oxygen      | mg/l     | 8.93      | 10.16     | 8.16      | 7.6      | 7.73            | 6.99       | 8.8        |
| pH                    |          | 7.8       | 7.5       | 8         | 7.2      | 7.6             | 6.5        | 7.5        |
| Alkalinity            | mg/l     | 74        | 96        | 60        | 26       | 48              | 82         | 60         |
| Acidity               | mg/l     | 2         | 8         | 2         | 2        | 2               | 32         | 2          |
| Solids, Total         | mg/l     | 134       | 104       | 136       | 72       | 118             | 174        | 154        |
| Ammonia, Total        | mg/l     | < 0.02    | < 0.02    | 0.03      | 0.02     | < 0.02          | 0.04       | 0.03       |
| Nitrite, Total        | mg/l     | < 0.01    | < 0.01    | < 0.01    | < 0.01   | < 0.01          | < 0.01     | < 0.01     |
| Nitrate, Total        | mg/l     | 0.26      | 0.74      | 0.21      | 0.2      | 0.09            | 0.7        | 0.5        |
| Nitrogen, Total       | mg/l     | 0.52      | 0.89      | 0.6       | 0.56     | 0.71            | 1.05       | 0.9        |
| Phosphorus, Total     | mg/l     | 0.022     | 0.011     | 0.027     | 0.025    | 0.04            | 0.055      | 0.043      |
| Orthophosphate, Total | mg/l     | 0.024     | 0.012     | 0.015     | 0.018    | 0.028           | 0.033      | 0.023      |
| Organic Carbon, Total | mg/l     | 4.4       | 2.37      | 2.03      | 3.4      | 7               | 3          | 3.7        |
| Calcium               | mg/l     | 22.2      | 19.1      | 27.8      | 8.789    | 17.4            | 27.7       | 24.1       |
| Magnesium             | mg/l     | 3.95      | 3.23      | 4.7       | 2.56     | 3.41            | 4.29       | 4.33       |
| Chloride              | mg/l     | 11.8      | 12.7      | 14.5      | 7.88     | 15.2            | 19.5       | 19.6       |
| Sulfate               | mg/l     | 9.47      | 11.1      | 11.6      | 7.7      | 8.6             | 8.62       | 8.76       |
| Turbidity             | ntu      | 7.88      | 6.52      | < 1       | 2.82     | 4.03            | 16.03      | 8.49       |
| Iron, Total           | µg/l     | 285       | 262       | 36        | 268      | 787             | 911        | 553        |
| Manganese, Total      | µg/l     | <10       | <10       | <10       | 19       | 54              | 57         | 36         |
| Aluminum, Total       | µg/l     | 200       | <200      | <200      | <200     | <200            | 546        | 302        |
| Suspended Sediment    | ppm      | NA        | 7         | 5         | NA       | NA              | NA         | NA         |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

| Parameter             | Units    | SUSQ<br>289.1 | SUSQ<br>289.1 | SUSQ<br>340.0 | SUSQ<br>340.0 | SUSQ<br>340.0 | SUSQ<br>340.0 | SUSQ<br>365.0 |
|-----------------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Date                  | yyyymmdd | 20050214      | 20050509      | 20040929      | 20041020      | 20050214      | 20050509      | 20040719      |
| Time                  | hhmm     | 1450          | 1355          | 0950          | 1120          | 1200          | 1125          | 1040          |
| Discharge             | cfs      | 10800         | 6180          | 5620          | 3810          | 5450          | 2550          | 1296          |
| Temperature           | degree C | 0.3           | 14.4          | 16.3          | 9.6           | 0.3           | 12.7          | 20.7          |
| Conductance           | umhos/cm | 193           | 267           | 154           | 148           | 171           | 222           | 231           |
| Dissolved Oxygen      | mg/l     | 10.28         | 9.83          | 7.12          | 8.93          | 9.91          | 9.42          | 6.07          |
| pН                    |          | 7.45          | 8             | 6.55          | 7.15          | 7.2           | 7.1           | 7.4           |
| Alkalinity            | mg/l     | 58            | 46            | 54            | 48            | 52            | 48            | 74            |
| Acidity               | mg/l     | 6             | 2             | 12            | 6             | 6             | 6             | 6             |
| Solids, Total         | mg/l     | 140           | 178           | 138           | 120           | 160           | 154           | 142           |
| Ammonia, Total        | mg/l     | 0.06          | 0.03          | 0.04          | < 0.02        | 0.05          | 0.03          | 0.02          |
| Nitrite, Total        | mg/l     | < 0.01        | < 0.01        | < 0.01        | < 0.01        | < 0.01        | < 0.01        | < 0.01        |
| Nitrate, Total        | mg/l     | 0.77          | 0.55          | 0.37          | 0.33          | 0.63          | 0.43          | 0.48          |
| Nitrogen, Total       | mg/l     | 1.06          | 0.71          | 0.9           | 0.63          | 0.78          | 0.62          | 0.81          |
| Phosphorus, Total     | mg/l     | 0.026         | 0.086         | 0.133         | 0.032         | 0.02          | 0.04          | 0.035         |
| Orthophosphate, Total | mg/l     | 0.02          | 0.065         | 0.107         | 0.025         | 0.017         | 0.021         | 0.018         |
| Organic Carbon, Total | mg/l     | 2.3           | 2.48          | 4             | 3.5           | 2.06          | 2.09          | 3.4           |
| Calcium               | mg/l     | 21.1          | 27.4          | 18.2          | 16.7          | 20.1          | 24.5          | 31.28         |
| Magnesium             | mg/l     | 3.28          | 4.165         | 2.59          | 2.67          | 2.51          | 2.856         | 3.422         |
| Chloride              | mg/l     | 24.3          | 22.9          | 11.6          | 12.5          | 20.3          | 17.3          | 17.8          |
| Sulfate               | mg/l     | 9.02          | 10.4          | 6.96          | 7.39          | 8.67          | 9.5           | 8.86          |
| Turbidity             | ntu      | 10.35         | 2.44          | 38.29         | 13.99         | 7.56          | 2.87          | 3.01          |
| Iron, Total           | µg/l     | 513           | 148           | 1410          | 752           | 364           | 176           | 278           |
| Manganese, Total      | µg/l     | 27            | 21            | 92            | 41            | 25            | 37            | 26            |
| Aluminum, Total       | µg/l     | 280           | <200          | 972           | 436           | <200          | <200          | <200          |
| Suspended Sediment    | ppm      | 16            | 4             | NA            | NA            | 9             | 3             | NA            |

Table A1. Water Quality Data for New York-Pennsylvania Border Streams – Continued

| Parameter             | Units    | SUSQ<br>365.0 | SUSQ<br>365.0 | SUSQ<br>365.0 | TIOG 10.8 | TIOG 10.8 | TIOG 10.8 | TIOG 10.8 | TRUP 4.5 |
|-----------------------|----------|---------------|---------------|---------------|-----------|-----------|-----------|-----------|----------|
| Date                  | yyyymmdd | 20041020      | 20050214      | 20050509      | 20040929  | 20041020  | 20050215  | 20050510  | 20040721 |
| Time                  | hhmm     | 0925          | 0955          | 0915          | 1415      | 1700      | 1400      | 1020      | 1035     |
| Discharge             | cfs      | 2996          | 8794          | 2548          | 590       | 855       | 1515      | 315       | 62.367   |
| Temperature           | degree C | 9.5           | 0.2           | 11.5          | 16.5      | 12        | 1.7       | 15.3      | 18.9     |
| Conductance           | umhos/cm | 165           | 177           | 229           | 149       | 175       | 128       | 177       | 64       |
| Dissolved Oxygen      | mg/l     | 8.71          | 10.86         | 9.17          | 7.45      | 8.48      | 10.28     | 11.45     | 7.16     |
| pH                    |          | 7.3           | 7.2           | 7.15          | 6.5       | 7.4       | 7.3       | 8.7       | 7.6      |
| Alkalinity            | mg/l     | 54            | 52            | 44            | 40        | 40        | 34        | 58        | 72       |
| Acidity               | mg/l     | 2             | 4             | 6             | 38        | 2         | 4         | 0         | 6        |
| Solids, Total         | mg/l     | 120           | 114           | 164           | 130       | 154       | 118       | 120       | 178      |
| Ammonia, Total        | mg/l     | < 0.02        | 0.03          | 0.04          | 0.06      | 0.02      | 0.05      | 0.03      | < 0.02   |
| Nitrite, Total        | mg/l     | < 0.01        | < 0.01        | < 0.01        | < 0.01    | < 0.01    | < 0.01    | < 0.01    | < 0.01   |
| Nitrate, Total        | mg/l     | 0.41          | 0.69          | 0.47          | 0.49      | 0.52      | 0.64      | 0.36      | 1.02     |
| Nitrogen, Total       | mg/l     | 0.62          | 0.93          | 0.65          | 0.92      | 0.79      | 1         | 0.72      | 1.44     |
| Phosphorus, Total     | mg/l     | 0.027         | 0.023         | 0.04          | 0.064     | 0.044     | 0.038     | 0.067     | 0.048    |
| Orthophosphate, Total | mg/l     | 0.013         | 0.013         | 0.024         | 0.134     | 0.049     | 0.015     | 0.047     | 0.097    |
| Organic Carbon, Total | mg/l     | 3.6           | 2.04          | 2.2           | 4.1       | 3.4       | 2.78      | 2.51      | 4.5      |
| Calcium               | mg/l     | 19.7          | 21.4          | 26.5          | 17.2      | 18.6      | 14.8      | 17.2      | 23.9     |
| Magnesium             | mg/l     | 2.84          | 2.47          | 2.937         | 4.09      | 4.85      | 3.38      | 4.22      | 5.46     |
| Chloride              | mg/l     | 13.9          | 19.5          | 16.6          | 5.62      | 6.92      | 8.16      | 7.72      | 10.8     |
| Sulfate               | mg/l     | 7.66          | 8.42          | 9.54          | 21.2      | 27.6      | 17.7      | 28.2      | 11.1     |
| Turbidity             | ntu      | 5.61          | 5.33          | 4.02          | 71.46     | 29.37     | 45.84     | 4.38      | 53.42    |
| Iron, Total           | µg/l     | 326           | 344           | 222           | 2480      | 393       | 1540      | 193       | 462      |
| Manganese, Total      | µg/l     | 23            | 19            | 27            | 334       | 482       | 218       | 232       | 19       |
| Aluminum, Total       | μg/l     | <200          | <200          | <200          | 1420      | 272       | 1670      | <200      | 371      |
| Suspended Sediment    | ppm      | NA            | 9             | 7             | NA        | NA        | 28        | 2         | NA       |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

| Parameter             | Units    | TRUP 4.5 | TRUP 4.5 | TRUP 4.5 | <b>TROW 1.8</b> | <b>WAPP 2.6</b> |
|-----------------------|----------|----------|----------|----------|-----------------|-----------------|
| Date                  | yyyymmdd | 20041021 | 20050216 | 20050510 | 20040719        | 20040825        |
| Time                  | hhmm     | 1435     | 1100     | 0755     | 1310            | 1400            |
| Discharge             | cfs      | 11.01    | 17.259   | 10.331   | 16.054          | 41.927          |
| Temperature           | degree C | 9.3      | 0.5      | 10.3     | 18.6            | 20.3            |
| Conductance           | umhos/cm | 217      | 168      | 246      | 76              | 103             |
| Dissolved Oxygen      | mg/l     | 8.87     | 10.89    | 8.47     | 7.03            | 8.75            |
| pH                    |          | 7.65     | 7.5      | 7.35     | 6.9             | 8.2             |
| Alkalinity            | mg/l     | 74       | 80       | 46       | 20              | 36              |
| Acidity               | mg/l     | 2        | 8        | 4        | 2               | 2               |
| Solids, Total         | mg/l     | 190      | 170      | 124      | 64              | 72              |
| Ammonia, Total        | mg/l     | < 0.02   | 0.03     | 0.02     | < 0.02          | < 0.02          |
| Nitrite, Total        | mg/l     | < 0.01   | < 0.01   | < 0.01   | < 0.01          | < 0.01          |
| Nitrate, Total        | mg/l     | 0.35     | 0.73     | 0.06     | 0.14            | 0.18            |
| Nitrogen, Total       | mg/l     | 0.57     | 0.96     | 0.58     | 0.38            | 0.34            |
| Phosphorus, Total     | mg/l     | 0.035    | 0.049    | 0.067    | 0.021           | 0.015           |
| Orthophosphate, Total | mg/l     | 0.081    | 0.022    | 0.059    | 0.014           | 0.01            |
| Organic Carbon, Total | mg/l     | 3.7      | 1.82     | 3.32     | 3.6             | 3               |
| Calcium               | mg/l     | 25.2     | 18.4     | 25.7     | 6.059           | 8.28            |
| Magnesium             | mg/l     | 5.72     | 4.626    | 5.66     | 1.911           | 2.78            |
| Chloride              | mg/l     | 10.7     | 16.6     | 13.6     | 4.75            | 5.95            |
| Sulfate               | mg/l     | 12.4     | 12.4     | 13.5     | 6.92            | 7.54            |
| Turbidity             | ntu      | 46.72    | 77.4     | 3.73     | 3.78            | 1.39            |
| Iron, Total           | µg/l     | 2000     | 3486     | 166      | 337             | 84              |
| Manganese, Total      | µg/l     | 34       | 50       | 17       | 12              | <10             |
| Aluminum, Total       | µg/l     | 1760     | 3711     | <200     | <200            | <200            |
| Suspended Sediment    | ppm      | NA       | 61       | 3        | NA              | NA              |

 Table A1.
 Water Quality Data for New York-Pennsylvania Border Streams – Continued

| Parameter             | Units    | BBDC 4.1 | CNWG 4.4 | CNWG 4.4 | CNWG 4.4 | CNWG 4.4 | DEER 44.2 | DEER 44.2 | DEER 44.2 |
|-----------------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|
| Date                  | yyyymmdd | 20040714 | 20040809 | 20041014 | 20050208 | 20050503 | 20040713  | 20041013  | 20050207  |
| Time                  | hhmm     | 0905     | 0930     | 1230     | 0845     | 1105     | 1220      | 1010      | 1035      |
| Discharge             | cfs      | 3.666    | 37.503   | 15.297   | 36.45    | 33.058   | 20.476    | 14.921    | 14.248    |
| Temperature           | degree C | 16.4     | 17.7     | 11.1     | 4.6      | 9        | 19.5      | 9.3       | 3         |
| Conductance           | umhos/cm | 148      | 256      | 255      | 255      | 277      | 214       | 212       | 232       |
| Dissolved Oxygen      | mg/l     | 7.32     | 8.56     | 8.7      | 9.26     | 9.57     | 7.23      | 8.71      | 9.24      |
| pH                    |          | 7.2      | 6.7      | 7.3      | 7        | 7.1      | 7.35      | 7.1       | 7.35      |
| Alkalinity            | mg/l     | 24       | 36       | 34       | 28       | 24       | 42        | 36        | 36        |
| Acidity               | mg/l     | 2        | 8        | 4        | 6        | 4        | 4         | 4         | 6         |
| Solids, Total         | mg/l     | 154      | 212      | 174      | <2       | 178      | 160       | 194       | 126       |
| Ammonia, Total        | mg/l     | < 0.02   | 0.12     | < 0.02   | 0.09     | 0.07     | < 0.02    | < 0.02    | 0.03      |
| Nitrite, Total        | mg/l     | < 0.01   | 0.11     | < 0.01   | < 0.01   | 0.05     | < 0.01    | < 0.01    | < 0.01    |
| Nitrate, Total        | mg/l     | 5.98     | 11.1     | 11.8     | 11       | 11.5     | 4.55      | 5.58      | 6.14      |
| Nitrogen, Total       | mg/l     | 6.28     | 11.73    | 11.68    | 11.19    | 11.7     | 4.78      | 6.05      | 6.29      |
| Phosphorus, Total     | mg/l     | 0.014    | 0.058    | 0.031    | 0.049    | 0.037    | 0.013     | < 0.01    | 0.019     |
| Orthophosphate, Total | mg/l     | < 0.01   | 0.043    | 0.026    | 0.044    | 0.022    | 0.011     | < 0.01    | < 0.01    |
| Organic Carbon, Total | mg/l     | 1.3      | 2.3      | 1.4      | 2.06     | 1.88     | 1.9       | 1.1       | 1.07      |
| Calcium               | mg/l     | 12.9     | 18.4     | 19.2     | 19.1     | 19.1     | 17.5      | 16.5      | 17        |
| Magnesium             | mg/l     | 6.213    | 10.4     | 10.5     | 11.5     | 11.2     | 6.451     | 7.04      | 6.24      |
| Chloride              | mg/l     | 12.2     | 19.6     | 20.1     | 22.4     | 19.8     | 25.4      | 24.5      | 36.3      |
| Sulfate               | mg/l     | 3.85     | 12.6     | 12.6     | 14.4     | 14.4     | 5.45      | 4.97      | 6.24      |
| Turbidity             | ntu      | 2.84     | 5.98     | 1.67     | 12.43    | 3        | 1.76      | <1        | 5.73      |
| Iron, Total           | µg/l     | 164      | 349      | 98       | 470      | 124      | 213       | 113       | 213       |
| Manganese, Total      | µg/l     | 24       | 32       | 11       | 37       | 20       | 26        | 16        | 36        |
| Aluminum, Total       | µg/l     | <200     | <200     | <200     | 335      | <200     | <200      | <200      | <200      |
| Suspended Sediment    | ppm      | NA       | NA       | NA       | 18       | 4        | NA        | NA        | 9         |

Table A2. Water Quality Data for Pennsylvania-Maryland Border Streams

| Parameter             | Units    | DEER 44.2 | EBAU 1.5 | EBAU 1.5 | EBAU 1.5 | EBAU 1.5 | FBDC 4.1 | LNGA 2.5 | LNGA 2.5 |
|-----------------------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| Date                  | yyyymmdd | 20050502  | 20040713 | 20041013 | 20050207 | 20050502 | 20040714 | 20040713 | 20041013 |
| Time                  | hhmm     | 0955      | 1315     | 1105     | 1145     | 1105     | 1015     | 0910     | 0820     |
| Discharge             | cfs      | 11.587    | 11.233   | 19.815   | 11.029   | 11.2     | 2.293    | 2.909    | 1.344    |
| Temperature           | degree C | 9.3       | 18.8     | 9.6      | 3.4      | 9.2      | 16.9     | 18.1     | 9.3      |
| Conductance           | umhos/cm | 235       | 202      | 200      | 211      | 207      | 134      | 680      | 193      |
| Dissolved Oxygen      | mg/l     | 9.32      | 6.9      | 9.11     | 9.89     | 9.62     | 7.29     | 6.8      | 9.26     |
| pH                    |          | 7.3       | 7.2      | 7        | 7.2      | 7.4      | 7.05     | 6.8      | 6.9      |
| Alkalinity            | mg/l     | 34        | 42       | 28       | 26       | 32       | 24       | 32       | 32       |
| Acidity               | mg/l     | 4         | 2        | 2        | 4        | 2        | 6        | 10       | 4        |
| Solids, Total         | mg/l     | 146       | 158      | 202      | 140      | 128      | 142      | 176      | 198      |
| Ammonia, Total        | mg/l     | 0.04      | 0.04     | < 0.02   | 0.33     | 0.17     | 0.03     | 0.02     | < 0.02   |
| Nitrite, Total        | mg/l     | < 0.01    | 0.09     | < 0.01   | 0.07     | 0.11     | < 0.01   | < 0.01   | < 0.01   |
| Nitrate, Total        | mg/l     | 5.64      | 5.12     | 6.16     | 6.58     | 6.04     | 5.08     | 6.19     | 6.96     |
| Nitrogen, Total       | mg/l     | 5.82      | 5.54     | 6.8      | 7.1      | 6.45     | 5.33     | 6.59     | 7.59     |
| Phosphorus, Total     | mg/l     | 0.019     | 0.034    | 0.019    | 0.037    | 0.039    | 0.014    | 0.02     | 0.012    |
| Orthophosphate, Total | mg/l     | < 0.01    | 0.025    | 0.016    | 0.03     | 0.023    | 0.011    | 0.015    | 0.011    |
| Organic Carbon, Total | mg/l     | 1.08      | 2        | 1.2      | 1.48     | 1.36     | 1.9      | 1.7      | 1.2      |
| Calcium               | mg/l     | 16.1      | 16.3     | 14.8     | 14.8     | 14       | 10.8     | 16.2     | 16.5     |
| Magnesium             | mg/l     | 6.04      | 6.323    | 6.65     | 5.91     | 5.46     | 5.09     | 6.28     | 7.01     |
| Chloride              | mg/l     | 27.9      | 21.1     | 22       | 28.8     | 20.8     | 11.5     | 15.9     | 16.5     |
| Sulfate               | mg/l     | 5.96      | 6.4      | 5.17     | 6.82     | 6.41     | 3.45     | 6.42     | 6.51     |
| Turbidity             | ntu      | 1.74      | 3.32     | 1.46     | 3.94     | 1.46     | 3.23     | 9.05     | 3.64     |
| Iron, Total           | µg/l     | 123       | 476      | 270      | 210      | 117      | 321      | 511      | 254      |
| Manganese, Total      | µg/l     | 19        | 99       | 57       | 37       | 21       | 70       | 64       | 41       |
| Aluminum, Total       | µg/l     | <200      | <200     | <200     | <200     | <200     | <200     | 350      | <200     |
| Suspended Sediment    | ppm      | NA        | NA       | NA       | 5        | 2        | NA       | NA       | NA       |

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams- Continued

| Parameter             | Units    | LNGA 2.5 | LNGA 2.5 | OCTO 6.6 | OCTO 6.6 | OCTO 6.6 | OCTO 6.6 | SCTT 3.0 | SCTT 3.0 |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Date                  | yyyymmdd | 20050207 | 20050502 | 20040809 | 20041014 | 20050208 | 20050503 | 20040714 | 20041013 |
| Time                  | hhmm     | 0830     | 0815     | 1045     | 1100     | 1045     | 0935     | 1120     | 1300     |
| Discharge             | cfs      | 2.546    | 2.221    | 174.031  | 84.027   | 127.59   | 141.6    | 0.799    | 0.973    |
| Temperature           | degree C | 2.6      | 8.1      | 21.4     | 12.3     | 3.2      | 10.5     | 18.6     | 11.6     |
| Conductance           | umhos/cm | 179      | 194      | 238      | 244      | 246      | 271      | 282      | 332      |
| Dissolved Oxygen      | mg/l     | 9.07     | 9.12     | 7.08     | 8.26     | 9.89     | 9.08     | 7        | 7.97     |
| pH                    |          | 7.2      | 6.9      | 7.6      | 8.1      | 7.35     | 7.3      | 7.5      | 7.2      |
| Alkalinity            | mg/l     | 34       | 30       | 52       | 70       | 46       | 22       | 60       | 68       |
| Acidity               | mg/l     | 6        | 4        | 2        | 2        | 4        | 4        | 2        | 4        |
| Solids, Total         | mg/l     | 134      | 118      | 176      | 258      | 194      | 176      | 246      | 272      |
| Ammonia, Total        | mg/l     | 0.08     | 0.05     | 0.02     | 0.03     | 0.09     | 0.02     | < 0.02   | < 0.02   |
| Nitrite, Total        | mg/l     | < 0.01   | < 0.01   | 0.07     | < 0.01   | 0.04     | < 0.01   | < 0.01   | < 0.01   |
| Nitrate, Total        | mg/l     | 7.1      | 6.27     | 5.65     | 7.09     | 9.66     | 8.44     | 1.89     | 2.39     |
| Nitrogen, Total       | mg/l     | 7.7      | 6.56     | 6.36     | 7.26     | 9.78     | 8.74     | 2.22     | 2.66     |
| Phosphorus, Total     | mg/l     | 0.016    | 0.073    | 0.108    | 0.07     | 0.057    | 0.038    | 0.047    | 0.022    |
| Orthophosphate, Total | mg/l     | 0.011    | 0.058    | 0.062    | 0.06     | 0.053    | 0.012    | 0.038    | 0.022    |
| Organic Carbon, Total | mg/l     | 1.45     | 1.15     | 4.1      | 2.6      | 1.52     | 2.14     | 2.3      | 1.5      |
| Calcium               | mg/l     | 16.3     | 15.5     | 18.4     | 19       | 20.7     | 20.2     | 19.7     | 23       |
| Magnesium             | mg/l     | 6.03     | 5.56     | 9.55     | 9.93     | 11.1     | 10.5     | 12.3     | 15.7     |
| Chloride              | mg/l     | 17.5     | 16       | 15.3     | 16.8     | 18.9     | 17.4     | 35.3     | 36.7     |
| Sulfate               | mg/l     | 7.57     | 7.04     | 14.9     | 16.6     | 18.6     | 19.2     | 18.5     | 22.2     |
| Turbidity             | ntu      | 6.45     | 3.09     | 10.63    | 1.43     | 6.01     | 4.65     | 5.04     | 1.23     |
| Iron, Total           | µg/l     | 204      | 161      | 228      | 82       | 197      | 247      | 536      | 112      |
| Manganese, Total      | µg/l     | 56       | 32       | 67       | <10      | 32       | 43       | 46       | 16       |
| Aluminum, Total       | µg/l     | <200     | <200     | <200     | <200     | <200     | <200     | <200     | <200     |
| Suspended Sediment    | ppm      | 8        | 7        | NA       | NA       | 1        | 5        | NA       | NA       |

Table A2. Water Quality Data for Pennsylvania-Maryland Border Streams- Continued

| Parameter             | Units    | SCTT 3.0 | SCTT 3.0 | SBCC 20.4 | SUSQ 10.0 | SUSQ 10.0 | SUSQ 44.5 | SUSQ 44.5 | SUSQ 44.5 |
|-----------------------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Date                  | yyyymmdd | 20050207 | 20050502 | 20040713  | 20050328  | 20050502  | 20041014  | 20050328  | 20050503  |
| Time                  | hhmm     | 1325     | 1225     | 1025      | 0910      | 1340      | 1415      | 1125      | 1340      |
| Discharge             | cfs      | 3.556    | 1.999    | 2.104     | 84800     | 11200     | 22050     | 70400     | 31900     |
| Temperature           | degree C | 4.2      | 10.9     | 17.3      | 7         | 15.4      | 13.5      | 5.7       | 12.2      |
| Conductance           | umhos/cm | 430      | 225      | 138       | 219       | 281       | 249       | 240       | 293       |
| Dissolved Oxygen      | mg/l     | 9.49     | 9.77     | 7.34      | 9.91      | 9.17      | 8.15      | 10.01     | 9.68      |
| pН                    |          | 7.1      | 7.1      | 7.2       | 7.1       | 7.5       | 7.7       | 7.1       | 7.25      |
| Alkalinity            | mg/l     | 78       | 46       | 46        | 224       | 40        | 80        | 258       | 66        |
| Acidity               | mg/l     | 4        | 2        | 4         | 10        | 2         | 2         | 6         | 4         |
| Solids, Total         | mg/l     | 386      | 130      | 84        | 168       | 154       | 232       | 178       | 178       |
| Ammonia, Total        | mg/l     | 0.77     | 0.05     | < 0.02    | 0.06      | 0.04      | 0.04      | 0.1       | 0.03      |
| Nitrite, Total        | mg/l     | 0.06     | < 0.01   | < 0.01    | < 0.01    | < 0.01    | < 0.01    | < 0.01    | < 0.01    |
| Nitrate, Total        | mg/l     | 2.74     | 1.84     | 2.02      | 1.58      | 1.15      | 2.27      | 2.3       | 1.46      |
| Nitrogen, Total       | mg/l     | 17.48    | 2.03     | 2.32      | 1.9       | 1.46      | 2.56      | 2.56      | 1.83      |
| Phosphorus, Total     | mg/l     | 0.511    | 0.033    | 0.013     | 0.042     | 0.028     | 0.032     | 0.044     | 0.029     |
| Orthophosphate, Total | mg/l     | 0.437    | 0.019    | 0.011     | 0.033     | 0.013     | 0.018     | 0.028     | 0.015     |
| Organic Carbon, Total | mg/l     | 69       | 1.39     | 1.4       | 2.45      | 2.42      | 2.5       | 2.43      | 2.77      |
| Calcium               | mg/l     | 20.7     | 11.9     | 16.5      | 22.2      | 27.5      | 36        | 23.1      | 27.6      |
| Magnesium             | mg/l     | 13.9     | 7.61     | 3.71      | 6.55      | 6.76      | 9.34      | 5.92      | 7.06      |
| Chloride              | mg/l     | 81       | 28.7     | 7.64      | 19.8      | 19.2      | 19.4      | 27.5      | 21.1      |
| Sulfate               | mg/l     | 26.6     | 15.9     | 4         | 26.4      | 31.6      | 37.4      | 22.8      | 32.6      |
| Turbidity             | ntu      | 3.67     | 4.25     | 5.51      | 17.15     | 7.89      | 6.38      | 11.33     | 5.85      |
| Iron, Total           | µg/l     | 438      | 350      | 363       | 712       | 285       | 385       | 546       | 361       |
| Manganese, Total      | µg/l     | 288      | 66       | 28        | 116       | 67        | 55        | 85        | 60        |
| Aluminum, Total       | µg/l     | <200     | <200     | <200      | 539       | <200      | 219       | 273       | <200      |
| Suspended Sediment    | ppm      | 9        | 12       | NA        | 22        | 7         | NA        | 14        | 8         |

 Table A2.
 Water Quality Data for Pennsylvania-Maryland Border Streams-Continued

| Parameter        | Units    | Babcock Run | Beagle Hollow<br>Run | Bill Hess Creek | Bird Creek | Biscuit Hollow<br>Run | Briggs Hollow<br>Run |
|------------------|----------|-------------|----------------------|-----------------|------------|-----------------------|----------------------|
| Date             | yyyymmdd | 20050523    | 20050525             | 20050525        | 20050524   | 20050525              | 20050525             |
| Time             | hhmm     | 1515        | 1115                 | 1250            | 1230       | 1010                  | 1430                 |
| Temperature      | degree C | 11.2        | 9.9                  | 12.4            | 11.3       | 12.0                  | 12.1                 |
| pH               |          | 7.15        | 6.90                 | 8.35            | 7.20       | 7.10                  | 7.60                 |
| Dissolved Oxygen | mg/l     | 9.06        | 8.70                 | 9.34            | 8.80       | 8.64                  | 8.35                 |
| Conductivity     | umhos/cm | 126         | 110                  | 367             | 222        | 232                   | 263                  |
| Alkalinity       | mg/l     | 36.0        | 46.0                 | 128.0           | 64.0       | 102.0                 | 88.0                 |
| Acidity          | mg/l     | 4.0         | 6.0                  | 0               | 6.0        | 4.0                   | 6.0                  |

Table A3.Water Quality Data for Group 3 Streams

| Parameter        | Units    | Bulkley Brook | Camp Brook | Cook Hollow | Deep Hollow | Denton Creek | Dry Brook |
|------------------|----------|---------------|------------|-------------|-------------|--------------|-----------|
|                  |          |               |            | Run         | Brook       |              |           |
| Date             | yyyymmdd | 20050525      | 20050525   | 20050525    | 20050523    | 20050523     | 20050524  |
| Time             | hhmm     | 1045          | 1205       | 0935        | 1130        | 1235         | DRY       |
| Temperature      | degree C | 9.9           | 12.3       | 9.6         | 10.1        | 14.7         |           |
| pH               |          | 6.90          | 8.40       | 7.30        | 7.05        | 7.0          |           |
| Dissolved Oxygen | mg/l     | 8.20          | 9.48       | 8.79        | 8.30        | 6.92         |           |
| Conductivity     | umhos/cm | 125           | 308        | 259         | 56          | 54           |           |
| Alkalinity       | mg/l     | 52.0          | 112.0      | 108.0       | 22.0        | 14.0         |           |
| Acidity          | mg/l     | 8.0           | 0          | 4.0         | 4.0         | 6.0          |           |

| Parameter        | Units    | Little                | Parks Creek | Prince Hollow | Russell Run | Sackett Creek | Smith Creek |
|------------------|----------|-----------------------|-------------|---------------|-------------|---------------|-------------|
|                  |          | Wappasenning<br>Creek |             | Run           |             |               |             |
| Date             | yyyymmdd | 20050524              | 20050524    | 20050523      | 20050523    | 20050524      | 20050524    |
| Time             | hhmm     | 0745                  | 0930        | 1430          | 1550        | 0830          | 1340        |
| Temperature      | degree C | 10.8                  | 10.2        | 13.0          | 12.1        | 11.0          | 11.3        |
| pH               |          | 7.40                  | 7.20        | 7.10          | 7.0         | 7.0           | 6.80        |
| Dissolved Oxygen | mg/l     | 7.42                  | 9.07        | 8.98          | 8.40        | 8.09          | 8.43        |
| Conductivity     | umhos/cm | 194                   | 152         | 125           | 110         | 240           | 200         |
| Alkalinity       | mg/l     | 80.0                  | 54.0        | 32.0          | 34.0        | 92.0          | 76.0        |
| Acidity          | mg/l     | 4.0                   | 4.0         | 6.0           | 4.0         | 8.0           | 4.0         |

| Parameter        | Units    | Strait Creek | White Branch<br>Cowanesque<br>River | White Hollow |
|------------------|----------|--------------|-------------------------------------|--------------|
| Date             | yyyymmdd | 20050524     | 20050525                            | 20050524     |
| Time             | hhmm     | 1435         | 0830                                | 1135         |
| Temperature      | degree C | 12.7         | 12.1                                | 9.1          |
| pН               |          | 7.40         | 7.45                                | 7.10         |
| Dissolved Oxygen | mg/l     | 8.23         | 8.36                                | 8.44         |
| Conductivity     | umhos/cm | 290          | 177                                 | 184          |
| Alkalinity       | mg/l     | 120.0        | 52.0                                | 60.0         |
| Acidity          | mg/l     | 4.0          | 4.0                                 | 8.0          |

 Table A3.
 Water Quality Data for Group 3 Streams - Continued

## $\mathsf{APPENDIX} \ \mathsf{B}$

## Organic Pollution-Tolerance and Functional Feeding Group Designations of Benthic Macroinvertebrate Taxa

| Class: Order  | Family          | Genus            | Organic Pollution<br>Tolerance Value | Functional Feeding<br>Group Designation |
|---------------|-----------------|------------------|--------------------------------------|-----------------------------------------|
| Coleoptera    | Elmidae         | Dubiraphia       | 6                                    | CG                                      |
| •             |                 | Optioservus      | 4                                    | SC                                      |
|               |                 | ,<br>Oulimnius   | 5                                    | SC                                      |
|               |                 | Promoresia       | 2                                    | SC                                      |
|               |                 | Stenelmis        | 5                                    | SC                                      |
|               | Gvrinidae       | Dinetus          | 4                                    | Р                                       |
|               | Hydrophilidae   | Enochrus         | 9                                    | CG                                      |
|               | Psephenidae     | Ectopria         | 5                                    | SC                                      |
|               |                 | Psephenus        | 4                                    | SC                                      |
|               | Ptilodactvlidae | Anchytarsus      | 5                                    | SH                                      |
| Diptera       | Athericidae     | Atherix          | 2                                    | Р                                       |
|               | Ceratopogonidae | Bezzia           | 6                                    | Р                                       |
|               |                 | Probezzia        | 6                                    | P                                       |
|               | Chironomidae    |                  | 6                                    | CG                                      |
|               | Empididae       | Chelifera        | 6                                    | P                                       |
|               |                 | Hemerodromia     | 6                                    | P                                       |
|               | Simulidae       | Prosimulium      | 2                                    | FC                                      |
|               |                 | Simulium         | 6                                    | FC                                      |
|               | Tahanidae       | Chrysons         | 7                                    | P                                       |
|               |                 | Tabanus          | 5                                    | P                                       |
|               | Tipulidae       | Antocha          | 3                                    | L<br>CG                                 |
|               |                 | Dicranota        | 3                                    | P                                       |
|               |                 | Hevatoma         | 2                                    | P                                       |
|               |                 | Limnonhila       | 3                                    | P                                       |
|               |                 | Tinula           | 3                                    | ,<br>сн                                 |
| Enhomorontora | Ameletidae      | Ameletus         | - 4                                  |                                         |
|               | Baetidae        | Ameleius         | 4                                    | 00                                      |
|               | Daelidae        | Baatis           | 6                                    | 00                                      |
|               |                 | Heterocoleon     | 2                                    | <u> </u>                                |
|               | Caenidae        | Caenis           | 7                                    | 00                                      |
|               | Enhemerellidae  | Drupella         | 1                                    | <u> </u>                                |
|               |                 | Enhemerella      | 1                                    | <u> </u>                                |
|               |                 | Sorratolla       | 2                                    |                                         |
|               | Enhomoridaa     | Enhomoro         | 2                                    | 60                                      |
|               | Hontogonidao    | Epitemera        | 0                                    | 60                                      |
|               |                 | Hontogonia       | 4                                    | <u> </u>                                |
|               |                 |                  | 4                                    | <u> </u>                                |
|               |                 | Stongoron        | 1                                    |                                         |
|               |                 | Stenanoma        | - 4                                  | 60                                      |
|               | loopyohiidoo    | Joonvohio        |                                      | 50                                      |
|               | Loptophlobiidao | Baralantanhlahia | 1                                    |                                         |
|               | Bolymitarovidao | Enhoron          | 2                                    | 60                                      |
|               | Polymilarcyluae |                  | Z                                    | EC                                      |
|               | Triconthidoo    | Triconythodoo    | 4                                    |                                         |
| Mogaloptera   | Convdalidaa     | Convolues        | 4                                    |                                         |
| meyaloptera   |                 | Nigropio         |                                      | r<br>D                                  |
|               | Sialidae        | Siglio           | <u> </u>                             |                                         |
| Odonata       | Acchaidee       | Sidiis           | 0                                    |                                         |
| ouonala       | Concerionidae   | Araia            | <u> </u>                             |                                         |
|               | Comphidee       | Aiyia            | 5                                    |                                         |
|               | Gompriluae      | Gomprius         | Э                                    | Г P                                     |

| Class: Order | Family            | Genus          | Organic Pollution | Functional Feeding |
|--------------|-------------------|----------------|-------------------|--------------------|
|              | i anny            | Onbiogomphus   |                   |                    |
|              |                   | Stylogomphus   | 1                 | Г                  |
| Placantara   | Chalaranarlidaa   | Allonorlo      | 4                 | F                  |
| Piecoptera   | Choloroperildae   | Allopena       | 0                 |                    |
|              |                   |                | 0                 | P                  |
|              |                   | Suwallia       | 0                 | P                  |
|              |                   | Sweltsa        | 0                 | P                  |
|              | Leuctridae        | Leuctra        | 0                 | SH                 |
|              | Nemouridae        | Ampninemura    | 3                 | SH                 |
|              | Perlidae          | Acroneuria     | 0                 | P                  |
|              |                   | Agnetina       | 2                 | Р                  |
|              |                   | Beloneuria     | 3                 | P                  |
|              |                   | Neoperla       | 3                 | P                  |
|              |                   | Paragnetina    | 1                 | Р                  |
|              |                   | Perlesta       | 4                 | Р                  |
|              | Perlodidae        | Isoperla       | 2                 | Р                  |
|              |                   | Yugus          | 2                 | Р                  |
|              | Pteronarcyidae    | Pteronarcys    | 0                 | SH                 |
| Tricoptera   | Brachycentridae   | Brachycentrus  | 1                 | FC                 |
|              | Glossomatidae     | Glossosoma     | 0                 | SC                 |
|              | Hydropsychidae    | Ceratopsyche   | 5                 | FC                 |
|              |                   | Cheumatopsyche | 6                 | FC                 |
|              |                   | Diplectrona    | 0                 | FC                 |
|              |                   | Hydropsyche    | 5                 | FC                 |
|              |                   | Macrostemum    | 3                 | FC                 |
|              | Hydroptilidae     | Dibusa         | 3                 | SC                 |
|              |                   | Leucotrichia   | 6                 | SC                 |
|              | Odontoceridae     | Psilotreta     | 0                 | SC                 |
|              | Philopotamidae    | Chimarra       | 4                 | FC                 |
|              |                   | Dolophilodes   | 0                 | FC                 |
|              | Polycentropodidae | Polycentropus  | 6                 | P                  |
|              | Psychomyiidae     | Psychomyja     | 2                 | ĊG                 |
|              | Rhyacophilidae    | Rhvaconhila    | 1                 | P                  |
|              | Uenoidae          | Neonhylay      | 3                 | sc                 |
| Amphinoda    | Gammaridae        | Gammarus       | 6                 | <u>с</u> ц         |
| Decanoda     | Cambaridae        | Cambarus       | 6                 | он<br>СН           |
| Decapoua     |                   | Oreopeates     | 0                 | оп<br>СП           |
| laanada      | Acallidae         | Cassidates     | 0                 |                    |
| Olinoohoota  |                   |                | 6                 | 5H                 |
| Oligochaeta  |                   |                | 8                 |                    |
| relecypoda   | Corbiculidae      | Corbicula      | 4                 | FC                 |

## $\mathsf{APPENDIX}\ \mathsf{C}$

## Macroinvertebrate Data for Interstate Streams Crossing the New York-Pennsylvania and Pennsylvania-Maryland Borders

| Class: Order  | Family          | Genus            | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 | CAYT<br>1.7 | CHOC<br>9.1 |
|---------------|-----------------|------------------|-------------|-------------|-------------|-------------|-------------|
| Coleoptera    | Elmidae         | Dubiraphia       | 2           |             |             |             |             |
| -             |                 | Optioservus      | 4           | 1           | 3           | 36          | 17          |
|               |                 | Oulimnius        |             |             |             |             |             |
|               |                 | Stenelmis        | 50          | 7           |             | 66          | 6           |
|               | Gyrinidae       | Dinetus          |             |             |             |             |             |
|               | Hydrophilidae   | Enochrus         |             |             |             |             |             |
|               | Psephenidae     | Psephenus        | 9           | 20          | 15          | 51          | 37          |
|               | Ptilodactylidae | Anchytarsus      |             |             |             |             |             |
| Diptera       | Athericidae     | Atherix          |             | 15          | 6           | 11          | 9           |
|               | Ceratopogonidae | Bezzia           | 2           |             |             |             |             |
|               |                 | Probezzia        |             |             |             |             |             |
|               | Chironomidae    |                  | 64          | 22          | 18          | 9           | 26          |
|               | Empididae       | Chelifera        |             |             |             |             |             |
|               |                 | Hemerodromia     |             | 30          | 4           |             | 6           |
|               | Simulidae       | Prosimulium      |             |             |             |             |             |
|               |                 | Simulium         |             |             |             |             |             |
|               | Tabanidae       | Chrysops         | 2           |             |             |             |             |
|               |                 | Tabanus          |             |             |             |             |             |
|               | Tipulidae       | Antocha          |             |             |             | 1           | 1           |
|               |                 | Dicranota        | 1           |             | 24          |             | 8           |
|               |                 | Hexatoma         | 1           | 16          | 3           | 1           | 13          |
|               |                 | Limnophila       |             |             |             |             |             |
|               |                 | Tipula           |             |             |             |             |             |
| Ephemeroptera | Ameletidae      | Ameletus         |             |             |             |             |             |
|               | Baetidae        | Acentrella       |             |             |             |             | 1           |
|               |                 | Baetis           | 5           | 2           | 1           | 7           | 10          |
|               |                 | Heterocoleon     |             |             |             |             |             |
|               | Caenidae        | Caenis           |             | 3           |             |             | 1           |
|               | Ephemerellidae  | Drunella         |             |             | 2           |             |             |
|               |                 | Ephemerella      |             |             |             |             |             |
|               |                 | Serratella       |             |             |             |             |             |
|               | Ephemeridae     | Ephemera         |             |             |             |             |             |
|               | Heptagenidae    | Epeorus          |             |             | 1           |             |             |
|               |                 | Heptagenia       |             | 1           |             |             |             |
|               |                 | Leucrocuta       | 1           | 2           |             | 1           |             |
|               |                 | Stenacron        |             |             |             |             |             |
|               |                 | Stenonema        | 23          | 3           | 5           | 3           |             |
|               | Isonychiidae    | Isonychia        |             | 27          | 19          | 1           | 19          |
|               | Leptophlebiidae | Paraleptophlebia | 3           | 1           |             |             |             |
|               | Polymitarcyidae | Ephoron          |             |             |             |             |             |
|               | Potamanthidae   | Anthopotamus     |             |             |             |             |             |
|               | Tricorythidae   | Tricorythodes    |             | 8           |             |             |             |

 Table C1.
 Macroinvertebrate Data for New York-Pennsylvania Border Streams

| Class: Order | Family            | Genus          | APAL<br>6.9 | BNTY<br>0.9 | CASC<br>1.6 | CAYT<br>1.7 | CHOC<br>9.1 |
|--------------|-------------------|----------------|-------------|-------------|-------------|-------------|-------------|
| Megaloptera  | Corydalidae       | Corydalus      |             |             |             | 1           |             |
|              |                   | Nigronia       | 26          | 3           | 8           | 2           | 5           |
|              | Sialidae          | Sialis         | 6           |             | 2           |             |             |
| Odonata      | Aeshnidae         | Boyeria        | 3           | 1           | 7           |             |             |
|              | Coenagrionidae    | Argia          |             |             |             |             |             |
|              | Gomphidae         | Gomphus        |             |             |             |             | 3           |
|              | · ·               | Ophiogomphus   |             | 2           | 2           | 2           |             |
|              |                   | Stylogomphus   | 19          | 5           | 9           |             |             |
| Plecoptera   | Choloroperlidae   | Alloperla      | 6           |             |             |             |             |
|              |                   | Haploperla     |             |             |             |             |             |
|              |                   | Suwallia       |             |             |             |             |             |
|              |                   | Sweltsa        |             |             |             |             |             |
|              | Leuctridae        | Leuctra        |             | 2           | 1           |             |             |
|              | Nemouridae        | Amphinemura    |             |             |             |             |             |
|              | Perlidae          | Acroneuria     |             | 2           | 10          | 2           | 3           |
|              |                   | Agnetina       |             | 2           | 1           | 2           |             |
|              |                   | Beloneuria     | 2           |             |             |             |             |
|              |                   | Neoperla       |             |             |             |             |             |
|              |                   | Paragnetina    |             |             |             | 2           |             |
|              |                   | Perlesta       |             |             |             |             |             |
|              | Perlodidae        | Isoperla       |             |             |             |             |             |
|              |                   | Yugus          |             |             |             |             |             |
|              | Pteronarcyidae    | Pteronarcys    |             |             |             |             | 1           |
| Tricoptera   | Brachycentridae   | Brachycentrus  |             |             |             | 4           |             |
|              | Glossomatidae     | Glossosoma     |             |             |             |             | 1           |
|              | Hydropsychidae    | Ceratopsyche   | 7           | 48          | 7           | 12          | 47          |
|              |                   | Cheumatopsyche | 16          | 5           | 8           | 4           | 15          |
|              |                   | Diplectrona    | 1           |             |             |             |             |
|              |                   | Hydropsyche    | 2           | 6           | 36          |             | 3           |
|              |                   | Macrostemum    |             |             |             |             |             |
|              | Hydroptilidae     | Dibusa         |             |             |             |             |             |
|              |                   | Leucotrichia   |             |             |             | 1           |             |
|              | Odontoceridae     | Psilotreta     |             |             |             | 2           |             |
|              | Philopotamidae    | Chimarra       | 7           | 1           | 36          | 9           | 13          |
|              |                   | Dolophilodes   |             |             |             |             |             |
|              | Polycentropodidae | Polycentropus  | 3           | 1           |             |             | 1           |
|              | Psychomyiidae     | Psychomyia     |             |             |             | 2           |             |
|              | Rhyacophilidae    | Rhyacophila    |             |             |             |             | 1           |
|              | Uenoidae          | Neophylax      |             |             |             |             |             |
| Amphipoda    | Gammaridae        | Gammarus       |             |             |             |             |             |
| Decapoda     | Cambaridae        | Cambarus       |             |             | 1           |             |             |
|              |                   | Orconectes     |             |             |             |             |             |
| Isopoda      | Asellidae         | Caecidotea     |             |             |             |             |             |
| Oligochaeta  | Lumbriculidae     |                |             |             |             | 6           | 1           |
| Pelecypoda   | Corbiculidae      | Corbicula      |             |             |             |             |             |

 Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams - Continued

| Class: Order  | Family          | Genus            | HLDN<br>3.5 | LSNK<br>7.6 | NFCR<br>7.6 | SEEL<br>10.3 | SNAK<br>2.3 |
|---------------|-----------------|------------------|-------------|-------------|-------------|--------------|-------------|
| Coleoptera    | Elmidae         | Dubiraphia       | 2           |             |             |              |             |
| •             |                 | Optioservus      | 4           | 2           | 6           | 1            | 3           |
|               |                 | Oulimnius        |             |             |             |              |             |
|               |                 | Stenelmis        | 50          |             | 1           | 48           | 2           |
|               | Gyrinidae       | Dinetus          |             |             |             |              |             |
|               | Hydrophilidae   | Enochrus         |             |             |             |              |             |
|               | Psephenidae     | Psephenus        | 9           | 19          | 16          | 3            | 27          |
|               | Ptilodactylidae | Anchytarsus      |             |             |             |              |             |
| Diptera       | Athericidae     | Atherix          |             | 28          |             | 9            | 14          |
|               | Ceratopogonidae | Bezzia           | 2           |             |             |              |             |
|               |                 | Probezzia        |             |             |             |              |             |
|               | Chironomidae    |                  | 64          | 14          | 13          | 87           | 58          |
|               | Empididae       | Chelifera        |             |             |             |              |             |
|               |                 | Hemerodromia     |             | 4           |             | 5            | 1           |
|               | Simulidae       | Prosimulium      |             |             |             |              |             |
|               |                 | Simulium         |             |             |             |              |             |
|               | Tabanidae       | Chrysops         | 2           |             |             |              |             |
|               |                 | Tabanus          |             |             |             | 3            |             |
|               | Tipulidae       | Antocha          |             | 4           | 1           |              |             |
|               |                 | Dicranota        | 1           | 7           | 20          |              |             |
|               |                 | Hexatoma         | 1           | 4           | 6           | 5            | 15          |
|               |                 | Limnophila       |             |             |             |              |             |
|               |                 | Tipula           |             |             | 1           |              |             |
| Ephemeroptera | Ameletidae      | Ameletus         |             |             |             |              |             |
|               | Baetidae        | Acentrella       |             | 1           |             |              | 1           |
|               |                 | Baetis           | 5           | 1           | 15          | 13           | 9           |
|               |                 | Heterocoleon     |             |             |             |              |             |
|               | Caenidae        | Caenis           |             |             |             | 3            | 3           |
|               | Ephemerellidae  | Drunella         |             |             |             |              |             |
|               |                 | Ephemerella      |             |             |             |              | 1           |
|               |                 | Serratella       |             |             |             |              |             |
|               | Ephemeridae     | Ephemera         |             |             |             |              |             |
|               | Heptagenidae    | Epeorus          |             |             | 1           |              |             |
|               |                 | Heptagenia       |             |             | 17          |              |             |
|               |                 | Leucrocuta       | 8           |             |             |              | 2           |
|               |                 | Stenacron        | 3           |             |             |              |             |
|               |                 | Stenonema        | 1           |             |             | 2            |             |
|               | Isonychiidae    | Isonychia        | 6           | 3           |             | 21           | 10          |
|               | Leptophlebiidae | Paraleptophlebia | 10          |             | 4           |              | 3           |
|               | Polymitarcyidae | Ephoron          |             |             |             |              |             |
|               | Potamanthidae   | Anthopotamus     |             |             |             |              |             |
|               | Tricorythidae   | Tricorythodes    |             |             |             | 1            |             |
| Megaloptera   | Corydalidae     | Corydalus        |             |             |             |              |             |

 Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams - Continued

| Class: Order | Family            | Conus            | HLDN | LSNK | NFCR | SEEL | SNAK     |
|--------------|-------------------|------------------|------|------|------|------|----------|
| Class. Older | Failing           | <u>Genus</u>     | 3.3  | 1.0  | 1.0  | 10.3 | 5        |
|              | 0. 1. 1           |                  | 2    | 1    | 1    |      | 1        |
|              | Sialidae          | Sialis           | 1    | 1    |      |      | 1        |
| Odonata      | Aeshnidae         | Boyeria          | 1    | 1    |      |      |          |
|              | Coenagrionidae    | Argia            |      |      |      |      |          |
|              | Gomphidae         | Gomphus          |      |      |      |      |          |
|              |                   | Ophiogomphus     | 2    | 2    |      |      | 1        |
|              |                   | Stylogomphus     |      |      |      |      | 2        |
| Plecoptera   | Choloroperlidae   | Alloperla        | 1    |      |      |      |          |
|              |                   | Haploperla       |      |      |      |      |          |
|              |                   | Suwallia         |      |      |      |      |          |
|              |                   | Sweltsa          |      |      |      |      |          |
|              | Leuctridae        | Leuctra          | 10   | 1    | 46   | 2    | 13       |
|              | Nemouridae        | Amphinemura      |      |      |      |      |          |
|              | Perlidae          | Acroneuria       | 1    | 17   |      | 1    | 10       |
|              |                   | Agnetina         | 5    |      | 20   | 1    |          |
|              |                   | Beloneuria       |      |      |      |      |          |
|              |                   | Neoperla         |      |      |      |      |          |
|              |                   | Paragnetina      |      | 1    |      |      | 2        |
|              |                   | Perlesta         |      |      |      | 3    |          |
|              | Perlodidae        | Isoperla         |      |      |      |      |          |
|              |                   | Yugus            |      |      |      |      |          |
|              | Pteronarcyidae    | Pteronarcys      |      |      |      |      | 1        |
| Tricoptera   | Brachycentridae   | Brachycentrus    |      |      |      |      |          |
|              | Glossomatidae     | Glossosoma       |      |      |      |      |          |
|              | Hydropsychidae    | Ceratopsyche     | 23   | 66   | 26   | 30   | 13       |
|              |                   | Cheumatopsyche   | 31   | 5    | 9    | 13   | 9        |
|              |                   | Diplectrona      |      |      |      |      |          |
|              |                   | ,<br>Hvdropsvche | 2    | 20   | 5    | 3    | 1        |
|              |                   | Macrostemum      |      |      |      |      |          |
|              |                   | l eucotrichia    |      |      |      |      |          |
|              | Odontoceridae     | Psilotreta       |      |      |      |      |          |
|              | Philopotamidae    | Chimarra         |      | 39   |      |      | 20       |
|              |                   | Dolophilodes     |      | 4    | 2    |      | 2        |
|              | Polycentropodidae | Polycentropus    | 2    |      |      |      | 2        |
|              | Psychomyiidae     | Psychomyia       |      |      |      |      |          |
|              | Rhyacophilidae    | Rhvaconhila      |      |      |      |      |          |
|              | Llenoidae         | Neonbylay        |      |      |      |      |          |
| Amphinoda    | Gammaridae        | Gammarus         |      |      |      |      |          |
| Decanoda     | Cambaridae        | Cambarus         |      |      |      |      | <u> </u> |
| Decapoua     | Camballuae        | Oreeneotee       |      |      |      |      | 2        |
| laanada      | Applidad          | Cassidates       |      |      |      |      | 2        |
|              | ASelliuae         |                  | 1    | 1    |      | 1    |          |
|              |                   | Oarthiauda       |      |      |      |      | +        |
| relecypoda   | Cordiculidae      | Corbicula        | 1    | 1    | 1    | 1    | 1        |

 Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams - Continued

|               |                 |                                | SOUT | TROW | TRUP | WAPP |
|---------------|-----------------|--------------------------------|------|------|------|------|
| Class: Order  | Family          | Genus                          | 7.8  | 1.6  | 4.5  | 2.6  |
| Coleoptera    | Elmidae         | Dubiraphia                     |      |      |      |      |
|               |                 | Optioservus                    |      |      | 2    | 3    |
|               |                 | Oulimnius                      |      |      |      |      |
|               |                 | Stenelmis                      | 28   | 34   |      | 1    |
|               | Gyrinidae       | Dinetus                        |      |      |      |      |
|               | Hydrophilidae   | Enochrus                       |      |      |      |      |
|               | Psephenidae     | Psephenus                      | 54   | 9    |      | 6    |
|               | Ptilodactylidae | Anchytarsus                    |      |      |      |      |
| Diptera       | Athericidae     | Atherix                        | 49   | 5    | 3    | 2    |
|               | Ceratopogonidae | Bezzia                         |      |      |      |      |
|               |                 | Probezzia                      |      |      |      |      |
|               | Chironomidae    |                                | 14   | 35   | 85   | 52   |
|               | Empididae       | Chelifera                      |      |      |      |      |
|               |                 | Hemerodromia                   | 4    |      |      |      |
|               | Simulidae       | Prosimulium                    |      |      |      |      |
|               |                 | Simulium                       |      |      |      | 13   |
|               | Tabanidae       | Chrvsops                       |      |      |      |      |
|               |                 | Tabanus                        | 2    |      |      |      |
|               | Tipulidae       | Antocha                        | 1    | 11   |      |      |
|               |                 | Dicranota                      |      | 1    | 4    |      |
|               |                 | Hexatoma                       |      | 14   | 4    | 5    |
|               |                 | Limnonhila                     |      |      |      | •    |
|               |                 | Tinula                         | 1    |      |      |      |
| Enhomorontora | Amolotidao      | Amolotus                       |      |      |      |      |
|               | Raatidaa        | Ameleius                       |      | 1    |      | 8    |
|               | Daelluae        | Rootio                         | 1    | /3   | 78   | 62   |
|               |                 | Ddells                         | 1    | 43   | 70   | 02   |
|               | Caaridaa        |                                | 1    |      |      |      |
|               |                 |                                | -    |      |      |      |
|               | Epnemereilidae  | Drunella<br>En la sessione lla |      |      |      |      |
|               |                 | Epnemerella                    |      |      |      |      |
|               |                 | Serratella                     |      |      |      |      |
|               | Ephemeridae     | Ephemera                       |      |      |      |      |
|               | Heptagenidae    | Epeorus                        |      | 1    |      | 3    |
|               |                 | Heptagenia                     |      |      | 4.0  | _    |
|               |                 | Leucrocuta                     | 1    |      | 10   | 1    |
|               |                 | Stenacron                      |      |      | 1    | 1    |
|               |                 | Stenonema                      |      |      | 13   | 20   |
|               | Isonychiidae    | Isonychia                      | 1    |      | 9    | 16   |
|               | Leptophlebiidae | Paraleptophlebia               |      | 1    |      |      |
|               | Polymitarcyidae | Ephoron                        |      |      |      |      |
|               | Potamanthidae   | Anthopotamus                   |      |      |      |      |
|               | Tricorythidae   | Tricorythodes                  |      |      | 8    |      |
| Megaloptera   | Corydalidae     | Corydalus                      | 1    |      |      |      |
|               |                 | Nigronia                       | 1    | 2    |      | 1    |
|               | Sialidae        | Sialis                         | 1    | 1    |      | 1    |
| Odonata       | Aeshnidae       | Boyeria                        |      | 2    |      |      |
|               | Coenagrionidae  | Argia                          |      |      |      |      |
|               | Gomphidae       | Gomphus                        |      |      |      |      |

Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams - Continued

|              |                   |                | SOUT | TROW | TRUP | WAPP |
|--------------|-------------------|----------------|------|------|------|------|
| Class: Order | Family            | Genus          | 7.8  | 1.6  | 4.5  | 2.6  |
|              |                   | Ophiogomphus   |      |      |      | 1    |
|              |                   | Stylogomphus   |      |      |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      |      |      |      | 3    |
|              |                   | Haploperla     |      |      |      |      |
|              |                   | Suwallia       |      |      |      |      |
|              |                   | Sweltsa        |      | 2    |      |      |
|              | Leuctridae        | Leuctra        | 2    | 1    | 5    |      |
|              | Nemouridae        | Amphinemura    |      |      |      |      |
|              | Perlidae          | Acroneuria     |      | 4    |      | 1    |
|              |                   | Agnetina       |      | 23   |      | 1    |
|              |                   | Beloneuria     |      |      |      |      |
|              |                   | Neoperla       |      |      | 8    |      |
|              |                   | Paragnetina    |      |      |      |      |
|              |                   | Perlesta       |      |      |      |      |
|              | Perlodidae        | Isoperla       |      |      |      |      |
|              |                   | Yugus          |      |      |      |      |
|              | Pteronarcyidae    | Pteronarcys    |      | 1    |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |
|              | Glossomatidae     | Glossosoma     |      |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   | 7    | 22   | 16   | 7    |
|              |                   | Cheumatopsyche | 13   | 4    | 1    | 5    |
|              |                   | Diplectrona    |      |      |      |      |
|              |                   | Hydropsyche    | 14   | 3    | 1    |      |
|              |                   | Macrostemum    |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |
|              |                   | Leucotrichia   |      |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |
|              | Philopotamidae    | Chimarra       | 22   |      |      | 4    |
|              |                   | Dolophilodes   |      |      |      |      |
|              | Polycentropodidae | Polycentropus  |      | 2    |      |      |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    |      |      |      |      |
|              | Uenoidae          | Neophylax      |      |      |      |      |
| Amphipoda    | Gammaridae        | Gammarus       |      |      |      |      |
| Decapoda     | Cambaridae        | Cambarus       |      |      |      |      |
|              |                   | Orconectes     |      |      |      |      |
| Isopoda      | Asellidae         | Caecidotea     |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                |      |      |      |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |

 Table C1. Macroinvertebrate Data for New York-Pennsylvania Border Streams – Continued

|               |                 |                  | BBDC | CNWG | DEER | EBAU | LNGA |
|---------------|-----------------|------------------|------|------|------|------|------|
| Class: Order  | Family          | Genus            | 4.1  | 4.4  | 44.5 | 1.5  | 2.5  |
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |      |      |      |
|               |                 | Optioservus      | 47   |      | 16   | 47   | 41   |
|               |                 | Oulimnius        | 1    |      |      |      |      |
|               |                 | Promoresia       |      |      |      |      |      |
|               |                 | Stenelmis        |      | 71   | 53   | 1    | 6    |
|               | Gyrinidae       | Dinetus          |      |      |      |      |      |
|               | Hydrophilidae   | Enochrus         |      |      |      |      |      |
|               | Psephenidae     | Ectopria         | 1    |      |      |      |      |
|               |                 | Psephenus        | 1    |      | 13   | 2    |      |
|               | Ptilodactylidae | Anchytarsus      | 27   |      |      |      | 6    |
| Diptera       | Athericidae     | Atherix          |      |      | 6    |      |      |
|               | Ceratopogonidae | Bezzia           |      |      |      |      |      |
|               |                 | Probezzia        |      |      |      |      |      |
|               | Chironomidae    |                  | 9    | 26   | 9    | 20   | 10   |
|               | Empididae       | Chelifera        | 1    |      |      |      |      |
|               |                 | Hemerodromia     |      | 1    | 2    | 4    | 4    |
|               | Simulidae       | Prosimulium      |      |      |      |      |      |
|               |                 | Simulium         | 1    |      |      |      |      |
|               | Tabanidae       | Chrysops         |      |      |      |      |      |
|               |                 | Tabanus          |      |      |      |      |      |
|               | Tipulidae       | Antocha          | 4    | 4    | 5    | 13   | 12   |
|               |                 | Dicranota        |      |      |      |      |      |
|               |                 | Hexatoma         |      |      |      |      | 2    |
|               |                 | Limnophila       |      |      |      |      |      |
|               |                 | ,<br>Tipula      | 3    |      | 2    | 3    | 1    |
| Ephemeroptera | Ameletidae      | Ameletus         |      |      |      |      |      |
| •             | Baetidae        | Acentrella       | 2    |      | 1    | 1    |      |
|               |                 | Baetis           | 17   | 54   | 16   | 32   | 49   |
|               |                 | Heterocoleon     |      |      |      |      |      |
|               | Caenidae        | Caenis           |      |      |      |      |      |
|               | Ephemerellidae  | Drunella         |      |      |      |      |      |
|               | •               | Ephemerella      |      |      | 1    | 1    |      |
|               |                 | Serratella       |      |      |      |      |      |
|               | Ephemeridae     | Ephemera         |      |      |      |      |      |
|               | Heptagenidae    | Epeorus          |      |      |      |      |      |
|               |                 | ,<br>Heptagenia  |      |      |      |      |      |
|               |                 | Leucrocuta       |      |      |      |      |      |
|               |                 | Stenacron        |      |      |      |      |      |
|               |                 | Stenonema        | 1    | 2    |      | 2    |      |
|               | Isonvchiidae    | Isonvchia        |      |      | 15   | 3    |      |
|               | Leptophlebiidae | Paraleptophlebia |      | İ    |      |      |      |
|               | Polymitarcvidae | Ephoron          |      | ĺ    |      |      |      |
|               | Potamanthidae   | Anthopotamus     |      |      |      |      |      |
|               | Tricorythidae   | Tricorvthodes    |      |      |      |      |      |

 Table C2.
 Macroinvertebrate Data for Pennsylvania-Maryland Border Streams

|              |                   |                | BBDC | CNWG | DEER | EBAU | LNGA |
|--------------|-------------------|----------------|------|------|------|------|------|
| Class: Order | Family            | Genus          | 4.1  | 4.4  | 44.5 | 1.5  | 2.5  |
| Megaloptera  | Corydalidae       | Corydalus      |      | 11   | 4    |      |      |
|              |                   | Nigronia       | 18   | 7    | 6    |      |      |
|              | Sialidae          | Sialis         |      |      |      |      |      |
| Odonata      | Aeshnidae         | Boyeria        |      |      |      |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |      |      |
|              | Gomphidae         | Gomphus        |      |      |      |      |      |
|              |                   | Ophiogomphus   |      |      |      |      |      |
|              |                   | Stylogomphus   | 7    |      | 1    |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      |      |      |      |      |      |
|              |                   | Haploperla     |      |      |      |      |      |
|              |                   | Suwallia       |      |      |      |      |      |
|              |                   | Sweltsa        |      |      |      |      |      |
|              | Leuctridae        | Leuctra        | 17   |      | 4    |      | 4    |
|              | Nemouridae        | Amphinemura    |      |      |      |      |      |
|              | Perlidae          | Acroneuria     | 5    |      | 13   | 3    |      |
|              |                   | Agnetina       |      |      | 2    |      | 1    |
|              |                   | Beloneuria     |      |      |      |      |      |
|              |                   | Neoperla       |      |      |      |      |      |
|              |                   | Paragnetina    |      |      | 1    |      |      |
|              |                   | Perlesta       |      |      | 2    |      |      |
|              | Perlodidae        | Isoperla       |      |      |      |      |      |
|              |                   | Yugus          |      |      |      |      |      |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |      |
|              | Glossomatidae     | Glossosoma     | 1    |      |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   | 12   | 18   | 53   | 68   | 2    |
|              |                   | Cheumatopsyche | 16   | 32   | 33   | 16   | 9    |
|              |                   | Diplectrona    | 3    |      |      |      |      |
|              |                   | Hydropsyche    | 4    | 33   | 9    | 8    | 1    |
|              |                   | Macrostemum    |      |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |      |
|              |                   | Leucotrichia   |      | 3    |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |      |
|              | Philopotamidae    | Chimarra       |      |      | 1    |      | 1    |
|              |                   | Dolophilodes   | 16   |      |      | 6    |      |
|              | Polycentropodidae | Polycentropus  |      |      |      |      |      |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    | 2    |      |      |      |      |
|              | Uenoidae          | Neophylax      |      |      |      |      | 1    |
| Amphipoda    | Gammaridae        | Gammarus       |      |      |      |      |      |
| Decapoda     | Cambaridae        | Cambarus       | 1    |      |      |      |      |
|              |                   | Orconectes     |      |      |      |      |      |
| Isopoda      | Asellidae         | Caecidotea     |      |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                | 1    | 1    | 1    | 1    |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |      |

 Table C2.
 Macroinvertebrate Data for Pennsylvania-Maryland Border Streams - Continued

| Class: Order  | Family          | Genus            | OCTO<br>6.6 | SBCC<br>20.4 | SCTT<br>3.0 |
|---------------|-----------------|------------------|-------------|--------------|-------------|
| Coleoptera    | Elmidae         | Dubiraphia       |             |              |             |
|               |                 | Optioservus      | 1           | 61           |             |
|               |                 | Oulimnius        |             |              |             |
|               |                 | Promoresia       |             |              |             |
|               |                 | Stenelmis        | 39          | 1            | 1           |
|               | Gvrinidae       | Dinetus          |             |              |             |
|               | Hydrophilidae   | Enochrus         |             |              |             |
|               | Psephenidae     | Ectopria         |             |              |             |
|               |                 | Psephenus        | 3           |              |             |
|               | Ptilodactvlidae | Anchytarsus      |             |              |             |
| Diptera       | Athericidae     | Atherix          |             |              |             |
|               | Ceratopogonidae | Bezzia           |             |              |             |
|               |                 | Probezzia        |             |              |             |
|               | Chironomidae    |                  | 14          | 1            | 15          |
|               | Empididae       | Chelifera        |             |              |             |
|               |                 | Hemerodromia     |             |              |             |
|               | Simulidae       | Prosimulium      |             |              |             |
|               |                 | Simulium         | 16          | 1            | 2           |
|               | Tabanidae       | Chrvsops         |             |              |             |
|               |                 | Tabanus          |             |              |             |
|               | Tipulidae       | Antocha          | 3           |              |             |
|               |                 | Dicranota        |             | 20           | 1           |
|               |                 | Hexatoma         |             |              |             |
|               |                 | Limnophila       |             |              |             |
|               |                 | Tipula           |             |              | 10          |
| Ephemeroptera | Ameletidae      | Ameletus         |             |              |             |
|               | Baetidae        | Acentrella       |             |              |             |
|               |                 | Baetis           | 85          | 17           | 17          |
|               |                 | Heterocoleon     | 11          |              |             |
|               | Caenidae        | Caenis           |             |              |             |
|               | Ephemerellidae  | Drunella         |             |              |             |
|               |                 | Ephemerella      |             |              |             |
|               |                 | Serratella       |             |              |             |
|               | Ephemeridae     | Ephemera         |             |              |             |
|               | Heptagenidae    | Epeorus          |             |              |             |
|               |                 | ,<br>Heptagenia  |             |              |             |
|               |                 | Leucrocuta       | 2           |              |             |
|               |                 | Stenacron        |             |              |             |
|               |                 | Stenonema        | 26          | 6            |             |
|               | Isonychiidae    | Isonychia        | 1           |              |             |
|               | Leptophlebiidae | Paraleptophlebia |             |              |             |
|               | Polymitarcvidae | Ephoron          |             |              |             |
|               | Potamanthidae   | Anthopotamus     |             |              |             |
|               | Tricorythidae   | Tricorythodes    |             |              |             |

 Table C2.
 Macroinvertebrate Data for Pennsylvania-Maryland Border Streams - Continued

| Class: Order | Family            | Genus          | OCTO | SBCC | SCTT |
|--------------|-------------------|----------------|------|------|------|
| Mogaloptora  | Convdalidao       | Convdoluo      | 1    | 20.4 | 0.0  |
| wegaloptera  | Coryualiuae       | Nigropio       | -    |      | 5    |
|              | Sielidee          | Nigronia       | 1    |      | 5    |
| Odenete      | Sialidae          | Sialis         |      |      |      |
| Odonata      | Aesnnidae         | Boyeria        |      |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |
|              | Gomphidae         | Gompnus        |      |      |      |
|              |                   | Ophiogomphus   |      |      |      |
|              |                   | Stylogomphus   |      |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      |      |      |      |
|              |                   | Haploperla     |      |      |      |
|              |                   | Suwallia       |      |      |      |
|              |                   | Sweltsa        |      |      |      |
|              | Leuctridae        | Leuctra        | 1    | 9    |      |
|              | Nemouridae        | Amphinemura    |      |      |      |
|              | Perlidae          | Acroneuria     |      | 1    |      |
|              |                   | Agnetina       |      |      |      |
|              |                   | Beloneuria     |      |      |      |
|              |                   | Neoperla       |      |      |      |
|              |                   | Paragnetina    |      |      |      |
|              |                   | Perlesta       |      | 4    |      |
|              | Perlodidae        | Isoperla       |      |      |      |
|              |                   | Yugus          |      |      |      |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |
| •            | Glossomatidae     | Glossosoma     |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   | 18   | 77   |      |
|              |                   | Cheumatopsvche | 14   | 6    | 40   |
|              |                   | Diplectrona    |      |      |      |
|              |                   | Hvdropsvche    | 12   | 9    | 12   |
|              |                   | Macrostemum    |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |
|              |                   | Leucotrichia   |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |
|              | Philopotamidae    | Chimarra       |      |      |      |
|              | 1 mopolarmado     | Dolophilodes   |      | 4    | 14   |
|              | Polycentropodidae | Polycentropus  | 1    | -    |      |
|              | Psychomyiidae     | Psychomyia     |      |      |      |
|              | Rhyaconhilidae    | Rhyaconhila    |      |      |      |
|              | Llenoidae         | Neonhylay      |      |      |      |
| Amphinoda    | Gammaridae        | Gammarus       | 10   |      |      |
| Decanoda     | Cambaridae        | Cambarus       |      |      | 2    |
| Decapoua     |                   | Oreoporteo     |      |      | -    |
| laanada      | Acollidad         | Capaidatas     |      |      |      |
| Oligoobacta  |                   |                |      |      | 7    |
| Deleguración |                   | Carbiaula      |      |      | 1    |
| гејесурода   | Cordiculidae      | Corbicula      |      |      |      |

 Table C2.
 Macroinvertebrate Data for Pennsylvania-Maryland Border Streams - Continued

|               |                 |                  | COWN | COWN | SUSQ  |
|---------------|-----------------|------------------|------|------|-------|
| Class: Order  | Family          | Genus            | 1.0  | 2.2  | 365.0 |
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |       |
|               |                 | Optioservus      |      |      | 10    |
|               |                 | Oulimnius        |      |      |       |
|               |                 | Promoresia       |      |      |       |
|               |                 | Stenelmis        | 8    | 1    | 38    |
|               | Gyrinidae       | Dinetus          |      |      | 12    |
|               | Hydrophilidae   | Enochrus         |      | 10   |       |
|               | Psephenidae     | Ectopria         |      |      |       |
|               |                 | Psephenus        | 25   |      | 30    |
|               | Ptilodactylidae | Anchytarsus      |      |      |       |
| Diptera       | Athericidae     | Atherix          |      |      | 1     |
| •             | Ceratopogonidae | Bezzia           |      |      |       |
|               |                 | Probezzia        |      |      |       |
|               | Chironomidae    |                  | 55   | 59   | 40    |
|               | Empididae       | Chelifera        |      |      |       |
|               |                 | Hemerodromia     | 19   | 3    | 2     |
|               | Simulidae       | Prosimulium      |      |      |       |
|               |                 | Simulium         |      |      |       |
|               | Tabanidae       | Chrvsops         |      |      |       |
|               |                 | Tabanus          |      |      |       |
|               | Tipulidae       | Antocha          | 1    |      |       |
|               |                 | Dicranota        |      |      |       |
|               |                 | Hexatoma         |      |      |       |
|               |                 | Limnonhila       |      |      |       |
|               |                 | Tinula           |      |      |       |
| Enhemerontera | Ameletidae      | Ameletus         |      |      |       |
|               | Baetidae        | Acentrella       |      | 1    |       |
|               | Daelidae        | Baetis           | 2    |      | 14    |
|               |                 | Heterocoleon     |      |      | 4     |
|               | Caenidae        | Caenis           |      | 3    | 1     |
|               | Enhemerellidae  | Drunella         |      |      |       |
|               | Ephomereilidde  | Enhemerella      | 1    |      |       |
|               |                 | Serratella       |      |      |       |
|               | Enhemeridae     | Enhemera         | 1    |      |       |
|               | Hontagonidao    | Epocrus          |      |      |       |
|               | Tieptageriluae  | Hentagenia       |      |      |       |
|               |                 |                  |      |      |       |
|               |                 | Stopograp        |      |      |       |
|               |                 | Stenacion        | 22   |      |       |
|               | leonychiidee    |                  | 6    |      | 12    |
|               |                 | Baralantanhlahia | 0    |      | 12    |
|               | Polymitarovidaa | Enhoron          |      |      | 3     |
|               | Detemonthide    | Anthonotomic     |      |      | 2     |
|               |                 | Antriopotamus    |      |      | 3     |
|               | i ricorytnidae  | i ricorytnodes   |      |      |       |

Table C3.Macroinvertebrate Data for River Sites

|              |                   |                | COWN | COWN | SUSQ  |
|--------------|-------------------|----------------|------|------|-------|
| Class: Order | Family            | Genus          | 1.0  | 2.2  | 365.0 |
| Megaloptera  | Corydalidae       | Corydalus      |      | 1    | 4     |
|              |                   | Nigronia       |      |      |       |
|              | Sialidae          | Sialis         |      |      |       |
| Odonata      | Aeshnidae         | Boyeria        |      |      |       |
|              | Coenagrionidae    | Argia          | 2    |      |       |
|              | Gomphidae         | Gomphus        |      |      |       |
|              |                   | Ophiogomphus   |      |      |       |
|              |                   | Stylogomphus   |      |      |       |
| Plecoptera   | Choloroperlidae   | Alloperla      |      |      |       |
|              |                   | Haploperla     |      |      |       |
|              |                   | Suwallia       |      |      |       |
|              |                   | Sweltsa        |      |      |       |
|              | Leuctridae        | Leuctra        |      |      |       |
|              | Nemouridae        | Amphinemura    |      |      |       |
|              | Perlidae          | Acroneuria     |      |      | 5     |
|              |                   | Agnetina       |      |      | 26    |
|              |                   | Beloneuria     |      |      |       |
|              |                   | Neoperla       |      |      |       |
|              |                   | Paragnetina    |      |      | 4     |
|              |                   | Perlesta       |      |      |       |
|              | Perlodidae        | Isoperla       |      |      |       |
|              |                   | Yugus          |      |      |       |
|              | Pteronarcyidae    | Pteronarcys    |      |      |       |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |       |
|              | Glossomatidae     | Glossosoma     |      |      |       |
|              | Hydropsychidae    | Ceratopsyche   | 47   | 11   | 26    |
|              |                   | Cheumatopsyche | 33   | 93   | 5     |
|              |                   | Diplectrona    |      |      |       |
|              |                   | Hydropsyche    | 3    |      | 1     |
|              |                   | Macrostemum    |      |      | 4     |
|              | Hydroptilidae     | Dibusa         | 1    |      |       |
|              |                   | Leucotrichia   |      |      |       |
|              | Odontoceridae     | Psilotreta     |      |      |       |
|              | Philopotamidae    | Chimarra       | 3    | 1    | 78    |
|              |                   | Dolophilodes   |      |      |       |
|              | Polycentropodidae | Polycentropus  |      |      |       |
|              | Psychomyiidae     | Psychomyia     |      |      |       |
|              | Rhyacophilidae    | Rhyacophila    |      |      |       |
|              | Uenoidae          | Neophylax      | 1    |      |       |
| Amphipoda    | Gammaridae        | Gammarus       | 1    | 12   | 1     |
| Decapoda     | Cambaridae        | Cambarus       |      |      |       |
|              |                   | Orconectes     | 1    | 2    |       |
| Isopoda      | Asellidae         | Caecidotea     | 10   | 13   |       |
| Oligochaeta  | Lumbriculidae     |                |      |      |       |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |       |

 Table C3.
 Macroinvertebrate Data for River Sites - Continued

| Class: Order  | Family          | Genus            | BABC | BEAG | BILL | BIRD | BISC |
|---------------|-----------------|------------------|------|------|------|------|------|
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |      |      |      |
| •             |                 | Optioservus      |      |      |      |      | 8    |
|               |                 | Oulimnius        |      | 4    |      |      |      |
|               |                 | Promoresia       |      | 3    |      |      |      |
|               |                 | Stenelmis        |      |      |      |      |      |
|               | Gyrinidae       | Dinetus          |      |      |      |      |      |
|               | Hydrophilidae   | Enochrus         |      |      |      |      |      |
|               | Psephenidae     | Ectopria         |      |      |      |      | 2    |
|               |                 | Psephenus        |      |      |      |      | 2    |
|               | Ptilodactylidae | Anchytarsus      |      |      |      |      |      |
| Diptera       | Athericidae     | Atherix          |      |      |      |      |      |
|               | Ceratopogonidae | Bezzia           |      |      |      |      |      |
|               |                 | Probezzia        |      | 1    |      |      |      |
|               | Chironomidae    |                  | 89   |      | 78   | 122  | 57   |
|               | Empididae       | Chelifera        | 3    | 65   |      |      |      |
|               |                 | Hemerodromia     | 1    |      |      | 1    | 4    |
|               | Simulidae       | Prosimulium      |      |      | 1    |      |      |
|               |                 | Simulium         |      |      |      |      | 4    |
|               | Tabanidae       | Chrysops         |      |      |      |      |      |
|               |                 | Tabanus          |      |      |      |      |      |
|               | Tipulidae       | Antocha          |      |      | 1    |      |      |
|               |                 | Dicranota        |      |      |      |      |      |
|               |                 | Hexatoma         | 2    | 2    |      | 4    |      |
|               |                 | Limnophila       |      | 6    |      |      |      |
|               |                 | Tipula           |      |      |      |      | 1    |
| Ephemeroptera | Ameletidae      | Ameletus         |      |      |      |      |      |
|               | Baetidae        | Acentrella       | 5    | 20   | 48   | 4    |      |
|               |                 | Baetis           | 19   |      | 12   | 13   | 85   |
|               |                 | Heterocoleon     |      | 11   |      |      |      |
|               | Caenidae        | Caenis           |      |      |      |      |      |
|               | Ephemerellidae  | Drunella         | 1    |      |      | 4    |      |
|               |                 | Ephemerella      | 2    | 2    | 2    | 1    | 3    |
|               |                 | Serratella       |      | 6    |      |      |      |
|               | Ephemeridae     | Ephemera         |      |      |      |      |      |
|               | Heptagenidae    | Epeorus          | 1    |      | 41   | 28   | 3    |
|               |                 | Heptagenia       | 12   | 7    |      |      | 6    |
|               |                 | Leucrocuta       |      |      |      |      |      |
|               |                 | Stenacron        | 1    |      | 1    |      |      |
|               |                 | Stenonema        | 3    |      |      |      | 5    |
|               | Isonychiidae    | Isonychia        |      |      |      | 1    |      |
|               | Leptophlebiidae | Paraleptophlebia | 8    |      | 6    |      | 6    |
|               | Polymitarcyidae | Ephoron          |      | 1    |      |      |      |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Potamanthidae   | Anthopotamus     |      |      |      |      |      |
|               | Tricorythidae   | Tricorythodes    |      |      |      |      |      |

Table C4.Macroinvertebrate Data for Group 3 Sites

| Class: Order | Family            | Genus          | BABC | BEAG | BILL | BIRD | BISC |
|--------------|-------------------|----------------|------|------|------|------|------|
| Megaloptera  | Corydalidae       | Corydalus      |      |      |      |      |      |
|              | -                 | Nigronia       |      |      |      | 1    |      |
|              | Sialidae          | Sialis         |      |      |      |      |      |
| Odonata      | Aeshnidae         | Boyeria        |      |      | 1    |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |      |      |
|              | Gomphidae         | Gomphus        |      |      |      |      |      |
|              |                   | Ophiogomphus   |      |      |      |      |      |
|              |                   | Stylogomphus   |      |      |      |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      |      | 6    |      |      |      |
|              |                   | Haploperla     | 19   | 11   |      |      |      |
|              |                   | Suwallia       |      |      |      |      |      |
|              |                   | Sweltsa        | 13   | 5    | 1    | 2    |      |
|              | Leuctridae        | Leuctra        | 7    | 40   | 9    | 22   | 8    |
|              | Nemouridae        | Amphinemura    | 15   | 6    | 13   | 5    | 14   |
|              | Perlidae          | Acroneuria     | 1    | 3    |      | 2    |      |
|              |                   | Agnetina       |      |      |      |      | 1    |
|              |                   | Beloneuria     |      |      |      |      |      |
|              |                   | Neoperla       |      |      |      |      |      |
|              |                   | Paragnetina    |      |      |      |      |      |
|              |                   | Perlesta       |      |      |      |      |      |
|              | Perlodidae        | Isoperla       | 3    |      |      | 5    | 14   |
|              |                   | Yugus          |      | 12   |      | 2    |      |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |      |
|              | Glossomatidae     | Glossosoma     |      |      |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   | 1    |      | 3    | 1    | 10   |
|              |                   | Cheumatopsyche | 1    |      |      |      | 6    |
|              |                   | Diplectrona    |      | 15   |      | 3    |      |
|              |                   | Hydropsyche    |      |      |      | 1    | 8    |
|              |                   | Macrostemum    |      |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |      |
|              |                   | Leucotrichia   |      |      |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |      |
|              | Philopotamidae    | Chimarra       |      |      |      |      | 4    |
|              |                   | Dolophilodes   |      |      |      |      | 3    |
|              | Polycentropodidae | Polycentropus  | 1    | 2    |      | 1    |      |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    |      | 5    |      |      |      |
|              | Uenoidae          | Neophylax      |      |      |      |      | 1    |
| Amphipoda    | Gammaridae        | Gammarus       |      |      |      |      |      |
| Decapoda     | Cambaridae        | Cambarus       | 2    | 1    |      |      |      |
|              |                   | Orconectes     |      |      |      |      |      |
| Isopoda      | Asellidae         | Caecidotea     |      |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                |      |      |      |      |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |      |

Table C4.Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order  | Family          | Genus            | BRIG | BULK | CAMP | соок | DEEP |
|---------------|-----------------|------------------|------|------|------|------|------|
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |      |      |      |
|               |                 | Optioservus      |      |      |      | 1    |      |
|               |                 | Oulimnius        |      |      |      |      |      |
|               |                 | Promoresia       |      |      |      |      |      |
|               |                 | Stenelmis        |      |      | 3    |      |      |
|               | Gyrinidae       | Dinetus          |      |      |      |      |      |
|               | Hydrophilidae   | Enochrus         |      |      |      |      |      |
|               | Psephenidae     | Ectopria         |      |      |      |      | 1    |
|               |                 | Psephenus        |      |      | 1    | 4    |      |
|               | Ptilodactylidae | Anchytarsus      |      |      |      |      |      |
| Diptera       | Athericidae     | Atherix          |      |      |      |      |      |
|               | Ceratopogonidae | Bezzia           |      |      |      |      |      |
|               |                 | Probezzia        |      | 2    |      |      |      |
|               | Chironomidae    |                  | 104  | 103  | 75   | 134  | 57   |
|               | Empididae       | Chelifera        |      |      |      |      | 6    |
|               |                 | Hemerodromia     |      | 1    |      |      | 2    |
|               | Simulidae       | Prosimulium      |      |      |      |      |      |
|               |                 | Simulium         |      |      |      |      | 2    |
|               | Tabanidae       | Chrysops         |      |      |      |      |      |
|               |                 | Tabanus          |      |      |      |      |      |
|               | Tipulidae       | Antocha          |      |      |      |      |      |
|               |                 | Dicranota        |      | 1    |      |      | 5    |
|               |                 | Hexatoma         | 3    |      | 3    |      | 4    |
|               |                 | Limnophila       |      | 2    |      |      |      |
|               |                 | Tipula           |      | 2    |      |      |      |
| Ephemeroptera | Ameletidae      | Ameletus         | 4    | 4    |      |      |      |
|               | Baetidae        | Acentrella       | 5    |      | 1    | 1    | 5    |
|               |                 | Baetis           | 3    | 45   | 6    | 28   | 15   |
|               |                 | Heterocoleon     |      |      |      |      |      |
|               | Caenidae        | Caenis           |      |      |      |      |      |
|               | Ephemerellidae  | Drunella         |      |      |      |      |      |
|               |                 | Ephemerella      |      |      | 2    | 2    | 10   |
|               |                 | Serratella       |      |      |      |      |      |
|               | Ephemeridae     | Ephemera         |      |      |      |      |      |
|               | Heptagenidae    | Epeorus          | 32   | 5    | 23   | 1    | 19   |
|               |                 | Heptagenia       |      |      |      |      | 28   |
|               |                 | Leucrocuta       |      |      |      |      |      |
|               |                 | Stenacron        |      |      |      |      | 8    |
|               |                 | Stenonema        |      | 7    |      | 2    | 12   |
|               | Isonychiidae    | Isonychia        |      |      |      |      |      |
|               | Leptophlebiidae | Paraleptophlebia | 2    | 3    | 6    | 15   | 10   |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Potamanthidae   | Anthopotamus     |      |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order | Family            | Genus          | BRIG | BULK | CAMP | соок | DEEP |
|--------------|-------------------|----------------|------|------|------|------|------|
| Megaloptera  | Corydalidae       | Corydalus      |      |      |      |      |      |
|              |                   | Nigronia       |      | 1    |      |      |      |
|              | Sialidae          | Sialis         |      |      |      |      | 1    |
| Odonoata     | Aeshnidae         | Boyeria        |      |      |      |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |      |      |
|              | Gomphidae         | Gomphus        | 1    |      |      |      |      |
|              |                   | Ophiogomphus   |      |      |      |      |      |
|              |                   | Stylogomphus   |      |      |      |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      | 13   |      | 43   |      |      |
|              |                   | Haploperla     | 7    |      |      |      |      |
|              |                   | Suwallia       |      |      |      | 2    |      |
|              |                   | Sweltsa        | 16   |      | 4    | 4    |      |
|              | Leuctridae        | Leuctra        | 1    | 33   |      | 26   | 3    |
|              | Nemouridae        | Amphinemura    | 2    | 8    | 5    | 4    | 7    |
|              | Perlidae          | Acroneuria     | 3    | 10   |      | 9    |      |
|              |                   | Agnetina       |      |      | 11   | 5    |      |
|              |                   | Beloneuria     |      |      |      |      |      |
|              |                   | Neoperla       |      |      |      |      |      |
|              |                   | Paragnetina    |      |      |      |      |      |
|              |                   | Perlesta       |      |      |      |      |      |
|              | Perlodidae        | Isoperla       |      |      | 1    | 8    | 4    |
|              |                   | Yugus          |      |      |      |      |      |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |      |
|              | Glossomatidae     | Glossosoma     |      |      |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   | 1    |      |      | 5    | 4    |
|              |                   | Cheumatopsyche |      | 5    |      | 3    |      |
|              |                   | Diplectrona    |      | 8    |      | 5    | 1    |
|              |                   | Hydropsyche    |      | 9    |      | 2    | 5    |
|              |                   | Macrostemum    |      |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |      |
|              |                   | Leucotrichia   |      |      |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |      |
|              | Philopotamidae    | Chimarra       |      |      |      |      | 3    |
|              |                   | Dolophilodes   |      |      |      |      |      |
|              | Polycentropodidae | Polycentropus  |      |      |      |      |      |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    |      | 8    |      | 3    | 11   |
|              | Uenoidae          | Neophylax      |      |      |      | 1    |      |
| Amphipoda    | Gammaridae        | Gammarus       |      |      | -    | -    |      |
| Decapoda     | Cambaridae        | Cambarus       | _    | 1    |      |      |      |
|              |                   | Orconectes     | _    |      |      |      |      |
| Isopoda      | Asellidae         | Caecidotea     |      |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                |      |      |      |      |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |      |

Table C4.Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order  | Family          | Genus            | DENT | LWAP | PARK | PRIN | RUSS |
|---------------|-----------------|------------------|------|------|------|------|------|
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |      |      |      |
|               |                 | Optioservus      |      |      |      |      |      |
|               |                 | Oulimnius        |      |      |      | 2    |      |
|               |                 | Promoresia       |      |      |      |      |      |
|               |                 | Stenelmis        | 18   | 1    |      |      |      |
|               | Gyrinidae       | Dinetus          |      |      |      |      |      |
|               | Hydrophilidae   | Enochrus         |      |      |      |      |      |
|               | Psephenidae     | Ectopria         |      |      |      |      |      |
|               |                 | Psephenus        |      |      |      | 8    |      |
|               | Ptilodactylidae | Anchytarsus      |      |      |      |      |      |
| Diptera       | Athericidae     | Atherix          |      |      |      |      |      |
|               | Ceratopogonidae | Bezzia           |      |      |      | 1    | 1    |
|               |                 | Probezzia        |      |      |      |      |      |
|               | Chironomidae    |                  | 130  | 56   | 69   | 76   | 97   |
|               | Empididae       | Chelifera        |      |      |      |      |      |
|               |                 | Hemerodromia     | 4    |      |      | 1    |      |
|               | Simulidae       | Prosimulium      |      |      | 1    |      | 1    |
|               |                 | Simulium         | 9    | 2    |      | 1    |      |
|               | Tabanidae       | Chrysops         |      |      |      |      |      |
|               |                 | Tabanus          |      |      |      |      |      |
|               | Tipulidae       | Antocha          |      |      |      |      |      |
|               |                 | Dicranota        |      |      |      |      |      |
|               |                 | Hexatoma         |      |      | 11   | 6    | 6    |
|               |                 | Limnophila       |      |      |      |      |      |
|               |                 | Tipula           |      |      |      |      |      |
| Ephemeroptera | Ameletidae      | Ameletus         |      |      | 5    |      | 1    |
|               | Baetidae        | Acentrella       |      | 7    |      | 26   | 7    |
|               |                 | Baetis           |      | 16   | 8    | 33   | 9    |
|               |                 | Heterocoleon     |      |      |      |      |      |
|               | Caenidae        | Caenis           |      |      |      |      |      |
|               | Ephemerellidae  | Drunella         |      |      |      |      |      |
|               |                 | Ephemerella      |      | 1    |      | 12   |      |
|               |                 | Serratella       |      |      |      |      |      |
|               | Ephemeridae     | Ephemera         |      |      |      |      |      |
|               | Heptagenidae    | Epeorus          |      | 30   | 46   | 8    | 48   |
|               |                 | Heptagenia       |      |      |      | 14   | 20   |
|               |                 | Leucrocuta       |      | 1    |      |      |      |
|               |                 | Stenacron        |      | 5    |      |      |      |
|               |                 | Stenonema        |      | 1    |      |      |      |
|               | Isonychiidae    | Isonychia        |      |      |      |      |      |
|               | Leptophlebiidae | Paraleptophlebia | 1    | 15   | 1    | 7    | 2    |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Potamanthidae   | Anthopotamus     |      |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order | Family            | Genus          | DENT | LWAP | PARK | PRIN | RUSS |
|--------------|-------------------|----------------|------|------|------|------|------|
| Megaloptera  | Corydalidae       | Corydalus      |      |      |      |      |      |
| ·            |                   | Nigronia       |      |      | 1    | 2    |      |
|              | Sialidae          | Sialis         |      |      |      |      |      |
| Odonata      | Aeshnidae         | Boyeria        |      |      |      |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |      |      |
|              | Gomphidae         | Gomphus        |      |      |      |      |      |
|              | •                 | Ophiogomphus   |      |      |      |      |      |
|              |                   | Stylogomphus   |      |      |      |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      |      |      | 27   | 3    | 4    |
| · · ·        | •                 | Haploperla     |      | 12   | 18   | 14   | 46   |
|              |                   | Suwallia       |      |      |      |      |      |
|              |                   | Sweltsa        |      | 23   | 6    | 2    | 13   |
|              | Leuctridae        | Leuctra        | 4    | 1    |      |      |      |
|              | Nemouridae        | Amphinemura    |      | 13   | 7    | 5    | 3    |
|              | Perlidae          | Acroneuria     |      |      |      | 1    |      |
|              |                   | Agnetina       |      |      |      |      |      |
|              |                   | Beloneuria     |      |      |      |      |      |
|              |                   | Neoperla       |      |      |      |      |      |
|              |                   | Paragnetina    |      |      |      |      |      |
|              |                   | Perlesta       |      |      |      |      |      |
|              | Perlodidae        | Isoperla       |      |      | 2    |      | 2    |
|              |                   | Yugus          |      |      |      |      |      |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |      |
|              | Glossomatidae     | Glossosoma     |      |      |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   |      |      |      | 13   |      |
|              |                   | Cheumatopsyche | 45   |      |      | 1    |      |
|              |                   | Diplectrona    |      |      | 3    |      |      |
|              |                   | Hydropsyche    | 35   |      |      |      |      |
|              |                   | Macrostemum    |      |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |      |
|              |                   | Leucotrichia   |      |      |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |      |
|              | Philopotamidae    | Chimarra       | 8    |      |      |      |      |
|              |                   | Dolophilodes   |      |      |      |      |      |
|              | Polycentropodidae | Polycentropus  |      |      | 2    |      | 1    |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    |      |      |      |      |      |
|              | Uenoidae          | Neophylax      |      |      |      |      |      |
| Amphipoda    | Gammaridae        | Gammarus       |      |      |      |      |      |
| Decapoda     | Cambaridae        | Cambarus       | 3    |      |      |      |      |
|              |                   | Orconectes     | ļ    |      | ļ    |      |      |
| Isopoda      | Asellidae         | Caecidotea     | ļ    |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                | ļ    |      |      |      |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |      |

Table C4.Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order  | Family          | Genus            | SACK | SMIT | STRA | WBCO | WHIT |
|---------------|-----------------|------------------|------|------|------|------|------|
| Coleoptera    | Elmidae         | Dubiraphia       |      |      |      |      |      |
|               |                 | Optioservus      |      | 18   |      | 1    |      |
|               |                 | Oulimnius        |      |      |      |      |      |
|               |                 | Promoresia       |      |      |      |      |      |
|               |                 | Stenelmis        |      |      | 3    | 3    |      |
|               | Gyrinidae       | Dinetus          |      |      |      |      |      |
|               | Hydrophilidae   | Enochrus         |      |      |      |      |      |
|               | Psephenidae     | Ectopria         |      | 3    |      |      |      |
|               |                 | Psephenus        |      |      |      |      |      |
|               | Ptilodactylidae | Anchytarsus      |      |      |      |      |      |
| Diptera       | Athericidae     | Atherix          |      |      |      |      |      |
| •             | Ceratopogonidae | Bezzia           |      |      |      |      |      |
|               |                 | Probezzia        |      |      |      |      |      |
|               | Chironomidae    |                  | 156  | 22   | 26   | 231  | 12   |
|               | Empididae       | Chelifera        |      | 10   |      |      |      |
|               |                 | Hemerodromia     |      | 3    |      | 13   |      |
|               | Simulidae       | Prosimulium      |      |      |      |      |      |
|               |                 | Simulium         | 1    |      |      |      |      |
|               | Tabanidae       | Chrysops         |      |      |      |      |      |
|               |                 | Tabanus          |      |      |      |      |      |
|               | Tipulidae       | Antocha          |      | 1    | 1    |      |      |
|               |                 | Dicranota        |      |      |      |      | 2    |
|               |                 | Hexatoma         |      | 1    | 2    |      | 23   |
|               |                 | Limnophila       |      | 4    |      |      |      |
|               |                 | Tipula           |      | 1    |      | 2    |      |
| Ephemeroptera | Ameletidae      | Ameletus         |      |      |      |      | 4    |
| •             | Baetidae        | Acentrella       | 1    |      | 30   | 1    |      |
|               |                 | Baetis           |      |      | 31   | 13   | 6    |
|               |                 | Heterocoleon     |      |      |      |      |      |
|               | Caenidae        | Caenis           |      |      |      |      |      |
|               | Ephemerellidae  | Drunella         |      |      |      |      |      |
|               |                 | Ephemerella      |      | 6    | 9    | 6    | 4    |
|               |                 | Serratella       |      |      |      |      |      |
|               | Ephemeridae     | Ephemera         |      | 2    |      |      |      |
|               | Heptagenidae    | Epeorus          | 40   |      | 19   |      | 62   |
|               |                 | Heptagenia       | 11   |      |      |      |      |
|               |                 | Leucrocuta       |      |      | 1    |      |      |
|               |                 | Stenacron        |      | 1    | 2    |      |      |
|               |                 | Stenonema        |      | 3    | 1    |      |      |
|               | Isonychiidae    | Isonychia        |      |      |      |      |      |
|               | Leptophlebiidae | Paraleptophlebia |      |      | 57   |      |      |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Polymitarcyidae | Ephoron          |      |      |      |      |      |
|               | Potamanthidae   | Anthopotamus     |      |      |      |      |      |

 Table C4.
 Macroinvertebrate Data for Group 3 Sites - Continued

| Class: Order | Family            | Genus          | SACK | SMIT | STRA | WBCO | WHIT |
|--------------|-------------------|----------------|------|------|------|------|------|
| Megaloptera  | Corydalidae       | Corydalus      |      |      |      |      |      |
|              |                   | Nigronia       |      | 9    |      |      |      |
|              | Sialidae          | Sialis         |      | 3    |      |      |      |
| Odonata      | Aeshnidae         | Boyeria        |      |      |      |      |      |
|              | Coenagrionidae    | Argia          |      |      |      |      |      |
|              | Gomphidae         | Gomphus        |      | 5    |      |      |      |
|              |                   | Ophiogomphus   |      |      |      |      |      |
|              |                   | Stylogomphus   |      |      | 1    |      |      |
| Plecoptera   | Choloroperlidae   | Alloperla      | 9    |      | 10   |      |      |
|              |                   | Haploperla     | 10   |      |      |      |      |
|              |                   | Suwallia       |      |      |      |      |      |
|              |                   | Sweltsa        | 16   |      | 8    |      | 39   |
|              | Leuctridae        | Leuctra        | 2    | 44   | 4    |      | 24   |
|              | Nemouridae        | Amphinemura    |      | 15   | 1    |      | 8    |
|              | Perlidae          | Acroneuria     |      | 12   | 1    |      |      |
|              |                   | Agnetina       |      |      | 2    |      |      |
|              |                   | Beloneuria     |      |      |      |      |      |
|              |                   | Neoperla       |      |      |      |      |      |
|              |                   | Paragnetina    |      |      |      |      |      |
|              |                   | Perlesta       |      |      |      |      |      |
|              | Perlodidae        | Isoperla       |      | 3    |      |      |      |
|              |                   | Yugus          |      |      |      |      | 12   |
|              | Pteronarcyidae    | Pteronarcys    |      |      |      |      |      |
| Tricoptera   | Brachycentridae   | Brachycentrus  |      |      |      |      |      |
|              | Glossomatidae     | Glossosoma     |      | 1    |      |      |      |
|              | Hydropsychidae    | Ceratopsyche   |      | 8    | 1    | 1    |      |
|              |                   | Cheumatopsyche |      | 3    |      | 42   | 2    |
|              |                   | Diplectrona    |      | 65   |      |      | 2    |
|              |                   | Hydropsyche    |      | 1    |      | 70   |      |
|              |                   | Macrostemum    |      |      |      |      |      |
|              | Hydroptilidae     | Dibusa         |      |      |      |      |      |
|              |                   | Leucotrichia   |      |      |      |      |      |
|              | Odontoceridae     | Psilotreta     |      |      |      |      |      |
|              | Philopotamidae    | Chimarra       |      |      |      |      |      |
|              |                   | Dolophilodes   |      |      |      |      | 1    |
|              | Polycentropodidae | Polycentropus  |      | 1    | 5    |      | 1    |
|              | Psychomyiidae     | Psychomyia     |      |      |      |      |      |
|              | Rhyacophilidae    | Rhyacophila    |      | 6    |      |      | 6    |
|              | Uenoidae          | Neophylax      |      |      |      |      |      |
| Amphipoda    | Gammaridae        | Gammarus       |      |      |      |      |      |
| Decapoda     | Cambaridae        | Cambarus       |      | 1    |      |      |      |
|              |                   | Orconectes     |      |      |      |      |      |
| Isopoda      | Asellidae         | Caecidotea     |      |      |      |      |      |
| Oligochaeta  | Lumbriculidae     |                |      |      |      |      |      |
| Pelecypoda   | Corbiculidae      | Corbicula      |      |      |      |      |      |

Table C4.Macroinvertebrate Data for Group 3 Sites - Continued
## $\mathsf{APPENDIX} \ \mathsf{D}$

# WATER CLASSIFICATION AND BEST USAGE RELATIONSHIPS

#### New York:

The New York State water quality classifications are summarized from Water Quality Regulations for Surface Waters and Groundwaters, 6NYCRR Parts 700-705, effective September 1, 1991, New York State Department of Environmental Conservation, Division of Water, Albany, New York. Only classifications that are used in this report will be described in this section. The classes are as follows:

#### Class A:

(a) The best usages of Class A waters are: a source of water supply for drinking, culinary or food processing purposes; primary and secondary contact recreation; and fishing. The waters shall be suitable for fish propagation and survival.

(b) This classification may be given to those waters that, if subjected to approved treatment equal to coagulation, sedimentation, filtration and disinfection, with additional treatment if necessary to reduce naturally present impurities, meet or will meet New York State Department of Health drinking water standards and are or will be considered safe and satisfactory for drinking water purposes.

**Class B:** The best usages of Class B waters are primary and secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

**Class C:** The best usage of Class C waters is fishing. These waters shall be suitable for fish propagation and survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

**Class D:** The best usage of these waters is fishing. Due to such natural conditions as intermittence of flow, water conditions not conducive to propagation of game fishery, or streambed conditions, the waters will not support fish propagation. These waters shall be suitable for fish survival. The water quality shall be suitable for primary and secondary contact recreation, although other factors may limit the use for these purposes.

(T): Suffix added to classes where trout survival is an additional best use to the use classification.

#### Pennsylvania:

The Pennsylvania state water quality classifications are summarized from Water Quality Standards of the Department's Rules and Regulations, 25 PA Code, Chapter 93.3-5, effective November 2000, PADEP, Division of Water Quality Assessment and Standards, Harrisburg, Pennsylvania. All surface waters must meet protected water uses for aquatic life (warm water fishes), water supply (potable, industrial, livestock, and wildlife), and recreation (boating, fishing, water contact sports, and aesthetics). Only classifications that are used in this report will be described in this section. The use classifications are as follows:

**CWF** – Cold Water Fishes: Maintenance and/or propagation of fish species including the family Salmonidae and additional flora and fauna, which are indigenous to a cold water habitat.

**WWF** – Warm Water Fishes: Maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

TSF – Trout Stocked Fishery: Maintenance of stocked trout from February 15 to July 31 and maintenance and propagation of fish species and additional flora and fauna that are indigenous to a warm water habitat.

MF – Migratory Fishes: Passage, maintenance and propagation of anadromous and catadromous fishes and other fishes that ascend to flowing waters to complete their life cycle. The MF designation is in addition to other designations when appropriate.

### Maryland:

The Maryland State water quality classifications are summarized from Water Quality Regulations for Designated Uses, COMAR 26.08.02, Effective August 2000, Maryland Department of the Environment, Annapolis, Maryland. All surface waters must protect public health or welfare; enhance the quality of water; protect aquatic resources; and serve the purposes of the Federal Act. Only classifications that are used in this report will be described in this section. The designated use classifications are as follows:

- **I-P** Protection of fish and aquatic life and contact recreation (fishable/swimmable), and Use I-P, which includes drinking water supply.
- **III-P** Natural trout waters and Use III-P, which includes a drinking water supply.
- IV-P Recreational trout waters and Use IV-P, which includes drinking water.