## NUTRIENTS AND SUSPENDED SEDIMENT TRANSPORTED IN THE SUSQUEHANNA RIVER BASIN, 2008, AND TRENDS, JANUARY 1985 THROUGH DECEMBER 2008

Publication No. 267

December 31, 2009

Kevin H. McGonigal Water Quality Program Specialist



Printed on recycled paper.

This report is prepared in cooperation with the Pennsylvania Department of Environmental Protection, Bureau of Water Quality Protection, Division of Conservation Districts and Nutrient Management, under Grant CB-97315904.

## SUSQUEHANNA RIVER BASIN COMMISSION



Paul O. Swartz, Executive Director

James M. Tierney, N.Y. Commissioner Kenneth P. Lynch, N.Y. Alternate Peter Freehafer, N.Y. Alternate

John Hanger, Pa. Commissioner John T. Hines, Pa. Alternate Susan K. Weaver, Pa. Alternate Cathleen Curran Myers, Pa. Alternate Andrew Zemba, Pa. Alternate Pam Bishop, Pa. Advisor

Dr. Robert M. Summers, Md. Commissioner Herbert Sachs, Md. Alternate/Advisor

Colonel Peter A. DeLuca, U.S. Commissioner Colonel David E. Anderson, U.S. Alternate Lloyd Caldwell, U.S. Advisor Amy M. Guise, U.S. Advisor

The Susquehanna River Basin Commission was created as an independent agency by a federal-interstate compact<sup>\*</sup> among the states of Maryland and New York, the Commonwealth of Pennsylvania, and the federal government. In creating the Commission, the Congress and state legislatures formally recognized the water resources of the Susquehanna River Basin as a regional asset vested with local, state, and national interests for which all the parties share responsibility. As the single federal-interstate water resources agency with basinwide authority, the Commission's goal is to coordinate the planning, conservation, management, utilization, development, and control of basin water resources among the public and private sectors.

\*Statutory Citations: Federal - Pub. L. 91-575, 84 Stat. 1509 (December 1970); Maryland - Natural Resources Sec. 8-301 (Michie 1974); New York - ECL Sec. 21-1301 (McKinney 1973); and Pennsylvania - 32 P.S. 820.1 (Supp. 1976).

This report is available on our web site (<u>www.srbc.net</u>) by selecting Public Information/Technical Reports. For a CD or hard copy, contact the Susquehanna River Basin Commission, 1721 N. Front Street, Harrisburg, Pa. 17102-2391, Phone: (717) 238-0423, Fax: (717) 238-2436, E-mail: <u>srbc@srbc.net</u>.

### TABLE OF CONTENTS

| ABSTRACT                                                      | l |
|---------------------------------------------------------------|---|
| INTRODUCTION                                                  | 2 |
| Purpose of Report                                             | 2 |
| DESCRIPTION OF THE SUSQUEHANNA RIVER BASIN                    | 2 |
| NUTRIENT MONITORING SITES                                     | 1 |
| SAMPLE COLLECTION AND ANALYSIS                                | 5 |
| PRECIPITATION                                                 | 7 |
| WATER DISCHARGE                                               | 3 |
| 2008 NUTRIENT AND SUSPENDED-SEDIMENT LOADS AND YIELDS10       | ) |
| 2008 SUMMARY STATISTICS FOR ALL SITES10                       | ) |
| COMPARISON OF THE 2008 LOADS AND YIELDS OF TOTAL NITROGEN,    |   |
| TOTAL PHOSPHORUS, AND SUSPENDED SEDIMENT WITH THE BASELINES24 | 1 |
| DISCHARGE, NUTRIENT, AND SUSPENDED-SEDIMENT TRENDS            | 5 |
| DISCUSSION                                                    | ) |
| REFERENCES                                                    | 3 |

### FIGURES

| Figure 1. | The Susquehanna River Basin, Subbasins, and Population Centers           | 3   |
|-----------|--------------------------------------------------------------------------|-----|
| Figure 2. | Locations of Sampling Sites Within the Susquehanna River Basin           | 6   |
| Figure 3. | Discharge Ratios for Long-term Sites, Susquehanna Mainstem Sites (A) and |     |
|           | Tributaries (B)                                                          | .9  |
|           |                                                                          | • - |

### TABLES

| Table 1.  | 2000 Land Use Percentages for the Susquehanna River Basin and Selected      |
|-----------|-----------------------------------------------------------------------------|
|           | Tributaries4                                                                |
| Table 2.  | Data Collection Sites and Their Drainage Areas5                             |
| Table 3.  | Water Quality Parameters, Laboratory Methods, and Detection Limits7         |
| Table 4.  | Summary of Annual Precipitation for Selected Areas in the Susquehanna River |
|           | Basin, Calendar Year 20088                                                  |
| Table 5.  | Annual Water Discharge, Calendar Year 20089                                 |
| Table 6.  | List of Analyzed Parameters, Abbreviations, and STORET Codes11              |
| Table 7.  | Annual Water Discharges, Annual Loads, Yields, and Average Concentration of |
|           | Total Nitrogen, Calendar Year 200811                                        |
| Table 8.  | Annual Water Discharges and Annual Loads and Yields of Total Phosphorus,    |
|           | Calendar Year 200811                                                        |
| Table 9.  | Annual Water Discharges and Annual Loads and Yields of Total Suspended      |
|           | Sediment, Calendar Year 200812                                              |
| Table 10. | Annual Water Discharges and Annual Loads and Yields of Total Ammonia,       |
|           | Calendar Year 200812                                                        |
| Table 11. | Annual Water Discharges and Annual Loads and Yields of Total NOx Nitrogen,  |
|           | Calendar Year 200812                                                        |
| Table 12. | Annual Water Discharges and Annual Loads and Yields of Total Organic        |
|           | Nitrogen, Calendar Year 200812                                              |
| Table 13. | Annual Water Discharges and Annual Loads and Yields of Dissolved            |
|           | Phosphorus, Calendar Year 200813                                            |
|           |                                                                             |

| Table 14.              | Annual Water Discharges and Annual Loads and Yields of Dissolved<br>Orthophosphate, Calendar Year 2008 | 13  |
|------------------------|--------------------------------------------------------------------------------------------------------|-----|
| Table 15.              | Annual Water Discharges and Annual Loads and Yields of Dissolved                                       | .15 |
| 1000 15.               | Ammonia, Calendar Year 2008                                                                            | 13  |
| Table 16.              | Annual Water Discharges and Annual Loads and Yields of Dissolved Nitrogen,                             | .10 |
| 10010 10.              | Calendar Year 2008                                                                                     | 13  |
| Table 17.              | Annual Water Discharges and Annual Loads and Yields of Dissolved NOx                                   |     |
|                        | Nitrogen, Calendar Year 2008                                                                           | .14 |
| Table 18.              | Annual Water Discharges and Annual Loads and Yields of Dissolved Organic                               |     |
|                        | Nitrogen, Calendar Year 2008                                                                           | .14 |
| Table 19.              | Annual Water Discharges and Annual Loads and Yields of Total Organic                                   |     |
|                        | Carbon, Calendar Year 2008                                                                             | .14 |
| Table 20.              | Seasonal Mean Water Discharges and Loads of Nutrients and Suspended                                    |     |
|                        | Sediment, Calendar Year 2008                                                                           | .15 |
| Table 21.              | Seasonal Mean Water Discharges and Yields of Nutrients and Suspended                                   |     |
|                        | Sediment, Calendar Year 2008                                                                           | .16 |
| Table 22.              | 2008 Monthly Flow in CFS and TN, TP, and SS in Thousands of Pounds at                                  |     |
|                        | Susquehanna River Sites: Towanda, Danville, and Marietta                                               | .17 |
| Table 23.              | 2008 Monthly Flow in CFS and TN, TP, and SS in Thousands of Pounds at                                  |     |
|                        | Susquehanna River Tributary Sites: Lewisburg, Newport, and Conestoga                                   | .17 |
| Table 24.              | 2008 Monthly Flow in CFS and TN, TP, and SS Yields in lbs/acre at                                      |     |
|                        | Susquehanna River Sites: Towanda, Danville, and Marietta                                               | .18 |
| Table 25.              | 2008 Monthly Flow in CFS and TN, TP, and SS Yields in lbs/acre at                                      |     |
|                        | Susquehanna River Tributary Sites: Lewisburg, Newport, and Conestoga                                   | .18 |
| Table 26.              | Temperature, Dissolved Oxygen, Conductivity, and pH Summary Statistics of                              |     |
|                        | Samples Collected During 2008                                                                          | .19 |
| Table 27.              | Total Nitrogen Species Summary Statistics of Samples Collected During 2008,                            |     |
|                        | in mg/L                                                                                                | .20 |
| Table 28.              | Dissolved Nitrogen Species Summary Statistics of Samples Collected During                              |     |
|                        | 2008, in mg/L                                                                                          | .21 |
| Table 29.              | Phosphorus Species and Total Suspended Solids Summary Statistics of Samples                            |     |
|                        | Collected During 2008, in mg/L                                                                         |     |
| Table 30.              | Flow, Total Organic Carbon, Total Kjeldahl, and Dissolved Kjeldahl Summary                             |     |
|                        | Statistics of Samples Collected During 2008, in mg/L                                                   |     |
| Table 31.              | Comparison of 2008 TN, TP, and SS Yields with Baseline Yields                                          |     |
| Table 32.              | Comparison of 2008 Seasonal TN, TP, and SS Yields with Baseline Yields                                 | .25 |
| Table 33.              | Trend Statistics for the Susquehanna River at Towanda, Pa., October 1988                               |     |
|                        | Through September 2008                                                                                 | .27 |
| Table 34.              | Trend Statistics for the Susquehanna River at Danville, Pa., October 1984                              |     |
|                        | Through September 2008.                                                                                | .27 |
| Table 35.              | Trend Statistics for the West Branch Susquehanna River at Lewisburg, Pa.,                              | • • |
|                        |                                                                                                        | .28 |
| Table 36.              | Trend Statistics for the Juniata River at Newport, Pa., October 1984 Through                           |     |
| <b>m</b> 11 6 <b>-</b> | September 2008                                                                                         | .28 |
| Table 37.              | Trend Statistics for the Susquehanna River at Marietta, Pa., October 1986                              | ••• |
| <b>T</b> 11 20         | Through September 2008                                                                                 | .29 |
| Table 38.              | Trend Statistics for the Conestoga River at Conestoga, Pa., October 1984                               | 20  |
|                        | Through September 2008                                                                                 | .29 |

### NUTRIENTS AND SUSPENDED SEDIMENT TRANSPORTED IN THE SUSQUEHANNA RIVER BASIN, 2008, AND TRENDS, JANUARY 1985 THROUGH DECEMBER 2008

Kevin H. McGonigal Water Quality Program Specialist

### ABSTRACT

Nutrient and suspended-sediment (SS) samples were collected under base flow and stormflow conditions during calendar year 2008 for Group A sites listed in Table 2. Fixed date samples also were collected at these sites as well as at Group B sites listed in Table 2. All samples were analyzed for nitrogen and phosphorus species, total organic carbon (TOC), and SS.

Precipitation for 2008 was above average at all Group A sites. Largest departure from the long-term mean (LTM) for precipitation was recorded at Danville, Pa., with 6.82 inches above Highest precipitation months the LTM. occurred during January through March at all sites with an average of 3.5 inches above the LTM. Discharge values were below the LTM at Towanda, Lewisburg, and Conestoga and above the LTM at Danville, Newport, and Lewisburg. Highest departures from the LTM were at Newport with 110.3 percent of the LTM and at Lewisburg with 93.3 percent of the LTM. Flow levels were highest at all sites during February and March with additional high flow levels in May and December 2008.

This report utilizes several methods to compare nutrient and SS loads and yields including: (1) comparison with the LTM; (2) comparison with baseline data; and (3) flow adjusted concentration trend analysis.

Annual loads for all nitrogen species were below LTM at all sites except for Newport. All nitrogen species were either at or above the LTM at Newport except for dissolved organic nitrogen (DON), which was below the LTM.

All phosphorus species had above LTM loads at Towanda and Danville including near double LTM values of dissolved orthophosphate (DOP). Additionally, Lewisburg had above LTM levels of dissolved phosphorus (DP) and DOP, while Newport had above LTM levels of total phosphorus (TP) and DOP. TOC was above or at LTM levels for Newport and Marietta, respectively. 2008 SS values were below LTM including dramatically lower values at Conestoga, which also had lower than LTM values for all other parameters. 2008 loads of TN, TP, and SS were highest during March, which accounted for 10 percent of the annual flow and 26 percent, 40 percent, and 57 percent of the TN, TP, and SS annual loads, respectively.

Lower than predicted yields in TN, TP, and SS were found in 2008 for all baseline comparisons at all sites except for TP at Towanda and TP at Danville for the second half baseline comparison. Seasonal yields at Towanda were higher than baseline predictions for both spring and winter for TP and during winter for SS. 2008 annual yields were dramatically lower than baseline predictions at Conestoga for TN, TP, and SS. Although 2008 annual TP at Lewisburg was below baseline predictions, both fall and winter yields were higher.

TN, TP, and SS trends were improving at all sites during 2008 except for TP at Towanda, which had no significant trend. Upward trends were found at Towanda and Newport for DOP. The most southern site, Marietta, showed downward trends for all parameters except DOP, which had no significant trend due to more than 20 percent of the values being below the method detection limit (BMDL). This also occurred for dissolved ammonia nitrogen  $(DNH_{3})$  at Towanda, Danville, Lewisburg, and Newport. No significant trends were found for flow for the time period.

### INTRODUCTION

Nutrients and SS entering the Chesapeake Bay (Bay) from the Susquehanna River Basin contribute to nutrient enrichment problems in the Bay (USEPA, 1982). The Pennsylvania Department of Environmental Protection (PADEP) Bureau of Laboratories, the U.S. Environmental Protection Agency (USEPA), the U.S. Geological Survey (USGS), and the Susquehanna River Basin Commission (SRBC) conducted a 5-year intensive study at 12 sites from 1985-89 to quantify nutrient and SS transported to the Bay via the Susquehanna River Basin. In 1990, the number of sampling sites was reduced to five long-term monitoring stations. An additional site was included in 1994.

In October 2004, 13 additional sites (two in New York and 11 in Pennsylvania) were added as part of the Chesapeake Bay Program's Nontidal Water Quality Monitoring Network. In October 2005, four more sites (three in New York and one in Maryland) were added to the existing network. This project involves monitoring efforts conducted by all six Bay state jurisdictions, USEPA, USGS, and SRBC to create a uniform non-tidal monitoring network for the entire Bay watershed.

### **Purpose of Report**

The purpose of this report is to present basic information on annual and seasonal loads and yields of nutrients and SS measured during calendar year 2008. Comparisons are made to LTM and to various baselines, including baselines created from the initial five years of data, the first half of the dataset, the second half of the dataset, and those created from the entire dataset for each site. Additionally, seasonal baselines were created using the initial five years of data from each site. Seasonal and annual variations in loads are discussed, as well as the results of flow-adjusted trend analyses for the period January 1985 through December 2008 for various forms of nitrogen and phosphorus, SS, TOC, and discharge.

### DESCRIPTION OF THE SUSQUEHANNA RIVER BASIN

The Susquehanna River (Figure 1) drains an area of 27,510 square miles (Susquehanna River Basin Study Coordination Committee, 1970), and is the largest tributary to the Chesapeake Bay. The Susquehanna River originates in the Appalachian Plateau of southcentral New York, flows into the Valley and Ridge and Piedmont Provinces of Pennsylvania and Maryland, and joins the Bay at Havre de Grace, Md. The climate in the Susquehanna River Basin varies considerably from the low lands adjacent to the Bay in Maryland to the high elevations, above 2,000 feet, of the northern headwaters in central New York State. The annual mean temperature ranges from 53° F (degrees Fahrenheit) near the Pennsylvania-Maryland border to 45° F in the northern part of the basin. Annual precipitation in the basin averages 39.15 inches and is fairly well distributed throughout the year.

Land use in the Susquehanna River Basin, shown in Table 1, is predominantly rural with woodland accounting for 69 percent; agriculture, 21 percent; and urban, 7 percent. Woodland occupies the higher elevations of the northern and western parts of the basin and much of the mountain and ridge land in the Juniata and Lower Susquehanna Subbasins. Woods and grasslands occupy areas in the lower part of the basin that are unsuitable for cultivation because the slopes are too steep, the soils are too stony, or the soils are poorly drained. The Lower Susquehanna Subbasin contains the highest density of agriculture operations within the However, extensive areas are watershed. cultivated along the river valleys in southern New York and along the West Branch Susquehanna River from Northumberland, Pa., to Lock Haven, Pa., including the Bald Eagle Creek Valley.



Figure 1. The Susquehanna River Basin, Subbasins, and Population Centers

| Site         | Waterbody               | Water/  | Urban       |           | Agricultural |       |        | Other |
|--------------|-------------------------|---------|-------------|-----------|--------------|-------|--------|-------|
| Location     | Waterbody               | Wetland | Urban       | Row Crops | Pasture/Hay  | Total | Forest | Other |
|              |                         | Origin  | al Sites (( | Group A)  |              |       |        |       |
| Towanda      | Susquehanna             | 2       | 5           | 17        | 5            | 22    | 71     | 0     |
| Danville     | Susquehanna             | 2       | 6           | 16        | 5            | 21    | 70     | 1     |
| Lewisburg    | West Branch Susquehanna | 1       | 5           | 8         | 2            | 10    | 84     | 0     |
| Newport      | Juniata                 | 1       | 6           | 14        | 4            | 18    | 74     | 1     |
| Marietta     | Susquehanna             | 2       | 7           | 14        | 5            | 19    | 72     | 0     |
| Conestoga    | Conestoga               | 1       | 24          | 12        | 36           | 48    | 26     | 1     |
|              |                         | Enhanc  | ed Sites (  | Group B)  |              |       |        |       |
| Campbell     | Cohocton                | 3       | 4           | 13        | 6            | 19    | 74     | 0     |
| Rockdale     | Unadilla                | 3       | 2           | 22        | 6            | 28    | 66     | 1     |
| Conklin      | Susquehanna             | 3       | 3           | 18        | 4            | 22    | 71     | 1     |
| Smithboro    | Susquehanna             | 3       | 5           | 17        | 5            | 22    | 70     | 0     |
| Chemung      | Chemung                 | 2       | 5           | 15        | 5            | 20    | 73     | 0     |
| Wilkes-Barre | Susquehanna             | 2       | 6           | 16        | 5            | 21    | 71     | 0     |
| Karthaus     | West Branch Susquehanna | 1       | 6           | 11        | 1            | 12    | 80     | 1     |
| Castanea     | Bald Eagle              | 1       | 8           | 11        | 3            | 14    | 76     | 1     |
| Jersey Shore | West Branch Susquehanna | 1       | 4           | 6         | 1            | 7     | 87     | 1     |
| Penns Creek  | Penns                   | 1       | 3           | 16        | 4            | 20    | 75     | 1     |
| Saxton       | Raystown Branch Juniata | < 0.5   | 6           | 18        | 5            | 23    | 71     | 0     |
| Dromgold     | Shermans                | 1       | 4           | 15        | 6            | 21    | 74     | 0     |
| Hogestown    | Conodoguinet            | 1       | 11          | 38        | 6            | 44    | 43     | 1     |
| Hershey      | Swatara                 | 2       | 14          | 18        | 10           | 28    | 56     | 0     |
| Manchester   | anchester West Conewago |         | 13          | 12        | 36           | 48    | 36     | 1     |
| Martic Forge | Pequea                  | 1       | 12          | 12        | 48           | 60    | 25     | 2     |
| Richardsmere | Octoraro                | 1       | 10          | 16        | 47           | 63    | 24     | 2     |
| Entire Basin | Susquehanna River Basin | 2       | 7           | 14        | 7            | 21    | 69     | 1     |

 Table 1.
 2000 Land Use Percentages for the Susquehanna River Basin and Selected Tributaries

areas in the Lower Major urban Susquehanna Subbasin include York, Lancaster, Harrisburg, and Sunbury, Pa. Most of the urban areas in the Upper and Chemung Subbasins are located along river valleys, and they include Binghamton, Elmira, and Corning, N.Y. Urban areas in the Middle Susquehanna include Scranton and Wilkes-Barre, Pa. The major urban areas in the West Branch Susquehanna Subbasin are Williamsport, Renovo, and Clearfield, Pa. Lewistown and Altoona, Pa., are the major urban areas within the Juniata Subbasin.

#### NUTRIENT MONITORING SITES

Data were collected from six sites on the Susquehanna River, three sites on the West Branch Susquehanna River, and 14 sites on smaller tributaries in the basin. These 23 sites, selected for long-term monitoring of nutrient and SS transport in the basin, are listed in Table 2, and their general locations are shown in Figure 2.

| USGS<br>ID<br>Number | Original Sites (Group A)                             | Subbasin             | Short<br>Name | Drainage<br>Area<br>(Sq Mi) |
|----------------------|------------------------------------------------------|----------------------|---------------|-----------------------------|
| 01531500             | Susquehanna River at Towanda, Pa.                    | Middle Susquehanna   | Towanda       | 7,797                       |
| 01540500             | Susquehanna River at Danville, Pa.                   | Middle Susquehanna   | Danville      | 11,220                      |
| 01553500             | West Branch Susquehanna River at Lewisburg, Pa.      | W Branch Susquehanna | Lewisburg     | 6,847                       |
| 01567000             | Juniata River at Newport, Pa.                        | Juniata              | Newport       | 3,354                       |
| 01576000             | Susquehanna River at Marietta, Pa.                   | Lower Susquehanna    | Marietta      | 25,990                      |
| 01576754             | Conestoga River at Conestoga, Pa.                    | Lower Susquehanna    | Conestoga     | 470                         |
|                      | Enhanced Sites (Group B)                             |                      |               |                             |
| 01502500             | Unadilla River at Rockdale, N.Y.                     | Upper Susquehanna    | Rockdale      | 520                         |
| 01503000             | Susquehanna River at Conklin, N.Y.                   | Upper Susquehanna    | Conklin       | 2,232                       |
| 01515000             | Susquehanna River at Smithboro, N.Y.                 | Upper Susquehanna    | Smithboro     | 4,631                       |
| 01529500             | Cohocton River at Campbell, N.Y.                     | Chemung              | Campbell      | 470                         |
| 01531000             | Chemung River at Chemung, N.Y.                       | Chemung              | Chemung       | 2,506                       |
| 01536500             | Susquehanna River near Wilkes-Barre, Pa.             | Middle Susquehanna   | Wilkes-Barre  | 9,960                       |
| 01542500             | West Branch Susquehanna River near Karthaus, Pa.     | W Branch Susquehanna | Karthaus      | 1,462                       |
| 01548085             | Bald Eagle Creek near Castanea, Pa.                  | W Branch Susquehanna | Castanea      | 420                         |
| 01549760             | West Branch Susquehanna River near Jersey Shore, Pa. | W Branch Susquehanna | Jersey Shore  | 5,225                       |
| 01555000             | Penns Creek at Penns Creek, Pa.                      | Lower Susquehanna    | Penns Creek   | 301                         |
| 01562000             | Raystown Branch Juniata River at Saxton, Pa.         | Juniata              | Saxton        | 756                         |
| 01568000             | Shermans Creek near Dromgold, Pa.                    | Lower Susquehanna    | Dromgold      | 200                         |
| 01570000             | Conodoguinet Creek near Hogestown, Pa.               | Lower Susquehanna    | Hogestown     | 470                         |
| 01573560             | Swatara Creek near Hershey, Pa.                      | Lower Susquehanna    | Hershey       | 483                         |
| 01574000             | West Conewago Creek near Manchester, Pa.             | Lower Susquehanna    | Manchester    | 510                         |
| 01576787             | Pequea Creek near Martic Forge, Pa.                  | Lower Susquehanna    | Pequea        | 155                         |
| 01578475             | Octoraro Creek at Richardsmere, Md.                  | Lower Susquehanna    | Richardsmere  | 177                         |

 Table 2.
 Data Collection Sites and Their Drainage Areas

### SAMPLE COLLECTION AND ANALYSIS

Samples were collected to measure nutrient and SS concentrations during various flows in 2008. For Group A sites, two samples were collected per month: one near the twelfth of the month (fixed date sample) and one during monthly base flow conditions. Additionally, at least four high flow events were sampled, targeting one per season. When possible, a second high flow event was sampled after spring planting in the basin. During high flow sampling events, samples were collected daily during the rise and fall of the hydrograph. The goal was to gather a minimum of three samples on the rise and three samples on the fall, with one sample as close to peak flow as possible.

For Group B sites, fixed date monthly samples were collected during the middle of each month during 2008. Additionally, two storm samples were collected per quarter at each site. All samples were collected by hand with USGS depth integrating samplers. At each site between three and 10 depth integrated verticals were collected across the water column and then composited to obtain a representative sample of the entire waterbody.

Whole water samples were collected and analyzed for nitrogen and phosphorus species, TOC, TSS, and SS. For Group B sites, SS samples were only collected during storm events. Additionally, filtered samples were collected to analyze for dissolved nitrogen (DN) and DP species. All Pennsylvania samples were delivered to the PADEP Laboratory in Harrisburg. SS samples for Group A sites were completed at SRBC, while samples for Group B sites were analyzed at the USGS sediment laboratory in Louisville, Kentucky. Additionally, one of each of the two storm samples per storm was submitted to the USGS sediment laboratory for analysis of sand/fine content. The parameters and laboratory methods used are listed in Table 3.

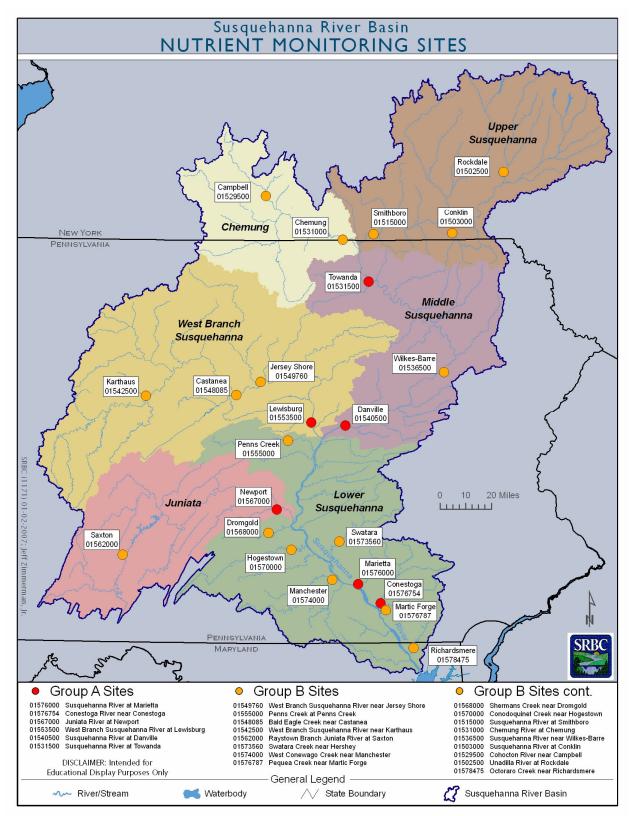



Figure 2. Locations of Sampling Sites Within the Susquehanna River Basin

| Parameter                             | Laboratory | Methodology                    | Detection<br>Limit<br>(mg/l) | References                                    |
|---------------------------------------|------------|--------------------------------|------------------------------|-----------------------------------------------|
| Total Ammonia (TNH <sub>3</sub> )     | PADEP      | Colorimetry                    | 0.020                        | USEPA 350.1                                   |
|                                       | CAS*       | Colorimetry                    | 0.010                        | USEPA 350.1R                                  |
| Dissolved Ammonia (DNH <sub>3</sub> ) | PADEP      | Block Digest, Colorimetry      | 0.020                        | USEPA 350.1                                   |
|                                       |            | Block Digest, Colorimetry      | 0.010                        | USEPA 350.1R                                  |
| Total Nitrogen (TN)                   | PADEP      | Persulfate Digestion for TN    | 0.040                        | Standard Methods<br>#4500-N <sub>org</sub> -D |
| Dissolved Nitrogen (DN)               | PADEP      | Persulfate Digestion           | 0.040                        | Standard Methods<br>#4500-N <sub>org</sub> -D |
| Total Organic Nitrogen (TON)          | N/A        | TN minus TNH3 and TNO23        | N/A                          | N/A                                           |
| Dissolved Organic Nitrogen (DON)      | N/A        | DN minus DNH3 and DNO23        | N/A                          | N/A                                           |
| Total Kjeldahl Nitrogen (TKN)         | CAS*       | Block Digest, Flow Injection   | 0.050                        | USEPA 351.2                                   |
| Dissolved Kjeldahl Nitrogen (DKN)     | CAS*       | Block Digest, Flow Injection   | 0.050                        | USEPA 351.2                                   |
| Total Nitrite plus Nitrate (TNOx)     | PADEP      | Cd-reduction, Colorimetry      | 0.010                        | USEPA 353.2                                   |
|                                       | CAS*       | Colorimetric by LACHAT         | 0.002                        | USEPA 353.2                                   |
| Dissolved Nitrite plus Nitrate (DNOx) | PADEP      | Cd-reduction, Colorimetry      | 0.010                        | USEPA 353.2                                   |
|                                       | CAS*       | Colorimetric by LACHAT         | 0.002                        | USEPA 353.2                                   |
| Dissolved Orthophosphate (DOP)        | PADEP      | Colorimetry                    | 0.010                        | USEPA 365.1                                   |
|                                       | CAS*       | Colorimetric Determination     | 0.002                        | USEPA 365.1                                   |
| Dissolved Phosphorus (DP)             | PADEP      | Block Digest, Colorimetry      | 0.010                        | USEPA 365.1                                   |
|                                       | CAS*       | Colorimetric Determination     | 0.002                        | USEPA 365.1                                   |
| Total Phosphorus (TP)                 | PADEP      | Persulfate Digest, Colorimetry | 0.010                        | USEPA 365.1                                   |
|                                       | CAS*       | Colorimetric Determination     | 0.002                        | USEPA 365.1                                   |
| Total Organic Carbon (TOC)            | PADEP      | Combustion/Oxidation           | 0.50                         | SM 5310D                                      |
|                                       | CAS*       | Chemical Oxidation             | 0.05                         | GEN 415.1/9060                                |
| Suspended Sediment Fines & Sand       | USGS       | **                             |                              |                                               |
| Suspended Sediment (Total)            | SRBC       | **                             |                              |                                               |
|                                       | USGS       | **                             |                              |                                               |

 Table 3.
 Water Quality Parameters, Laboratory Methods, and Detection Limits

\* Columbia Analytical Services, Rochester, NY (New York sites only)

\*\* TWRI Book 3, Chapter C2 and Book 5, Chapter C1, Laboratory Theory and Methods for Sediment Analysis (Guy and others, 1969)

#### PRECIPITATION

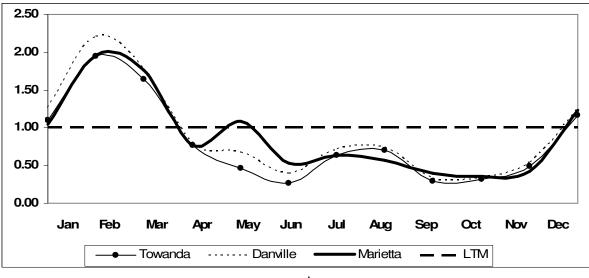
Precipitation data were obtained from longterm monitoring stations operated by the U.S. Department of Commerce. The data are published as Climatological Data-Pennsylvania, and as Climatological Data-New York by the National Oceanic and Atmospheric Administration (NOAA) at the National Climatic Data Center in Asheville, North Carolina. Quarterly and annual data from these sources were compiled across the subbasins of the Susquehanna River Basin and are reported in Table 4 for Group A sites.

Precipitation for 2008 was above average at all Group A sites. Highest departure from the LTM for precipitation was recorded at Danville, Pa., with 6.82 inches above the LTM. Highest precipitation months occurred during January through March at all sites, with an average of 3.5 inches above the LTM.

| River<br>Location                                     | Season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calendar<br>Year 2008<br>Precipitation<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average<br>Long-term<br>Precipitation<br>inches | Departure<br>From<br>Long-term<br>inches |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|
|                                                       | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.56                                            | 3.86                                     |
| Susquehanna River                                     | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.54                                           | -1.90                                    |
| above Towanda. Pa.                                    | July-September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.17                                           | 1.02                                     |
|                                                       | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>10.10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>9.14</u>                                     | <u>0.96</u>                              |
|                                                       | Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.41                                           | 3.94                                     |
|                                                       | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.74                                            | 6.56                                     |
| Susquehanna River                                     | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.69                                           | -0.47                                    |
| above Danville, Pa.                                   | July-September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.38                                           | 0.52                                     |
| above Daliville, I a.                                 | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>9.47</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>9.26</u>                                     | 0.21                                     |
|                                                       | Season         Year 2008<br>Precipitation<br>inches         Long-term<br>Precipitation<br>inches         Long-term<br>Precipitation<br>inches           January-March         11.42         7.56           April-June         8.64         10.54           July-September         12.19         11.17           October-December         10.10         9.14           Yearly Total         42.35         38.41           January-March         14.30         7.74           April-June         10.22         10.69           July-September         11.90         11.38           October-December         9.47         9.26           Yearly Total         45.89         39.07           January-March         12.31         8.40           April-June         10.96         11.03           July-September         10.82         12.43           October-December         9.16         9.66      Yearly Total         43.25         41.52           January-March         9.92         7.74           April-June         13.43         9.73           July-September         9.10         10.05           October-December         8.70         8.97      Yearly Total         41.15 <td< td=""><td>6.82</td></td<> | 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                          |
| West Branch Susquehanna River<br>above Lewisburg, Pa. | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.40                                            | 3.91                                     |
|                                                       | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.03                                           | -0.07                                    |
|                                                       | July-September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.43                                           | -1.61                                    |
| above Lewisburg, Fu.                                  | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>9.16</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>9.66</u>                                     | <u>-0.50</u>                             |
|                                                       | Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.52                                           | 1.73                                     |
|                                                       | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.74                                            | 2.18                                     |
| Juniata River                                         | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.73                                            | 3.70                                     |
|                                                       | July-September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.05                                           | -0.95                                    |
| ubbve newport, ru.                                    | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>8.70</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>8.97</u>                                     | -0.27                                    |
|                                                       | Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Year 2008<br>Precipitation<br>inchesLong-term<br>Precipitation<br>inchesLong-term<br>Precipitation<br>inches $11.42$ 7.56 $8.64$ 10.54 $12.19$ $11.17$ iber $10.10$ $9.14$ $42.35$ $38.41$ $14.30$ $7.74$ $10.22$ $10.69$ $11.90$ $11.38$ $14.30$ $7.74$ $10.22$ $10.69$ $11.90$ $11.38$ $14.30$ $7.74$ $10.22$ $10.69$ $11.90$ $11.38$ $10.82$ $12.43$ $10.96$ $11.03$ $10.82$ $12.43$ $10.82$ $12.43$ $9.16$ $9.66$ $43.25$ $41.52$ $9.92$ $7.74$ $13.43$ $9.73$ $9.10$ $10.05$ $10.8$ $10.73$ $11.23$ $11.52$ $10.38$ $10.73$ $11.23$ $11.52$ $10.38$ $10.73$ $11.23$ $11.52$ $9.89$ $8.91$ $11.03$ $10.74$ $3.28$ $12.59$ $10.50$ $10.58$ | 4.66                                            |                                          |
|                                                       | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.21                                            | 3.48                                     |
| Susquebanna River                                     | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.73                                           | -0.35                                    |
| above Marietta, Pa.                                   | t Branch Susquehanna River<br>/e Lewisburg, Pa.<br>January-March<br>April-June<br>July-September<br><u>October-December</u><br>Yearly Total<br>January-March<br>April-June<br>July-September<br><u>October-December</u><br>Yearly Total<br>January-March<br>April-June<br>July-September<br><u>October-December</u><br>Yearly Total<br>January-March<br>April-June<br>July-September<br><u>October-December</u><br>Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.52                                           | -0.29                                    |
| ubbve istalietta, i a.                                | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>9.44</u>                                     | 0.00                                     |
|                                                       | Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.90                                           | 2.84                                     |
|                                                       | January-March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 0.98                                     |
| Conestoga River                                       | April-June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.74                                           | 0.29                                     |
| above Conestoga, Pa.                                  | July-September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.59                                           | 0.69                                     |
| ubbye Conestoga, 1 a.                                 | October-December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>10.50</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.58                                           | <u>-0.08</u>                             |
|                                                       | Yearly Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.82                                           | 1.88                                     |

## Table 4.Summary of Annual Precipitation for Selected Areas in the Susquehanna River Basin,<br/>Calendar Year 2008

### WATER DISCHARGE


Water discharge data were obtained from the USGS and are listed in Table 5. Monthly water discharge ratios are plotted in Figure 3 for all sites. The water discharge ratio is the actual flow for the time period divided by the LTM for the same time period. Thus, a value of one equals the 2008 flow being the same as the LTM, while a value of three equals the 2008

flow being three times the volume of the LTM. Discharge values were below the LTM at Towanda, Lewisburg, and Conestoga and above the LTM at Danville, Newport, and Marietta. Highest departures from the LTM were at Newport with 110.3 percent of the LTM and at Lewisburg with 93.3 percent of the LTM. Flows levels were highest at all sites during February and March with additional high flow levels in May and December 2008.

| Site      | Years of | Long-term                    |          | 2008                        |
|-----------|----------|------------------------------|----------|-----------------------------|
| Sile      | Record   | Annual Mean cfs <sup>1</sup> | Mean cfs | Percent of LTM <sup>2</sup> |
| Towanda   | 20       | 11,841                       | 11,359   | 95.9                        |
| Danville  | 24       | 16,557                       | 17,620   | 106.4                       |
| Lewisburg | 24       | 10,848                       | 10,108   | 93.2                        |
| Newport   | 24       | 4,399                        | 4,851    | 110.3                       |
| Marietta  | 22       | 39,123                       | 41,023   | 104.9                       |
| Conestoga | 24       | 677                          | 635      | 93.8                        |

 Table 5.
 Annual Water Discharge, Calendar Year 2008

<sup>1</sup> Cubic feet per second <sup>2</sup> Long-term mean





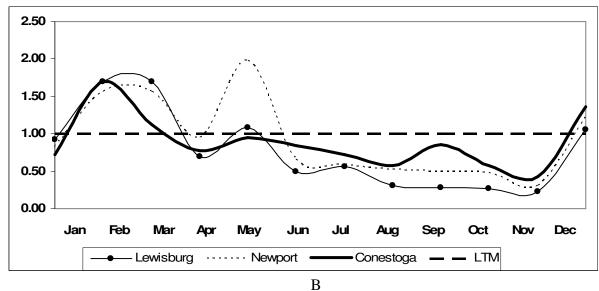



Figure 3. Discharge Ratios for Long-term Sites, Susquehanna Mainstem Sites (A) and Tributaries (B)

### 2008 NUTRIENT AND SUSPENDED-SEDIMENT LOADS AND YIELDS

Loads and yields represent two methods for describing nutrient and SS amounts within a basin. Loads refer to the actual amount of the constituent being transported in the water column past a given point over a specific duration of time and are expressed in pounds. Yields compare the transported load with the acreage of the watershed and are expressed in This allows for easy watershed lbs/acre. comparisons. This project reports loads and vields for the constituents listed in Table 6 as computed by the Minimum Variance Unbiased Estimator (ESTIMATOR) described by Cohn and others (1989). This estimator relates the constituent concentration to water discharge, seasonal effects, and long-term trends, and computes the best-fit regression equation. Daily loads of the constituents then were calculated from the daily mean water discharge records. The loads were reported along with the estimates of accuracy.

Identifying sites where the percentage of LTM for a constituent was different than the percentage of LTM for discharge may show potential areas where improvements or degradations have occurred for that particular constituent. One item to note is that nutrients and SS increase with increased flow (Ott and others, 1991; Takita, 1996, 1998). This increase, however, is not as linear at higher flows as at lower ones. Individual high flow events tend to produce higher loads, especially for TP and SS, than would be predicted by a simple comparison with the LTM.

Tables 7-19 show the loads and yields for the Group A monitoring stations, as well as an associated error value. They also show the annual concentration for average each constituent. Comparisons have been made to the LTMs for all constituents. Seasonal loads and yields for all parameters and all sites are listed in Table 20 for loads and Table 21 for yields. For the purposes of this project, January through March is winter, April through June is spring, July through September is summer, and October through December is fall. Monthly loads and yields for TN, TP, and SS at all long-term sites are listed in Tables 22 through 25.

### 2008 SUMMARY STATISTICS FOR ALL SITES

Load and trend analyses were unable to be completed at Group B sites because samples have not been collected at the stations for a sufficient number of years. Therefore, summary statistics have been calculated for these sites, as well as the long-term sites for comparison. Summary statistics are listed in Tables 26 through 30 and include minimum, maximum, median, mean, and standard deviation values taken from the raw 2008 dataset.

| Parameter                         | Abbreviation     | STORET Code |
|-----------------------------------|------------------|-------------|
| Discharge                         | Q                | 00060       |
| Total Nitrogen as N               | TN               | 00600       |
| Dissolved Nitrogen as N           | DN               | 00602       |
| Total Organic Nitrogen as N *     | TON              | 00605       |
| Dissolved Organic Nitrogen as N * | DON              | 00607       |
| Total Ammonia as N                | TNH <sub>3</sub> | 00610       |
| Dissolved Ammonia as N            | DNH <sub>3</sub> | 00608       |
| Total Nitrate + Nitrite as N      | TNOx             | 00630       |
| Dissolved Nitrate + Nitrite as N  | DNOx             | 00631       |
| Total Phosphorus as P             | TP               | 00665       |
| Dissolved Phosphorus as P         | DP               | 00666       |
| Dissolved Orthophosphate as P     | DOP              | 00671       |
| Total Organic Carbon              | TOC              | 00680       |
| Suspended sediment (fine)         | SSF              | 70331       |
| Suspended sediment (sand)         | SSS              | 70335       |
| Suspended Sediment (total)        | SS               | 80154       |

 Table 6.
 List of Analyzed Parameters, Abbreviations, and STORET Codes

\* These are calculated values and not directly analyzed.

Table 7.Annual Water Discharges, Annual Loads, Yields, and Average Concentration of Total<br/>Nitrogen, Calendar Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 21,826                           | 77.9             | 3.07                  | 4.37                       | 5.61                     | 0.98                       | 81.2                 |
| Danville  | 17,620                   | 106.4                 | 36,150                           | 82.8             | 3.31                  | 5.03                       | 6.08                     | 1.04                       | 77.8                 |
| Lewisburg | 10,108                   | 93.2                  | 17,932                           | 76.1             | 4.61                  | 4.09                       | 5.38                     | 0.90                       | 81.7                 |
| Newport   | 4,851                    | 110.3                 | 16,461                           | 101.1            | 3.50                  | 7.67                       | 7.59                     | 1.72                       | 91.7                 |
| Marietta  | 41,023                   | 104.9                 | 116,588                          | 89.5             | 4.03                  | 7.01                       | 7.83                     | 1.44                       | 85.4                 |
| Conestoga | 635                      | 93.7                  | 7,896                            | 76.3             | 3.34                  | 26.25                      | 34.41                    | 6.32                       | 81.4                 |

Table 8.Annual Water Discharges and Annual Loads and Yields of Total Phosphorus, Calendar<br/>Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 2,468                            | 103.7            | 8.47                  | 0.495                      | 0.477                    | 0.110                      | 108.1                |
| Danville  | 17,620                   | 106.4                 | 3,626                            | 100.2            | 9.37                  | 0.505                      | 0.504                    | 0.105                      | 94.1                 |
| Lewisburg | 10,108                   | 93.2                  | 1,082                            | 84.9             | 12.41                 | 0.247                      | 0.291                    | 0.054                      | 91.1                 |
| Newport   | 4,851                    | 110.3                 | 815                              | 102.3            | 10.79                 | 0.379                      | 0.374                    | 0.085                      | 92.8                 |
| Marietta  | 41,023                   | 104.9                 | 6,117                            | 79.3             | 7.57                  | 0.368                      | 0.464                    | 0.076                      | 75.7                 |
| Conestoga | 635                      | 93.7                  | 264                              | 39.4             | 8.90                  | 0.883                      | 2.239                    | 0.213                      | 42.1                 |

| Table 9. | Annual Water Discharges and Annual Loads and Yields of Total Suspended Sediment, |
|----------|----------------------------------------------------------------------------------|
|          | Calendar Year 2008                                                               |

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 1,300,977                        | 43.1             | 14.25                 | 260.7                      | 604.5                    | 58.2                       | 45.0                 |
| Danville  | 17,620                   | 106.4                 | 1,926,319                        | 58.4             | 12.14                 | 268.3                      | 459.3                    | 55.5                       | 54.9                 |
| Lewisburg | 10,108                   | 93.2                  | 498,883                          | 42.2             | 16.44                 | 113.9                      | 269.6                    | 25.1                       | 45.3                 |
| Newport   | 4,851                    | 110.3                 | 386,635                          | 74.5             | 19.82                 | 180.1                      | 241.8                    | 40.5                       | 67.6                 |
| Marietta  | 41,023                   | 104.9                 | 5,296,206                        | 78.8             | 15.04                 | 318.4                      | 404.1                    | 65.6                       | 75.2                 |
| Conestoga | 635                      | 93.7                  | 80,638                           | 22.3             | 19.82                 | 268.1                      | 1,200.8                  | 64.5                       | 23.8                 |

Table 10.Annual Water Discharges and Annual Loads and Yields of Total Ammonia, Calendar Year2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 1,211                            | 85.8             | 11.99                 | 0.243                      | 0.283                    | 0.054                      | 89.5                 |
| Danville  | 17,620                   | 106.4                 | 1,741                            | 79.5             | 11.97                 | 0.242                      | 0.305                    | 0.050                      | 74.7                 |
| Lewisburg | 10,108                   | 93.2                  | 802                              | 74.8             | 12.56                 | 0.183                      | 0.245                    | 0.040                      | 80.2                 |
| Newport   | 4,851                    | 110.3                 | 434                              | 112.1            | 14.69                 | 0.202                      | 0.180                    | 0.045                      | 101.7                |
| Marietta  | 41,023                   | 104.9                 | 4,408                            | 94.1             | 13.03                 | 0.265                      | 0.282                    | 0.055                      | 89.8                 |
| Conestoga | 635                      | 93.7                  | 153                              | 58.4             | 14.65                 | 0.508                      | 0.871                    | 0.122                      | 62.3                 |

Table 11.Annual Water Discharges and Annual Loads and Yields of Total NOx Nitrogen, Calendar<br/>Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 12,739                           | 76.8             | 3.79                  | 2.55                       | 3.33                     | 0.570                      | 80.0                 |
| Danville  | 17,620                   | 106.4                 | 20,340                           | 79.2             | 4.35                  | 2.83                       | 3.58                     | 0.586                      | 74.5                 |
| Lewisburg | 10,108                   | 93.2                  | 12,576                           | 82.8             | 4.37                  | 2.87                       | 3.47                     | 0.632                      | 88.9                 |
| Newport   | 4,851                    | 110.3                 | 12,263                           | 101.6            | 3.61                  | 5.71                       | 5.62                     | 1.284                      | 92.2                 |
| Marietta  | 41,023                   | 104.9                 | 84,056                           | 91.5             | 4.75                  | 5.05                       | 5.52                     | 1.041                      | 87.3                 |
| Conestoga | 635                      | 93.7                  | 6,886                            | 82.7             | 4.78                  | 22.89                      | 27.69                    | 5.508                      | 88.2                 |

Table 12.Annual Water Discharges and Annual Loads and Yields of Total Organic Nitrogen,<br/>Calendar Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 7,244                            | 70.8             | 6.64                  | 1.45                       | 2.05                     | 0.324                      | 73.8                 |
| Danville  | 17,620                   | 106.4                 | 11,995                           | 74.2             | 6.51                  | 1.67                       | 2.25                     | 0.346                      | 69.8                 |
| Lewisburg | 10,108                   | 93.2                  | 5,010                            | 66.7             | 12.02                 | 1.14                       | 1.72                     | 0.252                      | 71.5                 |
| Newport   | 4,851                    | 110.3                 | 4,191                            | 104.3            | 12.99                 | 1.95                       | 1.87                     | 0.439                      | 94.6                 |
| Marietta  | 41,023                   | 104.9                 | 29,734                           | 85.6             | 8.96                  | 1.79                       | 2.09                     | 0.368                      | 81.6                 |
| Conestoga | 635                      | 93.7                  | 875                              | 45.8             | 10.84                 | 2.91                       | 6.35                     | 0.699                      | 48.9                 |

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of lbs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 1,142                            | 138.1            | 10.16                 | 0.229                      | 0.166                    | 0.051                      | 144.0                |
| Danville  | 17,620                   | 106.4                 | 1,387                            | 131.7            | 12.66                 | 0.193                      | 0.147                    | 0.040                      | 123.7                |
| Lewisburg | 10,108                   | 93.2                  | 609                              | 124.1            | 17.87                 | 0.139                      | 0.112                    | 0.031                      | 133.2                |
| Newport   | 4,851                    | 110.3                 | 329                              | 87.1             | 10.38                 | 0.153                      | 0.176                    | 0.034                      | 79.0                 |
| Marietta  | 41,023                   | 104.9                 | 1,616                            | 69.4             | 8.72                  | 0.097                      | 0.140                    | 0.020                      | 66.2                 |
| Conestoga | 635                      | 93.7                  | 156                              | 60.9             | 7.21                  | 0.520                      | 0.854                    | 0.125                      | 65.0                 |

Table 13.Annual Water Discharges and Annual Loads and Yields of Dissolved Phosphorus,<br/>Calendar Year 2008

Table 14.Annual Water Discharges and Annual Loads and Yields of Dissolved Orthophosphate,<br/>Calendar Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 893                              | 198.7            | 12.08                 | 0.179                      | 0.090                    | 0.040                      | 207.1                |
| Danville  | 17,620                   | 106.4                 | 1,021                            | 179.6            | 16.61                 | 0.142                      | 0.079                    | 0.029                      | 168.8                |
| Lewisburg | 10,108                   | 93.2                  | 486                              | 209.8            | 21.04                 | 0.111                      | 0.053                    | 0.024                      | 225.1                |
| Newport   | 4,851                    | 110.3                 | 235                              | 108.0            | 12.02                 | 0.110                      | 0.102                    | 0.025                      | 97.9                 |
| Marietta  | 41,023                   | 104.9                 | 1,089                            | 86.4             | 9.82                  | 0.065                      | 0.076                    | 0.014                      | 82.4                 |
| Conestoga | 635                      | 93.7                  | 133                              | 62.6             | 7.44                  | 0.442                      | 0.707                    | 0.106                      | 66.8                 |

Table 15.Annual Water Discharges and Annual Loads and Yields of Dissolved Ammonia, Calendar<br/>Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 1,063                            | 96.0             | 10.69                 | 0.213                      | 0.222                    | 0.0475                     | 100.0                |
| Danville  | 17,620                   | 106.4                 | 1,679                            | 87.7             | 12.30                 | 0.234                      | 0.267                    | 0.048                      | 82.4                 |
| Lewisburg | 10,108                   | 93.2                  | 804                              | 86.6             | 11.61                 | 0.183                      | 0.212                    | 0.040                      | 92.9                 |
| Newport   | 4,851                    | 110.3                 | 347                              | 103.6            | 14.60                 | 0.162                      | 0.156                    | 0.036                      | 94.0                 |
| Marietta  | 41,023                   | 104.9                 | 4,014                            | 98.7             | 12.75                 | 0.241                      | 0.244                    | 0.050                      | 94.2                 |
| Conestoga | 635                      | 93.7                  | 151                              | 63.6             | 14.87                 | 0.504                      | 0.792                    | 0.121                      | 68.0                 |

| Table 16. | Annual Water Discharges and Annual Loads and Yields of Dissolved Nitrogen, Calendar |
|-----------|-------------------------------------------------------------------------------------|
|           | Year 2008                                                                           |

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 20,316                           | 82.9             | 3.52                  | 4.07                       | 4.91                     | 0.909                      | 86.5                 |
| Danville  | 17,620                   | 106.4                 | 32,181                           | 86.5             | 3.53                  | 4.48                       | 5.18                     | 0.928                      | 81.3                 |
| Lewisburg | 10,108                   | 93.2                  | 17,054                           | 81.7             | 4.36                  | 3.89                       | 4.76                     | 0.857                      | 87.7                 |
| Newport   | 4,851                    | 110.3                 | 14,846                           | 100.8            | 3.27                  | 6.92                       | 6.86                     | 1.555                      | 91.4                 |
| Marietta  | 41,023                   | 104.9                 | 100,408                          | 88.3             | 4.34                  | 6.04                       | 6.84                     | 1.243                      | 84.2                 |
| Conestoga | 635                      | 93.7                  | 7,621                            | 80.1             | 3.80                  | 25.34                      | 31.64                    | 6.097                      | 85.5                 |

| Table 17. | Annual Water Discharges and Annual Loads and Yields of Dissolved NOx Nitrogen, |
|-----------|--------------------------------------------------------------------------------|
|           | Calendar Year 2008                                                             |

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 12,721                           | 77.4             | 4.02                  | 2.55                       | 3.29                     | 0.569                      | 80.7                 |
| Danville  | 17,620                   | 106.4                 | 20,355                           | 80.0             | 4.33                  | 2.84                       | 3.54                     | 0.587                      | 75.2                 |
| Lewisburg | 10,108                   | 93.2                  | 12,564                           | 83.4             | 4.37                  | 2.87                       | 3.44                     | 0.631                      | 89.5                 |
| Newport   | 4,851                    | 110.3                 | 12,312                           | 102.8            | 3.61                  | 5.74                       | 5.58                     | 1.289                      | 93.2                 |
| Marietta  | 41,023                   | 104.9                 | 84,014                           | 92.0             | 4.80                  | 5.05                       | 5.49                     | 1.040                      | 87.8                 |
| Conestoga | 635                      | 93.7                  | 6,728                            | 82.3             | 4.76                  | 22.37                      | 27.16                    | 5.383                      | 87.9                 |

| Table 18. | Annual Water Discharges and Annual Loads and Yields of Dissolved Organic Nitrogen, |
|-----------|------------------------------------------------------------------------------------|
|           | Calendar Year 2008                                                                 |

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 5,885                            | 81.4             | 7.21                  | 1.18                       | 1.45                     | 0.263                      | 85.0                 |
| Danville  | 17,620                   | 106.4                 | 8,395                            | 82.9             | 5.98                  | 1.17                       | 1.41                     | 0.242                      | 77.9                 |
| Lewisburg | 10,108                   | 93.2                  | 4,166                            | 81.9             | 9.98                  | 0.95                       | 1.16                     | 0.209                      | 87.9                 |
| Newport   | 4,851                    | 110.3                 | 2,276                            | 89.2             | 9.86                  | 1.06                       | 1.19                     | 0.238                      | 80.9                 |
| Marietta  | 41,023                   | 104.9                 | 14,738                           | 75.2             | 9.83                  | 0.89                       | 1.18                     | 0.183                      | 71.7                 |
| Conestoga | 635                      | 93.7                  | 689                              | 59.1             | 9.96                  | 2.29                       | 3.88                     | 0.551                      | 63.0                 |

# Table 19.Annual Water Discharges and Annual Loads and Yields of Total Organic Carbon,<br/>Calendar Year 2008

| Site      | 2008<br>Discharge<br>cfs | Discharge<br>% of LTM | 2008 Load<br>thousands<br>of Ibs | Load<br>% of LTM | Prediction<br>Error % | 2008<br>Yield<br>Ibs/ac/yr | LTM<br>Yield<br>Ib/ac/yr | 2008<br>Ave. Conc.<br>mg/l | Conc.<br>% of<br>LTM |
|-----------|--------------------------|-----------------------|----------------------------------|------------------|-----------------------|----------------------------|--------------------------|----------------------------|----------------------|
| Towanda   | 11,359                   | 95.9                  | 70,868                           | 85.4             | 2.90                  | 14.2                       | 16.6                     | 3.17                       | 89.0                 |
| Danville  | 17,620                   | 106.4                 | 111,352                          | 96.4             | 2.83                  | 15.5                       | 16.1                     | 3.21                       | 90.6                 |
| Lewisburg | 10,108                   | 93.2                  | 43,462                           | 95.0             | 4.22                  | 9.9                        | 10.4                     | 2.18                       | 101.9                |
| Newport   | 4,851                    | 110.3                 | 33,207                           | 117.2            | 5.00                  | 15.5                       | 13.2                     | 3.48                       | 106.3                |
| Marietta  | 41,023                   | 104.9                 | 242,060                          | 101.3            | 3.43                  | 14.6                       | 14.4                     | 3.00                       | 96.6                 |
| Conestoga | 635                      | 93.7                  | 5,225                            | 68.7             | 5.11                  | 17.4                       | 25.3                     | 4.18                       | 73.3                 |

| Station                                 | Season  | Mean Q | TN     | TNOx   | TON    | TNH <sub>3</sub> | DN     | DNOx    | DON       | DNH <sub>3</sub> | TP    | DP  | DOP | тос     | SS        |
|-----------------------------------------|---------|--------|--------|--------|--------|------------------|--------|---------|-----------|------------------|-------|-----|-----|---------|-----------|
| otation                                 | 0003011 | cfs    |        |        |        |                  |        | Thousar | nds of po | ounds            |       |     |     |         |           |
|                                         | Winter  | 25,694 | 13,096 | 7,823  | 4,132  | 752              | 12,010 | 7,798   | 3,182     | 651              | 1,532 | 592 | 466 | 39,150  | 1,025,754 |
| Towanda                                 | Spring  | 9,373  | 4,267  | 2,360  | 1,540  | 198              | 3,938  | 2,358   | 1,282     | 188              | 455   | 226 | 172 | 14,240  | 182,115   |
| rowalida                                | Summer  | 2,474  | 891    | 396    | 498    | 42               | 771    | 391     | 389       | 39               | 116   | 81  | 61  | 4,804   | 12,563    |
|                                         | Fall    | 8,028  | 3,572  | 2,160  | 1,074  | 219              | 3,597  | 2,174   | 1,032     | 185              | 365   | 243 | 194 | 12,674  | 80,545    |
|                                         | Winter  | 39,563 | 21,831 | 12,637 | 6,948  | 1,122            | 19,192 | 12,612  | 4,675     | 1,078            | 2,396 | 796 | 589 | 61,510  | 1,530,299 |
| Danville                                | Spring  | 14,682 | 6,742  | 3,508  | 2,481  | 281              | 5,988  | 3,516   | 1,726     | 266              | 584   | 260 | 187 | 22,069  | 215,948   |
| Duivine                                 | Summer  | 3,916  | 1,385  | 577    | 767    | 53               | 1,137  | 578     | 508       | 50               | 119   | 67  | 46  | 7,423   | 19,801    |
|                                         | Fall    | 12,526 | 6,192  | 3,618  | 1,799  | 285              | 5,864  | 3,649   | 1,486     | 285              | 527   | 264 | 199 | 20,350  | 160,271   |
|                                         | Winter  | 22,425 | 10,281 | 7,190  | 2,906  | 459              | 9,579  | 7,180   | 2,214     | 465              | 672   | 305 | 239 | 23,988  | 387,145   |
| Lewisburg                               | Spring  | 10,215 | 4,065  | 2,796  | 1,151  | 171              | 3,901  | 2,784   | 1,015     | 171              | 231   | 160 | 134 | 10,103  | 66,576    |
| Lewisburg                               | Summer  | 1,950  | 845    | 559    | 270    | 36               | 819    | 558     | 251       | 34               | 35    | 35  | 27  | 2,428   | 3,897     |
|                                         | Fall    | 5,977  | 2,741  | 2,031  | 683    | 136              | 2,755  | 2,042   | 686       | 134              | 144   | 109 | 86  | 6,943   | 41,265    |
|                                         | Winter  | 6,017  | 7,937  | 6,006  | 1,960  | 189              | 7,120  | 6,027   | 986       | 150              | 351   | 126 | 90  | 14,129  | 214,612   |
| Newport                                 | Spring  | 3,602  | 5,327  | 3,867  | 1,501  | 165              | 4,755  | 3,881   | 803       | 133              | 311   | 119 | 84  | 11,802  | 139,141   |
| - · · · · · · · · · · · · · · · · · · · | Summer  | 1,270  | 672    | 477    | 196    | 27               | 630    | 474     | 142       | 21               | 39    | 25  | 18  | 2,087   | 4,089     |
|                                         | Fall    | 2,342  | 2,525  | 1,913  | 534    | 53               | 2,341  | 1,930   | 345       | 43               | 114   | 59  | 43  | 5,189   | 28,793    |
|                                         | Winter  | 87,436 | 65,856 | 47,702 | 16,853 | 2,686            | 56,166 | 47,544  | 7,770     | 2,425            | 3,957 | 827 | 553 | 126,003 | 4,195,698 |
| Marietta                                | Spring  | 41,176 | 25,445 | 18,313 | 6,590  | 795              | 21,810 | 18,259  | 3,422     | 731              | 1,093 | 338 | 228 | 57,873  | 589,154   |
|                                         | Summer  | 9,209  | 4,830  | 3,051  | 1,678  | 166              | 4,201  | 3,066   | 977       | 151              | 201   | 101 | 69  | 16,023  | 44,009    |
|                                         | Fall    | 26,777 | 20,457 | 14,990 | 4,613  | 761              | 18,231 | 15,145  | 2,569     | 707              | 866   | 350 | 239 | 42,161  | 467,345   |
|                                         | Winter  | 1,059  | 3,441  | 2,903  | 439    | 72               | 3,275  | 2,839   | 324       | 71               | 100   | 49  | 41  | 2,093   | 39,788    |
| Conestoga                               | Spring  | 616    | 1,888  | 1,675  | 194    | 27               | 1,862  | 1,638   | 177       | 27               | 51    | 31  | 26  | 1,218   | 11,078    |
| Loncotogu                               | Summer  | 334    | 970    | 903    | 79     | 13               | 964    | 881     | 75        | 13               | 40    | 32  | 28  | 741     | 5,229     |
|                                         | Fall    | 535    | 1,597  | 1,405  | 163    | 41               | 1,520  | 1,370   | 113       | 40               | 73    | 44  | 38  | 1,173   | 24,543    |

Table 20.Seasonal Mean Water Discharges and Loads of Nutrients and Suspended Sediment, Calendar Year 2008

| Station                                 | Season | Mean Q | TN     | TNOx  | TON   | TNH₃  | DN     | DNOx  | DON     | DNH <sub>3</sub> | TP    | DP    | DOP   | тос   | SS     |
|-----------------------------------------|--------|--------|--------|-------|-------|-------|--------|-------|---------|------------------|-------|-------|-------|-------|--------|
| otation                                 | ocuson | cfs    |        |       |       |       |        | L     | bs/acre |                  |       |       |       |       |        |
|                                         | Winter | 25,694 | 2.625  | 1.568 | 0.828 | 0.151 | 2.407  | 1.563 | 0.638   | 0.130            | 0.307 | 0.119 | 0.093 | 7.845 | 205.56 |
| Towanda                                 | Spring | 9,373  | 0.855  | 0.473 | 0.309 | 0.040 | 0.789  | 0.473 | 0.257   | 0.038            | 0.091 | 0.045 | 0.035 | 2.854 | 36.50  |
| Towalida                                | Summer | 2,474  | 0.179  | 0.079 | 0.100 | 0.008 | 0.154  | 0.078 | 0.078   | 0.008            | 0.023 | 0.016 | 0.012 | 0.963 | 2.52   |
|                                         | Fall   | 8,028  | 0.716  | 0.433 | 0.215 | 0.044 | 0.721  | 0.436 | 0.207   | 0.037            | 0.073 | 0.049 | 0.039 | 2.540 | 16.14  |
|                                         | Winter | 39,563 | 3.040  | 1.760 | 0.967 | 0.156 | 2.673  | 1.760 | 0.651   | 0.150            | 0.334 | 0.111 | 0.082 | 8.566 | 213.11 |
| Danville                                | Spring | 14,682 | 0.939  | 0.489 | 0.346 | 0.039 | 0.834  | 0.490 | 0.240   | 0.037            | 0.081 | 0.036 | 0.026 | 3.073 | 30.07  |
| Duntine                                 | Summer | 3,916  | 0.193  | 0.080 | 0.107 | 0.007 | 0.158  | 0.081 | 0.071   | 0.007            | 0.016 | 0.009 | 0.006 | 1.034 | 2.76   |
|                                         | Fall   | 12,526 | 0.862  | 0.504 | 0.251 | 0.040 | 0.817  | 0.508 | 0.207   | 0.040            | 0.073 | 0.037 | 0.028 | 2.834 | 22.32  |
|                                         | Winter | 22,425 | 2.430  | 1.701 | 0.666 | 0.116 | 0.102  | 1.696 | 0.496   | 0.117            | 0.156 | 0.067 | 0.052 | 5.526 | 92.22  |
| Lewisburg                               | Spring | 10,215 | 0.947  | 0.653 | 0.262 | 0.042 | 0.044  | 0.649 | 0.228   | 0.041            | 0.054 | 0.036 | 0.029 | 2.324 | 15.70  |
| Lewisburg                               | Summer | 1,950  | 0.200  | 0.133 | 0.062 | 0.009 | 0.010  | 0.132 | 0.057   | 0.008            | 0.008 | 0.008 | 0.006 | 0.561 | 0.92   |
|                                         | Fall   | 5,977  | 0.679  | 0.505 | 0.162 | 0.037 | 0.038  | 0.506 | 0.156   | 0.036            | 0.036 | 0.025 | 0.019 | 1.621 | 10.60  |
|                                         | Winter | 6,017  | 3.698  | 2.798 | 0.913 | 0.088 | 3.317  | 2.808 | 0.459   | 0.070            | 0.163 | 0.059 | 0.042 | 6.582 | 99.98  |
| Newport                                 | Spring | 3,602  | 2.482  | 1.802 | 0.699 | 0.077 | 2.215  | 1.808 | 0.374   | 0.062            | 0.145 | 0.056 | 0.039 | 5.498 | 64.82  |
| - · · · · · · · · · · · · · · · · · · · | Summer | 1,270  | 0.312  | 0.222 | 0.091 | 0.012 | 0.294  | 0.221 | 0.066   | 0.010            | 0.018 | 0.012 | 0.008 | 0.972 | 1.91   |
|                                         | Fall   | 2,342  | 1.177  | 0.891 | 0.249 | 0.025 | 1.090  | 0.899 | 0.161   | 0.020            | 0.053 | 0.028 | 0.020 | 2.418 | 13.41  |
|                                         | Winter | 87,436 | 3.959  | 2.868 | 1.013 | 0.161 | 3.377  | 2.858 | 0.467   | 0.146            | 0.238 | 0.050 | 0.033 | 7.575 | 252.24 |
| Marietta                                | Spring | 41,176 | 1.530  | 1.101 | 0.396 | 0.048 | 1.311  | 1.098 | 0.206   | 0.044            | 0.066 | 0.020 | 0.014 | 3.479 | 35.42  |
|                                         | Summer | 9,209  | 0.290  | 0.183 | 0.101 | 0.010 | 0.253  | 0.184 | 0.059   | 0.009            | 0.012 | 0.006 | 0.004 | 0.963 | 2.65   |
|                                         | Fall   | 26,777 | 1.230  | 0.901 | 0.277 | 0.046 | 1.096  | 0.911 | 0.154   | 0.043            | 0.052 | 0.021 | 0.014 | 2.535 | 28.10  |
|                                         | Winter | 1,059  | 11.442 | 9.651 | 1.460 | 0.238 | 10.887 | 9.439 | 1.075   | 0.237            | 0.333 | 0.164 | 0.137 | 6.957 | 132.27 |
| Conestoga                               | Spring | 616    | 6.278  | 5.567 | 0.644 | 0.089 | 6.189  | 5.446 | 0.588   | 0.089            | 0.169 | 0.104 | 0.086 | 4.048 | 36.83  |
| Loncologu                               | Summer | 334    | 3.224  | 3.001 | 0.261 | 0.044 | 3.206  | 2.929 | 0.251   | 0.043            | 0.135 | 0.107 | 0.093 | 2.462 | 17.38  |
|                                         | Fall   | 535    | 5.307  | 4.670 | 0.541 | 0.136 | 5.054  | 4.553 | 0.376   | 0.135            | 0.246 | 0.146 | 0.125 | 3.899 | 81.59  |

Table 21.Seasonal Mean Water Discharges and Yields of Nutrients and Suspended Sediment, Calendar Year 2008

| Maria               |        | Towa   | anda  |           |        | Danv   | ille  |           |         | Marie   | etta  |           |
|---------------------|--------|--------|-------|-----------|--------|--------|-------|-----------|---------|---------|-------|-----------|
| Month               | Q      | TN     | ТР    | SS        | Q      | TN     | ТР    | SS        | Q       | TN      | ТР    | SS        |
| January             | 15,827 | 2,685  | 212   | 68,767    | 25,319 | 4,726  | 387   | 139,131   | 50,887  | 14,142  | 483   | 270,937   |
| February            | 24,777 | 4,093  | 465   | 339,785   | 38,986 | 6,991  | 719   | 429,119   | 85,393  | 21,158  | 1,033 | 893,907   |
| March               | 36,418 | 6,318  | 855   | 617,202   | 54,345 | 10,114 | 1,290 | 962,049   | 125,897 | 30,556  | 2,441 | 3,030,854 |
| April               | 19,918 | 3,112  | 353   | 169,565   | 27,221 | 4,413  | 416   | 182,338   | 58,970  | 12,719  | 530   | 313,150   |
| May                 | 5,963  | 856    | 71    | 10,034    | 12,188 | 1,754  | 128   | 28,141    | 49,319  | 10,149  | 470   | 250,974   |
| June                | 2,350  | 299    | 31    | 2,516     | 4,720  | 575    | 40    | 5,469     | 14,967  | 2,577   | 93    | 25,030    |
| July                | 3,240  | 394    | 51    | 7,026     | 5,167  | 619    | 55    | 11,084    | 11,626  | 2,021   | 84    | 20,525    |
| August              | 2,827  | 338    | 43    | 4,266     | 4,305  | 508    | 44    | 6,749     | 8,224   | 1,412   | 60    | 11,926    |
| September           | 1,318  | 159    | 22    | 1,271     | 2,220  | 258    | 20    | 1,968     | 7,729   | 1,397   | 57    | 11,558    |
| October             | 2,093  | 278    | 31    | 2,751     | 3,211  | 436    | 32    | 4,732     | 8,038   | 1,629   | 56    | 10,852    |
| November            | 5,573  | 755    | 66    | 7,042     | 8,825  | 1,297  | 90    | 14,762    | 14,273  | 3,227   | 92    | 21,467    |
| December            | 16,341 | 2,539  | 268   | 70,752    | 25,422 | 4,459  | 405   | 140,777   | 57,616  | 15,601  | 718   | 435,026   |
| Annual <sup>#</sup> | 11,387 | 21,826 | 2,468 | 1,300,977 | 17,661 | 36,150 | 3,626 | 1,926,319 | 41,078  | 116,588 | 6,117 | 5,296,206 |

Table 22.2008 Monthly Flow in CFS and TN, TP, and SS in Thousands of Pounds at Susquehanna River<br/>Sites: Towanda, Danville, and Marietta

Table 23.2008 Monthly Flow in CFS and TN, TP, and SS in Thousands of Pounds at Susquehanna River<br/>Tributary Sites: Lewisburg, Newport, and Conestoga

| Month               |        | Lewis  | burg  |         |        | Newp   | ort |         |       | Cone  | stoga |        |
|---------------------|--------|--------|-------|---------|--------|--------|-----|---------|-------|-------|-------|--------|
| WIOIIIII            | Q      | TN     | ТР    | SS      | Q      | TN     | ТР  | SS      | Q     | TN    | ТР    | SS     |
| January             | 12,567 | 2,088  | 97    | 29,398  | 4,528  | 1,473  | 37  | 8,870   | 577   | 700   | 13    | 1,821  |
| February            | 20,970 | 3,160  | 193   | 109,052 | 8,442  | 2,522  | 80  | 30,107  | 1,405 | 1,421 | 51    | 24,095 |
| March               | 33,643 | 5,033  | 382   | 248,695 | 13,609 | 3,942  | 234 | 175,635 | 1,218 | 1,320 | 36    | 13,872 |
| April               | 13,780 | 1,904  | 105   | 32,491  | 7,408  | 1,953  | 103 | 51,172  | 683   | 719   | 16    | 3,899  |
| May                 | 13,024 | 1,667  | 104   | 31,028  | 10,659 | 2,922  | 188 | 84,955  | 656   | 679   | 19    | 4,228  |
| June                | 3,749  | 494    | 22    | 3,057   | 2,053  | 452    | 20  | 3,014   | 506   | 490   | 16    | 2,951  |
| July                | 2,793  | 378    | 17    | 2,166   | 1,206  | 245    | 13  | 1,386   | 382   | 374   | 14    | 1,762  |
| August              | 1,382  | 215    | 8     | 761     | 765    | 141    | 9   | 694     | 220   | 216   | 8     | 412    |
| September           | 1,667  | 252    | 10    | 970     | 1,235  | 286    | 17  | 2,009   | 404   | 380   | 18    | 3,055  |
| October             | 1,681  | 283    | 10    | 976     | 1,012  | 231    | 11  | 919     | 264   | 272   | 9     | 642    |
| November            | 2,361  | 397    | 13    | 1,236   | 1,151  | 271    | 10  | 793     | 256   | 266   | 7     | 390    |
| December            | 13,774 | 2,061  | 121   | 39,053  | 6,131  | 2,023  | 93  | 27,081  | 1,076 | 1,059 | 57    | 23,511 |
| Annual <sup>#</sup> | 10,116 | 17,932 | 1,082 | 498,883 | 4,850  | 16,461 | 815 | 386,635 | 637   | 7,896 | 264   | 80,638 |

| Maria               |        | Tov  | vanda |        |        | Da   | nville |        |         | Marie | etta  |        |
|---------------------|--------|------|-------|--------|--------|------|--------|--------|---------|-------|-------|--------|
| Month               | Q      | TN   | ТР    | SS     | Q      | TN   | ТР     | SS     | Q       | TN    | ТР    | SS     |
| January             | 15,827 | 0.54 | 0.043 | 13.78  | 25,319 | 0.66 | 0.054  | 19.38  | 50,887  | 0.85  | 0.029 | 16.29  |
| February            | 24,777 | 0.82 | 0.093 | 68.09  | 38,986 | 0.97 | 0.100  | 59.76  | 85,393  | 1.27  | 0.062 | 53.74  |
| March               | 36,418 | 1.27 | 0.171 | 123.69 | 54,345 | 1.41 | 0.180  | 133.98 | 125,897 | 1.84  | 0.147 | 182.21 |
| April               | 19,918 | 0.62 | 0.071 | 33.98  | 27,221 | 0.62 | 0.058  | 25.39  | 58,970  | 0.77  | 0.032 | 18.83  |
| May                 | 5,963  | 0.17 | 0.014 | 2.01   | 12,188 | 0.24 | 0.018  | 3.92   | 49,319  | 0.61  | 0.028 | 15.09  |
| June                | 2,350  | 0.06 | 0.006 | 0.50   | 4,720  | 0.08 | 0.006  | 0.76   | 14,967  | 0.16  | 0.006 | 1.51   |
| July                | 3,240  | 0.08 | 0.010 | 1.41   | 5,167  | 0.09 | 0.008  | 1.54   | 11,626  | 0.12  | 0.005 | 1.23   |
| August              | 2,827  | 0.07 | 0.009 | 0.86   | 4,305  | 0.07 | 0.006  | 0.94   | 8,224   | 0.09  | 0.004 | 0.72   |
| September           | 1,318  | 0.03 | 0.004 | 0.26   | 2,220  | 0.04 | 0.003  | 0.27   | 7,729   | 0.08  | 0.003 | 0.70   |
| October             | 2,093  | 0.06 | 0.006 | 0.55   | 3,211  | 0.06 | 0.005  | 0.66   | 8,038   | 0.10  | 0.003 | 0.65   |
| November            | 5,573  | 0.15 | 0.013 | 1.41   | 8,825  | 0.18 | 0.013  | 2.06   | 14,273  | 0.19  | 0.006 | 1.29   |
| December            | 16,341 | 0.51 | 0.054 | 14.18  | 25,422 | 0.62 | 0.056  | 19.61  | 57,616  | 0.94  | 0.043 | 26.15  |
| Annual <sup>#</sup> | 11,387 | 4.43 | 0.465 | 354.06 | 17,661 | 4.67 | 0.519  | 234.28 | 41,078  | 6.17  | 0.209 | 144.91 |

Table 24.2008 Monthly Flow in CFS and TN, TP, and SS Yields in lbs/acre at Susquehanna River<br/>Sites: Towanda, Danville, and Marietta

Table 25.2008 Monthly Flow in CFS and TN, TP, and SS Yields in lbs/acre at Susquehanna River<br/>Tributary Sites: Lewisburg, Newport, and Conestoga

| Month               |        | Lew  | isburg |       |        | Nev  | wport |       |       | Cones | toga  |        |
|---------------------|--------|------|--------|-------|--------|------|-------|-------|-------|-------|-------|--------|
| wionui              | Q      | TN   | ТР     | SS    | Q      | TN   | ТР    | SS    | Q     | TN    | ТР    | SS     |
| January             | 12,567 | 0.48 | 0.022  | 6.71  | 4,528  | 0.69 | 0.017 | 4.13  | 577   | 2.33  | 0.043 | 6.05   |
| February            | 20,970 | 0.72 | 0.044  | 24.89 | 8,442  | 1.18 | 0.037 | 14.03 | 1,405 | 4.73  | 0.169 | 80.10  |
| March               | 33,643 | 1.15 | 0.087  | 56.75 | 13,609 | 1.84 | 0.109 | 81.82 | 1,218 | 4.39  | 0.121 | 46.12  |
| April               | 13,780 | 0.43 | 0.024  | 7.41  | 7,408  | 0.91 | 0.048 | 23.84 | 683   | 2.39  | 0.054 | 12.96  |
| May                 | 13,024 | 0.38 | 0.024  | 7.08  | 10,659 | 1.36 | 0.087 | 39.58 | 656   | 2.26  | 0.062 | 14.06  |
| June                | 3,749  | 0.11 | 0.005  | 0.70  | 2,053  | 0.21 | 0.009 | 1.40  | 506   | 1.63  | 0.053 | 9.81   |
| July                | 2,793  | 0.09 | 0.004  | 0.49  | 1,206  | 0.11 | 0.006 | 0.65  | 382   | 1.25  | 0.046 | 5.86   |
| August              | 1,382  | 0.05 | 0.002  | 0.17  | 765    | 0.07 | 0.004 | 0.32  | 220   | 0.72  | 0.027 | 1.37   |
| September           | 1,667  | 0.06 | 0.002  | 0.22  | 1,235  | 0.13 | 0.008 | 0.94  | 404   | 1.26  | 0.061 | 10.16  |
| October             | 1,681  | 0.07 | 0.002  | 0.22  | 1,012  | 0.11 | 0.005 | 0.43  | 264   | 0.90  | 0.031 | 2.13   |
| November            | 2,361  | 0.09 | 0.003  | 0.28  | 1,151  | 0.13 | 0.004 | 0.37  | 256   | 0.88  | 0.024 | 1.30   |
| December            | 13,774 | 0.47 | 0.028  | 8.91  | 6,131  | 0.94 | 0.044 | 12.62 | 1,076 | 3.52  | 0.190 | 78.16  |
| Annual <sup>#</sup> | 10,116 | 3.54 | 0.240  | 98.67 | 4,850  | 5.15 | 0.135 | 54.72 | 637   | 30.65 | 0.781 | 310.27 |

|              |      | Tem   | perature | e ( <b>C</b> °) |      |      | Dissolve | d Oxygei | n (mg/L) |      | Co  | nducti | vity (um | nhos/c | m)  |      | р    | H (S.U | .)   |      |
|--------------|------|-------|----------|-----------------|------|------|----------|----------|----------|------|-----|--------|----------|--------|-----|------|------|--------|------|------|
| Station      | Min  | Max   | Med      | Mn              | SD   | Min  | Max      | Med      | Mn       | SD   | Min | Max    | Med      | Mn     | SD  | Min  | Max  | Med    | Mn   | SD   |
| Chemung      | 0.30 | 26.20 | 3.20     | 8.52            | 8.17 | 6.01 | 12.95    | 10.97    | 10.32    | 2.13 | 118 | 566    | 219      | 280    | 146 | 6.15 | 8.18 | 6.95   | 7.22 | 0.80 |
| Cohocton     | 0.20 | 23.60 | 6.65     | 8.93            | 8.18 | 7.54 | 13.32    | 10.04    | 10.42    | 1.57 | 121 | 855    | 415      | 444    | 246 | 6.10 | 8.45 | 7.00   | 7.13 | 0.74 |
| Conklin      | 1.10 | 25.90 | 2.40     | 9.05            | 8.88 | 7.34 | 12.75    | 10.45    | 10.11    | 1.84 | 88  | 262    | 130      | 161    | 64  | 6.15 | 8.25 | 6.70   | 6.87 | 0.63 |
| Smithboro    | 1.20 | 24.43 | 6.51     | 9.55            | 8.49 | 6.33 | 12.15    | 10.84    | 10.21    | 1.62 | 101 | 351    | 140      | 188    | 87  | 6.00 | 8.37 | 7.07   | 7.10 | 0.80 |
| Unadilla     | 1.10 | 24.50 | 8.90     | 9.43            | 8.65 | 7.92 | 12.87    | 10.25    | 10.26    | 1.68 | 93  | 322    | 172      | 210    | 82  | 6.05 | 8.00 | 6.85   | 6.98 | 0.64 |
| Castanea     | 1.40 | 22.40 | 4.50     | 8.81            | 7.22 | 8.07 | 9.68     | 8.39     | 8.55     | 0.49 | 116 | 426    | 236      | 271    | 103 | 5.85 | 8.00 | 6.95   | 6.99 | 0.61 |
| Conestoga    | 3.29 | 26.34 | 13.41    | 14.25           | 8.07 | 6.99 | 15.64    | 11.35    | 11.17    | 2.22 | 316 | 800    | 585      | 577    | 137 | 7.10 | 8.52 | 7.91   | 7.80 | 0.38 |
| Danville     | 0.40 | 26.50 | 6.85     | 10.57           | 9.18 | 8.02 | 9.31     | 8.47     | 8.49     | 0.33 | 132 | 396    | 234      | 243    | 85  | 6.05 | 8.00 | 7.08   | 7.09 | 0.64 |
| Dromgold     | 2.61 | 23.90 | 15.02    | 13.35           | 7.36 | 8.55 | 15.00    | 11.95    | 11.62    | 1.86 | 95  | 259    | 157      | 173    | 53  | 6.87 | 8.60 | 7.71   | 7.71 | 0.52 |
| Hershey      | 3.55 | 26.54 | 9.38     | 13.19           | 8.16 | 8.44 | 13.82    | 11.74    | 11.58    | 1.83 | 131 | 489    | 288      | 299    | 117 | 6.77 | 9.07 | 7.56   | 7.57 | 0.61 |
| Hogestown    | 3.43 | 26.80 | 16.40    | 14.76           | 8.43 | 8.57 | 14.10    | 11.98    | 11.47    | 1.81 | 191 | 521    | 325      | 362    | 125 | 6.80 | 8.50 | 7.83   | 7.71 | 0.53 |
| Jersey Shore | 0.40 | 25.10 | 5.05     | 9.26            | 8.44 | 8.06 | 9.44     | 8.44     | 8.58     | 0.43 | 110 | 500    | 180      | 246    | 137 | 5.85 | 7.95 | 6.20   | 6.65 | 0.78 |
| Karthaus     | 1.50 | 24.40 | 4.30     | 8.54            | 7.45 | 7.39 | 9.34     | 8.36     | 8.43     | 0.50 | 175 | 740    | 343      | 370    | 172 | 5.50 | 7.90 | 5.90   | 6.22 | 0.64 |
| Lewisburg    | 0.20 | 24.20 | 6.50     | 10.45           | 8.42 | 8.11 | 9.91     | 8.33     | 8.57     | 0.54 | 108 | 444    | 180      | 230    | 108 | 5.70 | 8.50 | 6.60   | 6.75 | 0.69 |
| Manchester   | 2.09 | 29.21 | 12.76    | 13.51           | 8.43 | 8.44 | 14.85    | 11.33    | 11.52    | 1.81 | 128 | 356    | 277      | 249    | 68  | 6.60 | 8.32 | 7.88   | 7.59 | 0.56 |
| Marietta     | 2.72 | 28.89 | 9.68     | 13.64           | 9.28 | 8.85 | 13.80    | 11.79    | 11.70    | 1.59 | 133 | 378    | 254      | 246    | 80  | 6.90 | 8.69 | 7.77   | 7.76 | 0.48 |
| Martic Forge | 2.40 | 25.33 | 14.71    | 13.86           | 7.99 | 8.03 | 15.14    | 11.94    | 11.35    | 1.98 | 264 | 560    | 470      | 446    | 85  | 6.80 | 8.58 | 7.80   | 7.77 | 0.46 |
| Newport      | 3.01 | 29.25 | 13.27    | 14.02           | 8.97 | 8.02 | 16.41    | 11.43    | 11.58    | 2.22 | 151 | 355    | 246      | 254    | 62  | 6.91 | 9.38 | 7.86   | 7.94 | 0.64 |
| Penns Creek  | 0.10 | 24.80 | 5.10     | 9.34            | 8.22 | 8.17 | 9.83     | 9.07     | 9.01     | 0.54 | 109 | 264    | 173      | 186    | 43  | 6.40 | 8.75 | 7.95   | 7.74 | 0.72 |
| Saxton       | 3.66 | 29.43 | 15.23    | 16.13           | 9.31 | 9.05 | 13.28    | 10.84    | 10.89    | 1.51 | 138 | 412    | 232      | 264    | 102 | 6.87 | 8.58 | 7.67   | 7.64 | 0.54 |
| Towanda      | 0.20 | 27.10 | 8.60     | 10.36           | 9.14 | 6.93 | 12.67    | 10.12    | 10.00    | 1.91 | 105 | 401    | 225      | 229    | 97  | 6.10 | 8.50 | 7.15   | 7.07 | 0.62 |
| Wilkes-Barre | 1.30 | 26.10 | 4.85     | 9.83            | 8.64 | 8.14 | 13.01    | 9.30     | 9.71     | 1.61 | 110 | 427    | 157      | 227    | 113 | 6.20 | 8.20 | 6.85   | 6.88 | 0.52 |
| Richardsmere | 1.97 | 28.59 | 15.85    | 14.76           | 8.72 | 8.07 | 14.58    | 11.47    | 11.16    | 1.71 | 234 | 285    | 252      | 254    | 14  | 6.90 | 9.20 | 7.54   | 7.73 | 0.77 |

Table 26. Temperature, Dissolved Oxygen, Conductivity, and pH Summary Statistics of Samples Collected During 2008

|              |      | To   | tal Nitrog | gen  |      |      | Tota | ıl Amm | onium |      | Т    | otal Nit | rate plu | ıs Nitri | ite  | T    | otal O | rganic I | Nitroge | n    |
|--------------|------|------|------------|------|------|------|------|--------|-------|------|------|----------|----------|----------|------|------|--------|----------|---------|------|
| Station      | Min  | Max  | Med        | Mn   | SD   | Min  | Max  | Med    | Mn    | SD   | Min  | Max      | Med      | Mn       | SD   | Min  | Max    | Med      | Mn      | SD   |
| Chemung      | 0.51 | 1.97 | 0.86       | 0.95 | 0.39 | 0.01 | 0.12 | 0.04   | 0.04  | 0.03 | 0.26 | 0.98     | 0.52     | 0.55     | 0.17 | 0.16 | 1.40   | 0.32     | 0.42    | 0.35 |
| Cohocton     | 0.92 | 2.72 | 1.46       | 1.60 | 0.54 | 0.01 | 0.31 | 0.04   | 0.06  | 0.07 | 0.46 | 1.50     | 0.87     | 0.93     | 0.29 | 0.06 | 1.91   | 0.41     | 0.61    | 0.46 |
| Conklin      | 0.40 | 2.29 | 0.75       | 0.80 | 0.48 | 0.02 | 0.12 | 0.04   | 0.05  | 0.03 | 0.03 | 0.54     | 0.39     | 0.35     | 0.17 | 0.09 | 1.85   | 0.31     | 0.43    | 0.45 |
| Smithboro    | 0.64 | 1.94 | 0.86       | 0.96 | 0.36 | 0.01 | 0.11 | 0.04   | 0.04  | 0.03 | 0.20 | 1.12     | 0.48     | 0.52     | 0.21 | 0.12 | 0.76   | 0.37     | 0.40    | 0.18 |
| Unadilla     | 0.47 | 1.80 | 0.99       | 1.06 | 0.46 | 0.01 | 0.15 | 0.04   | 0.05  | 0.03 | 0.10 | 0.80     | 0.50     | 0.46     | 0.21 | 0.08 | 1.12   | 0.36     | 0.55    | 0.37 |
| Castanea     | 0.82 | 1.93 | 1.40       | 1.36 | 0.27 | 0.02 | 0.10 | 0.03   | 0.03  | 0.02 | 0.62 | 1.42     | 1.07     | 1.04     | 0.25 | 0.09 | 0.83   | 0.22     | 0.29    | 0.20 |
| Conestoga    | 3.36 | 8.73 | 6.36       | 6.32 | 1.43 | 0.02 | 0.41 | 0.11   | 0.13  | 0.11 | 2.10 | 8.64     | 5.84     | 5.64     | 1.75 | 0.02 | 2.66   | 0.47     | 0.62    | 0.65 |
| Danville     | 0.62 | 1.61 | 0.85       | 0.92 | 0.25 | 0.02 | 0.10 | 0.03   | 0.04  | 0.02 | 0.18 | 1.32     | 0.52     | 0.51     | 0.25 | 0.08 | 0.86   | 0.35     | 0.36    | 0.17 |
| Dromgold     | 1.14 | 3.15 | 1.85       | 1.87 | 0.54 | 0.02 | 0.12 | 0.03   | 0.04  | 0.03 | 1.06 | 2.09     | 1.52     | 1.54     | 0.35 | 0.01 | 1.69   | 0.19     | 0.29    | 0.41 |
| Hershey      | 2.50 | 6.49 | 3.74       | 3.94 | 0.96 | 0.02 | 0.24 | 0.05   | 0.07  | 0.06 | 1.60 | 6.44     | 3.53     | 3.50     | 1.19 | 0.01 | 1.30   | 0.33     | 0.43    | 0.35 |
| Hogestown    | 2.91 | 4.63 | 4.12       | 4.02 | 0.46 | 0.02 | 0.10 | 0.03   | 0.04  | 0.03 | 2.06 | 4.44     | 3.89     | 3.58     | 0.75 | 0.00 | 1.66   | 0.27     | 0.40    | 0.40 |
| Jersey Shore | 0.40 | 1.38 | 0.66       | 0.71 | 0.22 | 0.02 | 0.10 | 0.02   | 0.03  | 0.02 | 0.29 | 0.70     | 0.47     | 0.48     | 0.10 | 0.02 | 0.75   | 0.15     | 0.20    | 0.16 |
| Karthaus     | 0.38 | 1.93 | 0.73       | 0.75 | 0.34 | 0.02 | 0.10 | 0.03   | 0.04  | 0.02 | 0.21 | 1.40     | 0.50     | 0.49     | 0.26 | 0.11 | 0.51   | 0.17     | 0.22    | 0.12 |
| Lewisburg    | 0.59 | 1.89 | 1.00       | 1.03 | 0.28 | 0.02 | 0.12 | 0.03   | 0.04  | 0.02 | 0.34 | 1.36     | 0.71     | 0.77     | 0.24 | 0.01 | 0.45   | 0.21     | 0.22    | 0.09 |
| Manchester   | 1.07 | 3.81 | 2.47       | 2.45 | 0.84 | 0.02 | 0.22 | 0.05   | 0.06  | 0.05 | 0.62 | 3.51     | 1.67     | 1.78     | 0.74 | 0.16 | 2.08   | 0.42     | 0.61    | 0.50 |
| Marietta     | 0.77 | 2.48 | 1.20       | 1.30 | 0.39 | 0.02 | 0.10 | 0.04   | 0.04  | 0.02 | 0.32 | 1.65     | 0.88     | 0.92     | 0.30 | 0.03 | 1.04   | 0.27     | 0.34    | 0.22 |
| Martic Forge | 4.55 | 9.39 | 7.10       | 7.26 | 1.42 | 0.02 | 0.45 | 0.02   | 0.08  | 0.12 | 2.94 | 9.04     | 6.58     | 6.39     | 1.87 | 0.18 | 3.52   | 0.45     | 0.86    | 0.94 |
| Newport      | 0.71 | 3.14 | 1.57       | 1.63 | 0.51 | 0.02 | 0.09 | 0.03   | 0.04  | 0.02 | 0.44 | 1.99     | 1.28     | 1.27     | 0.32 | 0.07 | 1.64   | 0.26     | 0.32    | 0.31 |
| Penns Creek  | 0.78 | 3.01 | 1.38       | 1.48 | 0.54 | 0.02 | 0.11 | 0.02   | 0.03  | 0.03 | 0.59 | 1.43     | 1.12     | 1.05     | 0.26 | 0.11 | 2.03   | 0.22     | 0.39    | 0.46 |
| Saxton       | 1.39 | 3.92 | 2.01       | 2.12 | 0.59 | 0.02 | 0.09 | 0.03   | 0.04  | 0.02 | 1.13 | 2.40     | 1.52     | 1.66     | 0.36 | 0.13 | 2.49   | 0.24     | 0.45    | 0.58 |
| Towanda      | 0.61 | 1.23 | 0.84       | 0.86 | 0.16 | 0.02 | 0.08 | 0.04   | 0.04  | 0.02 | 0.19 | 1.10     | 0.48     | 0.48     | 0.20 | 0.07 | 0.70   | 0.35     | 0.33    | 0.15 |
| Wilkes-Barre | 0.63 | 1.29 | 0.83       | 0.83 | 0.18 | 0.02 | 0.07 | 0.04   | 0.04  | 0.02 | 0.08 | 0.62     | 0.49     | 0.43     | 0.15 | 0.14 | 0.75   | 0.31     | 0.37    | 0.17 |
| Richardsmere | 4.78 | 8.10 | 6.22       | 6.39 | 1.26 | 0.02 | 0.26 | 0.04   | 0.07  | 0.07 | 3.29 | 7.52     | 5.51     | 5.63     | 1.38 | 0.31 | 2.88   | 0.54     | 0.76    | 0.70 |

 Table 27.
 Total Nitrogen Species Summary Statistics of Samples Collected During 2008, in mg/L

|              |      | Disso | olved Niti | ogen |      |      | Dissolv | ed Am | monium |      | Diss | olved N | <b>Vitrate</b> | plus Ni | trite | Dis  | solved | Organi | c Nitro | gen  |
|--------------|------|-------|------------|------|------|------|---------|-------|--------|------|------|---------|----------------|---------|-------|------|--------|--------|---------|------|
| Station      | Min  | Max   | Med        | Mn   | SD   | Min  | Max     | Med   | Mn     | SD   | Min  | Max     | Med            | Mn      | SD    | Min  | Max    | Med    | Mn      | SD   |
| Chemung      | 0.76 | 0.96  | 0.90       | 0.89 | 0.07 | 0.02 | 0.11    | 0.04  | 0.05   | 0.03 | 0.50 | 0.97    | 0.60           | 0.63    | 0.14  | 0.16 | 0.35   | 0.28   | 0.25    | 0.06 |
| Cohocton     | 0.94 | 2.51  | 1.28       | 1.51 | 0.47 | 0.01 | 0.30    | 0.04  | 0.06   | 0.07 | 0.46 | 1.51    | 0.84           | 0.89    | 0.30  | 0.08 | 0.97   | 0.53   | 0.56    | 0.32 |
| Conklin      | 0.30 | 1.02  | 0.66       | 0.64 | 0.23 | 0.02 | 0.12    | 0.04  | 0.05   | 0.02 | 0.03 | 0.56    | 0.39           | 0.36    | 0.17  | 0.05 | 0.79   | 0.23   | 0.26    | 0.20 |
| Smithboro    | 0.63 | 1.00  | 0.70       | 0.77 | 0.13 | 0.01 | 0.10    | 0.04  | 0.05   | 0.03 | 0.40 | 0.60    | 0.54           | 0.51    | 0.07  | 0.10 | 0.34   | 0.15   | 0.18    | 0.08 |
| Unadilla     | 0.31 | 1.79  | 0.84       | 0.96 | 0.44 | 0.01 | 0.15    | 0.04  | 0.05   | 0.03 | 0.11 | 0.81    | 0.50           | 0.47    | 0.21  | 0.08 | 0.97   | 0.25   | 0.44    | 0.34 |
| Castanea     | 0.79 | 1.76  | 1.28       | 1.27 | 0.28 | 0.02 | 0.10    | 0.03  | 0.03   | 0.02 | 0.63 | 1.45    | 1.06           | 1.03    | 0.25  | 0.08 | 0.42   | 0.19   | 0.21    | 0.09 |
| Conestoga    | 2.86 | 8.66  | 6.35       | 6.16 | 1.55 | 0.02 | 0.38    | 0.10  | 0.12   | 0.09 | 2.08 | 8.35    | 5.70           | 5.55    | 1.65  | 0.04 | 2.92   | 0.43   | 0.49    | 0.52 |
| Danville     | 0.48 | 1.63  | 0.81       | 0.80 | 0.23 | 0.02 | 0.07    | 0.03  | 0.04   | 0.02 | 0.19 | 1.33    | 0.51           | 0.52    | 0.26  | 0.09 | 0.38   | 0.25   | 0.25    | 0.08 |
| Dromgold     | 1.20 | 2.46  | 1.81       | 1.77 | 0.40 | 0.02 | 0.11    | 0.03  | 0.04   | 0.03 | 1.01 | 2.10    | 1.53           | 1.54    | 0.35  | 0.02 | 0.45   | 0.17   | 0.19    | 0.13 |
| Hershey      | 1.94 | 6.52  | 3.73       | 3.75 | 1.13 | 0.02 | 0.23    | 0.04  | 0.07   | 0.06 | 1.58 | 6.17    | 3.52           | 3.48    | 1.14  | 0.09 | 0.45   | 0.22   | 0.24    | 0.10 |
| Hogestown    | 2.52 | 4.70  | 4.19       | 3.88 | 0.68 | 0.02 | 0.09    | 0.04  | 0.04   | 0.02 | 2.03 | 4.43    | 3.90           | 3.58    | 0.76  | 0.13 | 0.49   | 0.25   | 0.28    | 0.10 |
| Jersey Shore | 0.42 | 0.95  | 0.62       | 0.65 | 0.15 | 0.02 | 0.10    | 0.02  | 0.03   | 0.02 | 0.30 | 0.70    | 0.46           | 0.48    | 0.10  | 0.07 | 0.33   | 0.13   | 0.14    | 0.07 |
| Karthaus     | 0.38 | 1.76  | 0.68       | 0.69 | 0.29 | 0.02 | 0.10    | 0.03  | 0.04   | 0.02 | 0.20 | 1.39    | 0.51           | 0.49    | 0.26  | 0.08 | 0.34   | 0.15   | 0.16    | 0.07 |
| Lewisburg    | 0.57 | 1.89  | 0.95       | 1.01 | 0.29 | 0.02 | 0.12    | 0.03  | 0.04   | 0.02 | 0.34 | 1.36    | 0.72           | 0.77    | 0.24  | 0.08 | 0.46   | 0.18   | 0.20    | 0.08 |
| Manchester   | 1.02 | 3.79  | 2.08       | 2.18 | 0.70 | 0.02 | 0.17    | 0.04  | 0.06   | 0.04 | 0.63 | 3.50    | 1.69           | 1.77    | 0.74  | 0.13 | 0.72   | 0.30   | 0.35    | 0.17 |
| Marietta     | 0.55 | 1.84  | 1.03       | 1.11 | 0.29 | 0.02 | 0.08    | 0.04  | 0.04   | 0.02 | 0.32 | 1.66    | 0.89           | 0.93    | 0.31  | 0.03 | 0.34   | 0.15   | 0.15    | 0.07 |
| Martic Forge | 3.83 | 9.31  | 7.18       | 7.08 | 1.63 | 0.02 | 0.42    | 0.03  | 0.08   | 0.11 | 2.93 | 9.07    | 6.60           | 6.37    | 1.87  | 0.14 | 3.51   | 0.51   | 0.69    | 0.85 |
| Newport      | 0.73 | 2.44  | 1.55       | 1.50 | 0.35 | 0.02 | 0.08    | 0.02  | 0.03   | 0.02 | 0.44 | 2.02    | 1.30           | 1.27    | 0.32  | 0.01 | 0.39   | 0.20   | 0.20    | 0.10 |
| Penns Creek  | 0.76 | 2.04  | 1.36       | 1.37 | 0.33 | 0.02 | 0.10    | 0.02  | 0.03   | 0.03 | 0.59 | 1.44    | 1.13           | 1.05    | 0.27  | 0.07 | 0.72   | 0.21   | 0.28    | 0.18 |
| Saxton       | 1.29 | 2.56  | 1.65       | 1.83 | 0.36 | 0.02 | 0.07    | 0.02  | 0.03   | 0.02 | 1.13 | 2.41    | 1.52           | 1.66    | 0.36  | 0.02 | 0.27   | 0.13   | 0.14    | 0.06 |
| Towanda      | 0.57 | 1.25  | 0.74       | 0.78 | 0.16 | 0.02 | 0.08    | 0.03  | 0.03   | 0.01 | 0.20 | 1.09    | 0.48           | 0.48    | 0.20  | 0.08 | 0.53   | 0.25   | 0.26    | 0.10 |
| Wilkes-Barre | 0.40 | 1.10  | 0.73       | 0.73 | 0.14 | 0.02 | 0.08    | 0.04  | 0.04   | 0.02 | 0.08 | 0.61    | 0.49           | 0.43    | 0.15  | 0.10 | 0.58   | 0.24   | 0.26    | 0.11 |
| Richardsmere | 3.93 | 8.03  | 6.26       | 6.28 | 1.27 | 0.02 | 0.25    | 0.04  | 0.06   | 0.07 | 3.21 | 7.67    | 5.52           | 5.67    | 1.43  | 0.11 | 2.55   | 0.40   | 0.65    | 0.69 |

 Table 28.
 Dissolved Nitrogen Species Summary Statistics of Samples Collected During 2008, in mg/L

|              |       | Tota  | l Phosph | orus  |       |       | Dissolv | ed Phos | phorus |       |       | Orth  | ophospł | norus |       | ]   | Fotal Sus | spended | l Solid | s   |
|--------------|-------|-------|----------|-------|-------|-------|---------|---------|--------|-------|-------|-------|---------|-------|-------|-----|-----------|---------|---------|-----|
| Station      | Min   | Max   | Med      | Mn    | SD    | Min   | Max     | Med     | Mn     | SD    | Min   | Max   | Med     | Mn    | SD    | Min | Max       | Med     | Mn      | SD  |
| Chemung      | 0.033 | 0.437 | 0.085    | 0.116 | 0.104 | 0.023 | 0.079   | 0.041   | 0.042  | 0.015 | 0.009 | 0.089 | 0.030   | 0.038 | 0.024 | 1   | 157       | 5       | 23      | 43  |
| Cohocton     | 0.012 | 0.486 | 0.040    | 0.084 | 0.115 | 0.008 | 0.098   | 0.027   | 0.034  | 0.025 | 0.002 | 0.049 | 0.017   | 0.021 | 0.015 | 1   | 45        | 11      | 12      | 12  |
| Conklin      | 0.017 | 0.357 | 0.050    | 0.092 | 0.091 | 0.010 | 0.087   | 0.023   | 0.030  | 0.022 | 0.003 | 0.080 | 0.014   | 0.020 | 0.019 | 2   | 376       | 15      | 57      | 114 |
| Smithboro    | 0.022 | 0.380 | 0.078    | 0.110 | 0.092 | 0.017 | 0.058   | 0.027   | 0.030  | 0.012 | 0.003 | 0.056 | 0.016   | 0.016 | 0.013 | 2   | 358       | 9       | 58      | 104 |
| Unadilla     | 0.016 | 0.328 | 0.044    | 0.088 | 0.094 | 0.005 | 0.084   | 0.022   | 0.030  | 0.025 | 0.002 | 0.094 | 0.019   | 0.025 | 0.027 | 4   | 203       | 15      | 40      | 63  |
| Castanea     | 0.010 | 0.174 | 0.023    | 0.039 | 0.046 | 0.010 | 0.026   | 0.010   | 0.012  | 0.004 | 0.010 | 0.017 | 0.010   | 0.010 | 0.002 | 2   | 202       | 8       | 30      | 58  |
| Conestoga    | 0.034 | 1.547 | 0.183    | 0.279 | 0.304 | 0.013 | 0.407   | 0.147   | 0.164  | 0.086 | 0.010 | 0.368 | 0.129   | 0.144 | 0.082 | 2   | 894       | 15      | 70      | 180 |
| Danville     | 0.015 | 0.345 | 0.043    | 0.068 | 0.067 | 0.010 | 0.058   | 0.016   | 0.019  | 0.010 | 0.010 | 0.047 | 0.010   | 0.014 | 0.008 | 2   | 366       | 14      | 46      | 77  |
| Dromgold     | 0.011 | 0.540 | 0.043    | 0.077 | 0.127 | 0.010 | 0.111   | 0.030   | 0.037  | 0.029 | 0.010 | 0.080 | 0.021   | 0.028 | 0.022 | 5   | 430       | 7       | 35      | 105 |
| Hershey      | 0.024 | 0.515 | 0.070    | 0.128 | 0.141 | 0.018 | 0.111   | 0.053   | 0.053  | 0.027 | 0.013 | 0.092 | 0.038   | 0.040 | 0.022 | 2   | 416       | 7       | 60      | 111 |
| Hogestown    | 0.010 | 0.431 | 0.037    | 0.085 | 0.111 | 0.010 | 0.075   | 0.026   | 0.029  | 0.019 | 0.010 | 0.059 | 0.016   | 0.021 | 0.014 | 5   | 416       | 7       | 50      | 104 |
| Jersey Shore | 0.010 | 0.175 | 0.012    | 0.028 | 0.041 | 0.010 | 0.013   | 0.010   | 0.010  | 0.001 | 0.010 | 0.010 | 0.010   | 0.010 | 0.000 | 5   | 196       | 8       | 26      | 44  |
| Karthaus     | 0.010 | 0.066 | 0.012    | 0.023 | 0.020 | 0.010 | 0.013   | 0.010   | 0.010  | 0.001 | 0.010 | 0.010 | 0.010   | 0.010 | 0.000 | 5   | 70        | 10      | 21      | 23  |
| Lewisburg    | 0.010 | 0.086 | 0.023    | 0.029 | 0.019 | 0.010 | 0.043   | 0.010   | 0.016  | 0.009 | 0.010 | 0.033 | 0.010   | 0.013 | 0.006 | 2   | 84        | 5       | 14      | 19  |
| Manchester   | 0.042 | 0.771 | 0.133    | 0.218 | 0.199 | 0.027 | 0.317   | 0.122   | 0.121  | 0.076 | 0.012 | 0.285 | 0.097   | 0.100 | 0.070 | 2   | 828       | 9       | 97      | 199 |
| Marietta     | 0.024 | 0.360 | 0.039    | 0.071 | 0.074 | 0.010 | 0.034   | 0.017   | 0.018  | 0.007 | 0.010 | 0.030 | 0.011   | 0.013 | 0.005 | 5   | 384       | 12      | 46      | 82  |
| Martic Forge | 0.039 | 1.567 | 0.116    | 0.288 | 0.425 | 0.032 | 0.690   | 0.074   | 0.184  | 0.214 | 0.024 | 0.650 | 0.059   | 0.168 | 0.205 | 2   | 536       | 14      | 59      | 140 |
| Newport      | 0.012 | 0.526 | 0.042    | 0.086 | 0.120 | 0.010 | 0.098   | 0.031   | 0.033  | 0.021 | 0.010 | 0.084 | 0.021   | 0.024 | 0.018 | 2   | 506       | 8       | 34      | 98  |
| Penns Creek  | 0.010 | 0.604 | 0.023    | 0.077 | 0.143 | 0.010 | 0.181   | 0.016   | 0.031  | 0.042 | 0.010 | 0.055 | 0.010   | 0.017 | 0.013 | 5   | 456       | 8       | 42      | 103 |
| Saxton       | 0.010 | 0.567 | 0.018    | 0.078 | 0.137 | 0.010 | 0.024   | 0.012   | 0.014  | 0.005 | 0.010 | 0.017 | 0.010   | 0.011 | 0.002 | 5   | 2,862     | 11      | 257     | 725 |
| Towanda      | 0.029 | 0.295 | 0.060    | 0.080 | 0.062 | 0.010 | 0.069   | 0.030   | 0.035  | 0.016 | 0.010 | 0.060 | 0.023   | 0.027 | 0.013 | 2   | 330       | 12      | 44      | 78  |
| Wilkes-Barre | 0.019 | 0.303 | 0.046    | 0.088 | 0.082 | 0.010 | 0.045   | 0.018   | 0.023  | 0.011 | 0.010 | 0.040 | 0.011   | 0.016 | 0.009 | 5   | 340       | 26      | 66      | 99  |
| Richardsmere | 0.037 | 0.392 | 0.092    | 0.125 | 0.105 | 0.023 | 0.142   | 0.071   | 0.071  | 0.036 | 0.013 | 0.133 | 0.046   | 0.055 | 0.034 | 4   | 166       | 6       | 29      | 58  |

 Table 29.
 Phosphorus Species and Total Suspended Solids Summary Statistics of Samples Collected During 2008, in mg/L

| Station      |       | ]       | Flow (cfs) |        |        |      | Total Oı | rganic ( | Carbon | l    | Т    | otal Kj | eldahl I | Nitroge | n    | Dis  | solved l | Kjeldah | l Nitro | gen  |
|--------------|-------|---------|------------|--------|--------|------|----------|----------|--------|------|------|---------|----------|---------|------|------|----------|---------|---------|------|
|              | Min   | Max     | Med        | Mn     | SD     | Min  | Max      | Med      | Mn     | SD   | Min  | Max     | Med      | Mn      | SD   | Min  | Max      | Med     | Mn      | SD   |
| Chemung      | 282   | 42,879  | 3,618      | 8,899  | 11,927 | 2.51 | 7.84     | 3.39     | 3.88   | 1.52 | 0.17 | 1.46    | 0.37     | 0.58    | 0.39 | 0.22 | 1.00     | 0.39    | 0.63    | 0.36 |
| Cohocton     | 71    | 9,053   | 499        | 1,448  | 2,413  | 2.62 | 12.50    | 3.89     | 4.67   | 2.40 | 0.31 | 1.99    | 0.48     | 0.68    | 0.45 | 0.25 | 1.00     | 0.60    | 0.62    | 0.29 |
| Conklin      | 303   | 24,981  | 7,358      | 9,787  | 9,325  | 1.88 | 4.45     | 2.76     | 2.97   | 0.70 | 0.13 | 1.90    | 0.47     | 0.60    | 0.45 | 0.12 | 1.00     | 0.32    | 0.51    | 0.36 |
| Smithboro    | 770   | 58,553  | 15,504     | 20,280 | 19,698 | 1.96 | 4.51     | 2.95     | 3.16   | 0.78 | 0.15 | 1.00    | 0.54     | 0.59    | 0.30 | 0.16 | 1.00     | 0.34    | 0.56    | 0.39 |
| Unadilla     | 81    | 8,199   | 1,624      | 2,304  | 2,493  | 1.81 | 5.34     | 3.14     | 3.19   | 0.90 | 0.12 | 1.18    | 0.37     | 0.60    | 0.38 | 0.14 | 1.00     | 0.34    | 0.49    | 0.34 |
| Castanea     | 157   | 7,274   | 1,580      | 2,412  | 2,364  | 1.51 | 7.50     | 2.15     | 2.60   | 1.44 | 0.12 | 0.46    | 0.22     | 0.24    | 0.09 | 0.12 | 0.85     | 0.27    | 0.33    | 0.20 |
| Conestoga    | 164   | 6,818   | 572        | 893    | 1,287  | 2.28 | 17.90    | 3.48     | 4.50   | 3.13 | 0.04 | 2.92    | 0.54     | 0.75    | 0.68 | 0.16 | 2.95     | 0.49    | 0.61    | 0.52 |
| Danville     | 1,013 | 123,346 | 9,790      | 29,201 | 35,849 | 1.67 | 6.30     | 3.28     | 3.28   | 0.91 | 0.14 | 0.91    | 0.39     | 0.40    | 0.17 | 0.11 | 0.43     | 0.28    | 0.28    | 0.08 |
| Dromgold     | 38    | 10,263  | 283        | 1,061  | 2,507  | 1.44 | 12.60    | 2.67     | 3.43   | 2.72 | 0.03 | 1.81    | 0.22     | 0.33    | 0.43 | 0.04 | 0.49     | 0.21    | 0.23    | 0.15 |
| Hershey      | 105   | 17257   | 514        | 3145   | 5196   | 1.62 | 11.10    | 2.35     | 3.72   | 2.77 | 0.00 | 1.43    | 0.36     | 0.48    | 0.40 | 0.15 | 0.49     | 0.32    | 0.31    | 0.11 |
| Hogestown    | 150   | 7,960   | 713        | 1,783  | 2,399  | 1.74 | 10.50    | 2.50     | 3.75   | 2.44 | 0.02 | 1.76    | 0.31     | 0.44    | 0.42 | 0.15 | 0.56     | 0.34    | 0.32    | 0.11 |
| Jersey Shore | 546   | 75,320  | 19,164     | 19,539 | 19,659 | 1.17 | 6.13     | 1.76     | 2.08   | 1.16 | 0.11 | 0.80    | 0.17     | 0.23    | 0.16 | 0.09 | 0.37     | 0.16    | 0.17    | 0.07 |
| Karthaus     | 281   | 16,279  | 4,938      | 5,565  | 5,259  | 1.39 | 4.97     | 1.87     | 2.30   | 1.02 | 0.14 | 0.53    | 0.20     | 0.26    | 0.12 | 0.10 | 0.37     | 0.18    | 0.20    | 0.07 |
| Lewisburg    | 1,070 | 75,815  | 10,021     | 17,966 | 20,636 | 1.06 | 5.30     | 2.19     | 2.23   | 0.82 | 0.06 | 0.53    | 0.24     | 0.26    | 0.10 | 0.13 | 0.53     | 0.22    | 0.24    | 0.09 |
| Manchester   | 72    | 14,790  | 831        | 2,863  | 4,324  | 3.28 | 14.40    | 4.49     | 6.15   | 3.03 | 0.18 | 2.19    | 0.46     | 0.67    | 0.54 | 0.15 | 0.80     | 0.35    | 0.41    | 0.19 |
| Marietta     | 5,000 | 351,597 | 30,499     | 74,995 | 90,522 | 1.74 | 7.08     | 2.92     | 3.10   | 1.09 | 0.13 | 1.09    | 0.32     | 0.38    | 0.23 | 0.05 | 0.39     | 0.18    | 0.19    | 0.07 |
| Martic Forge | 65    | 1,025   | 134        | 202    | 238    | 1.33 | 14.10    | 2.54     | 3.96   | 3.58 | 0.20 | 3.54    | 0.50     | 0.94    | 1.00 | 0.16 | 3.53     | 0.57    | 0.77    | 0.85 |
| Newport      | 629   | 51,147  | 2,755      | 7,522  | 11,114 | 2.07 | 11.20    | 2.89     | 3.30   | 1.85 | 0.09 | 1.73    | 0.30     | 0.36    | 0.33 | 0.03 | 0.47     | 0.23    | 0.23    | 0.11 |
| Penns Creek  | 76    | 9,587   | 696        | 1,374  | 2,250  | 1.92 | 14.10    | 2.24     | 3.41   | 2.82 | 0.13 | 2.14    | 0.24     | 0.43    | 0.48 | 0.10 | 0.77     | 0.24    | 0.32    | 0.19 |
| Saxton       | 104   | 18,735  | 1,061      | 3,519  | 5,216  | 1.84 | 13.00    | 2.48     | 3.70   | 2.82 | 0.02 | 2.58    | 0.26     | 0.46    | 0.59 | 0.04 | 0.31     | 0.16    | 0.18    | 0.07 |
| Towanda      | 1,013 | 102,162 | 9,123      | 22,750 | 27,945 | 1.67 | 6.41     | 3.15     | 3.23   | 0.88 | 0.11 | 0.75    | 0.38     | 0.37    | 0.15 | 0.11 | 0.55     | 0.28    | 0.30    | 0.10 |
| Wilkes-Barre | 1,514 | 112,626 | 30,124     | 39,462 | 39,360 | 2.32 | 6.06     | 3.21     | 3.53   | 1.10 | 0.16 | 1.00    | 0.37     | 0.44    | 0.22 | 0.14 | 1.00     | 0.30    | 0.34    | 0.20 |
| Richardsmere | 41    | 3,876   | 194        | 448    | 999    | 2.44 | 7.88     | 3.14     | 3.70   | 1.52 | 0.33 | 2.90    | 0.58     | 0.82    | 0.71 | 0.08 | 2.57     | 0.44    | 0.66    | 0.67 |

Table 30.Flow, Total Organic Carbon, Total Kjeldahl, and Dissolved Kjeldahl Summary Statistics of Samples Collected During 2008, in<br/>mg/L

## COMPARISON OF THE 2008 LOADS AND YIELDS OF TOTAL NITROGEN, TOTAL PHOSPHORUS, AND SUSPENDED SEDIMENT WITH THE BASELINES

Annual fluctuations of nutrient and SS loads and water discharge create difficulties in determining whether the changes observed were related to land use, nutrient availability, or simply annual water discharge. Ott and others (1991) used the relationship between annual loads and annual water discharge to provide a method to reduce the variability of loadings due to discharge. This was accomplished by plotting the annual yields against the water-discharge ratio. This water-discharge ratio is the ratio of the annual mean discharge to the LTM discharge. Data from the initial five-year study (1985-89) were used to provide a best-fit linear regression line to be used as the baseline relationship between annual yields and water discharge. It was hypothesized that as future yields and water-discharge ratios were plotted against the baseline, any significant deviation from the baseline would indicate that some change in the annual yield had occurred, and that further evaluations to determine the reason for the change were warranted.

Several different baselines were developed for this report. The data collected in 2008 were compared with the 1985-89 baselines, where possible. Monitoring at some of the stations was started after 1987; therefore, a baseline was established for the five-year period following the start of monitoring. Additionally, 2008 yield values were plotted against baselines developed from years prior to 2008 including the first half of the dataset (usually 1985-1996), the second half of the dataset (usually 1985-2008).

The results of these analyses are shown in Tables 31 and 32. The  $R^2$  value represents the strength of the correlation between the two parameters in the regression. An  $R^2$  of one means that there is perfect correlation between the two variables-flow and the individual parameter. The closer the  $R^2$  is to a value of one, the better the regression line is for accurately using one variable (flow) to predict the other.  $R^2$  values less than 0.5 have poor predictive value (< 50 percent) and have been noted with an asterisk (\*) in Tables 31 and 32. The Y' value is the yield value that the regression line predicts for 2008. The Y corresponds to the actual 2008 yield.

 $R^2$  values for TN tend to be close to one as the relationship between TN and flow is very consistent through various ranges of flows.  $R^2$ values for TP and SS tend to vary more, especially towards higher flows. Thus, when regression graphs include high flow events, the resulting correlation tends to be less perfect indicated by a low  $R^2$  value. This is an indication that single high flow events, and not necessarily a high flow year, are the highest contributors to high loads in TP and SS. As has been evident in the last few years, the high loads that have occurred at Towanda and Danville can be linked directly to high flow events, specifically Tropical Storm Ernesto in 2006 and Hurricane Ivan in 2004. Seasonal baselines also were calculated for the initial five years of data at each site. Table 32 compares these baselines to the 2008 seasonal yields.

| Site/Param | eter | Ir   | nitial Bas     | seline  | Firs | t Half         | Baseline | Seco | ond Half       | Baseline | ŀ    | full Bas       | seline  | 2008  |
|------------|------|------|----------------|---------|------|----------------|----------|------|----------------|----------|------|----------------|---------|-------|
|            |      | Q    | $\mathbf{R}^2$ | Y'      | Q    | $\mathbf{R}^2$ | Y'       | Q    | $\mathbf{R}^2$ | Y'       | Q    | $\mathbf{R}^2$ | Y'      | Y     |
|            | TN   |      | 0.86           | 6.42    |      | 0.87           | 5.93     |      | 0.92           | 4.69     |      | 0.65           | 5.42    | 4.37  |
| Towanda    | TP   | 0.98 | 0.70           | 0.445   | 0.99 | 0.89           | 0.442    | 0.93 | 0.86           | 0.425    | 0.96 | 0.84           | 0.448   | 0.490 |
|            | SS   |      | 0.38*          | 491.0   |      | 0.70           | 594.9    |      | 0.59           | 432.9    |      | 0.58           | 543.2   | 260.7 |
|            | TN   |      | 0.95           | 10.23   |      | 0.87           | 7.57     |      | 0.76           | 5.41     |      | 0.57           | 6.37    | 5.03  |
| Danville   | TP   | 1.31 | 0.97           | 0.811   | 1.10 | 0.86           | 0.614    | 1.03 | 0.89           | 0.496    | 1.06 | 0.86           | 0.553   | 0.500 |
|            | SS   |      | 0.99           | 875.8   |      | 0.75           | 628.1    |      | 0.57           | 445.0    |      | 0.65           | 529.8   | 268.3 |
|            | TN   |      | 0.91           | 6.34    |      | 0.95           | 5.31     |      | 0.98           | 4.66     |      | 0.83           | 5.01    | 4.09  |
| Lewisburg  | TP   | 1.02 | 0.92           | 0.300   | 0.89 | 0.86           | 0.251    | 0.97 | 0.95           | 0.259    | 0.93 | 0.84           | 0.260   | 0.247 |
|            | SS   |      | 0.71           | 209.0   |      | 0.76           | 180.5    |      | 0.64           | 213.1    |      | 0.65           | 217.3   | 113.8 |
|            | TN   |      | 0.84           | 10.03   |      | 0.95           | 8.35     |      | 0.99           | 8.52     |      | 0.97           | 8.42    | 7.67  |
| Newport    | TP   | 1.23 | 0.68           | 0.722   | 1.08 | 0.76           | 0.417    | 1.12 | 0.87           | 0.427    | 1.10 | 0.81           | 0.419   | 0.379 |
|            | SS   |      | 0.94           | 430.7   |      | 0.90           | 274.2    |      | 0.73           | 326.5    |      | 0.76           | 296.9   | 180.1 |
|            | TN   |      | 1.00           | 11.29   |      | 0.95           | 8.88     |      | 0.98           | 7.59     |      | 0.92           | 8.14    | 7.01  |
| Marietta   | TP   | 1.23 | 0.79           | 0.564   | 1.07 | 0.90           | 0.523    | 1.03 | 0.85           | 0.476    | 1.05 | 0.88           | 0.498   | 0.368 |
|            | SS   |      | 0.70           | 487.9   |      | 0.90           | 445.2    |      | 0.68           | 446.7    |      | 0.78           | 446.9   | 318.4 |
|            | TN   |      | 0.99           | 37.56   |      | 0.98           | 33.75    |      | 0.96           | 31.12    |      | 0.95           | 32.43   | 26.25 |
| Conestoga  | TP   | 1.01 | 0.67           | 2.651   | 0.94 | 0.90           | 2.364    | 0.94 | 0.60           | 1.750    | 0.94 | 0.66           | 2.061   | 0.880 |
|            | SS   |      | 0.87           | 1,525.4 |      | 0.89           | 1,172.5  |      | 0.33*          | 987.6    |      | 0.57           | 1,082.0 | 268.1 |

Table 31. Comparison of 2008 TN, TP, and SS Yields with Baseline Yields

 $R^2$  = correlation coefficient \* indicates a  $R^2$  that is low and thus is less accurate at predicting Y

| Site/Param | notor |      |                | Fall  |       |      |                | Spring |       |      | S              | Summer |       |      |                | Winter |       |
|------------|-------|------|----------------|-------|-------|------|----------------|--------|-------|------|----------------|--------|-------|------|----------------|--------|-------|
|            |       | Q    | R <sup>2</sup> | Y'    | Y08   | Q    | R <sup>2</sup> | Y'     | Y08   | Q    | R <sup>2</sup> | Y'     | Y08   | Q    | R <sup>2</sup> | Y'     | Y08   |
|            | TN    |      | 0.98           | 1.62  | 0.72  |      | 0.97           | 1.26   | 0.86  |      | 0.99           | 0.29   | 0.18  |      | 0.95           | 4.09   | 2.62  |
| Towanda    | TP    | 0.71 | 0.99           | 0.130 | 0.073 | 0.53 | 0.93           | 0.011  | 0.091 | 0.79 | 0.99           | 0.019  | 0.023 | 1.83 | 0.61           | 0.230  | 0.307 |
|            | SS    |      | 0.86           | 98.7  | 16.1  |      | 0.97           | 27.6   | 36.5  |      | 0.94           | 5.5    | 2.5   |      | 0.02*          | 154.2  | 205.6 |
|            | TN    |      | 1.00           | 1.49  | 0.86  |      | 1.00           | 1.58   | 0.94  |      | 0.99           | 0.35   | 0.19  |      | 1.00           | 5.23   | 3.04  |
| Danville   | TP    | 0.95 | 0.98           | 0.100 | 0.070 | 0.79 | 1.00           | 0.110  | 0.080 | 0.72 | 0.93           | 0.030  | 0.020 | 2.38 | 0.97           | 0.410  | 0.330 |
|            | SS    |      | 0.95           | 45.0  | 22.3  |      | 0.98           | 88.6   | 30.1  |      | 0.79           | 9.0    | 2.8   |      | 0.90           | 586.0  | 213.1 |
|            | TN    |      | 1.00           | 0.82  | 0.68  |      | 1.00           | 1.40   | 0.95  |      | 0.99           | 0.25   | 0.20  |      | 0.99           | 3.60   | 2.43  |
| Lewisburg  | TP    | 0.65 | 0.99           | 0.033 | 0.036 | 0.76 | 0.99           | 0.068  | 0.054 | 0.47 | 0.97           | 0.014  | 0.008 | 1.75 | 0.98           | 0.151  | 0.156 |
|            | SS    |      | 0.95           | 8.3   | 10.6  |      | 0.96           | 38.3   | 15.7  |      | 0.41*          | 2.6    | 0.9   |      | 0.89           | 165.3  | 92.2  |
|            | TN    |      | 1.00           | 1.44  | 1.18  |      | 0.98           | 2.96   | 2.48  |      | 1.00           | 0.39   | 0.31  |      | 0.96           | 4.54   | 3.70  |
| Newport    | TP    | 0.92 | 0.96           | 0.071 | 0.050 | 1.20 | 0.89           | 0.187  | 0.150 | 0.53 | 1.00           | 0.027  | 0.020 | 1.71 | 0.84           | 0.277  | 0.160 |
|            | SS    |      | 0.87           | 27.8  | 13.4  |      | 0.98           | 140.0  | 64.8  |      | 1.00           | 2.8    | 1.9   |      | 0.91           | 197.1  | 100.0 |
|            | TN    |      | 1.00           | 1.63  | 1.23  |      | 1.00           | 2.21   | 1.53  |      | 1.00           | 0.43   | 0.29  |      | 1.00           | 5.31   | 3.96  |
| Marietta   | TP    | 0.92 | 1.00           | 0.077 | 0.052 | 0.89 | 0.91           | 0.124  | 0.066 | 0.63 | 0.89           | 0.024  | 0.012 | 2.00 | 0.87           | 0.197  | 0.238 |
|            | SS    |      | 0.98           | 51.3  | 28.1  |      | 0.92           | 108.1  | 35.4  |      | 0.88           | 9.1    | 2.6   |      | 0.97           | 144.9  | 252.2 |
|            | TN    |      | 0.98           | 7.04  | 5.31  |      | 1.00           | 8.78   | 6.28  |      | 1.00           | 4.27   | 3.22  |      | 1.00           | 15.72  | 11.44 |
| Conestoga  | TP    | 1.04 | 0.85           | 0.467 | 0.246 | 0.88 | 0.99           | 0.571  | 0.169 | 0.61 | 0.21*          | 0.573  | 0.135 | 1.41 | 0.45*          | 0.987  | 0.333 |
|            | SS    |      | 0.95           | 116.4 | 81.6  |      | 0.98           | 305.3  | 36.8  |      | 0.16*          | 381.0  | 17.4  |      | 0.25*          | 311.3  | 132.3 |

Table 32. Comparison of 2008 Seasonal TN, TP, and SS Yields with Baseline Yields

Q = discharge ratioR<sup>2</sup> = correlation coefficient\* indicates a R<sup>2</sup> that is low and thus is less accurate at predicting Y

### DISCHARGE, NUTRIENT, AND SUSPENDED-SEDIMENT TRENDS

Flow Adjusted Concentration (FAC) trend analyses of water quality and flow data collected at the six Group A monitoring sites were completed for the period January 1985 through December 2008. Trends were estimated based on the USGS water year, October 1 to September 30, using the USGS 7-parameter, log-linear regression model (ESTIMATOR) developed by Cohn and others (1989) and described in Langland and others (1999). This estimator relates the constituent concentration to water discharge, seasonal effects, and long-term trends, and computes the best-fit regression equation. These tests were used to estimate the direction and magnitude of trends for discharge, SS, TOC, and several forms of nitrogen and phosphorus. Slope, p-value and sigma (error) values are taken directly from ESTIMATOR output. These values are then used to calculate flow adjusted trends using the following equations:

Trend =  $100^{\circ}(\exp(\text{Slope }^{\circ}(\text{end yr} - \text{begin yr})) - 1)$ 

Trend minimum = 100\*(exp((Slope - (1.96\*sigma)) \*(end yr - begin yr)) - 1)

Trend maximum = 100\*(exp((Slope + (1.96\*sigma)) \*(end yr - begin yr)) - 1)

The computer application S-Plus with the USGS ESTREND library addition was used to conduct Seasonal Kendall trend analysis on

flows (Schertz and others, 1991). Trend results were reported for monthly mean discharge (FLOW) and FAC. Trends in FLOW indicate the natural changes in hydrology. Changes in flow and the cumulative sources of flow (base flow and overland runoff) affect the observed concentrations and the estimated loads of nutrients and SS. The FAC is the concentration after the effects of flow are removed from the concentration time series. Trends in FAC indicate that changes have occurred in the processes that deliver constituents to the stream system. After the effects of flow are removed, this is the concentration that relates to the effects of nutrient-reduction activities and other actions taking place in the watershed. A description of the methodology is included in Langland and others (1999).

Trend results for each monitoring site are presented in Tables 33 through 38. Each table lists the results for flow, the various nitrogen and phosphorus species, TOC, and SS. The level of significance was set by a p-value of 0.05 for FAC (Langland and others, 1999). The magnitude of the slope incorporates a confidence interval and was reported as a range (minimum and maximum). The slope direction was reported as not significant (NS) or, when significant, as down for improving trends and up for degrading trends. When a time series for a particular parameter had greater than 20 percent of its observations BMDL, a trend analysis could not be completed and it was listed as BMDL.

| Parameter        | STORET | Time        | Slope   | P-Value  | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|----------|---------|---------|---------|-----------|
| Farameter        | Code   | Series/Test | Slope   | F-Value  | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | 65.84   | 0.1324   | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0250 | < 0.0001 | -42.59  | -39.35  | -35.93  | Down      |
| DN               | 602    | FAC         | -0.0214 | < 0.0001 | -38.54  | -34.82  | -30.87  | Down      |
| TON              | 605    | FAC         | -0.0302 | < 0.0001 | -51.78  | -45.34  | -38.03  | Down      |
| DON              | 607    | FAC         | -0.0208 | < 0.0001 | -42.04  | -34.03  | -24.92  | Down      |
| DNH <sub>3</sub> | 608    | FAC         | -0.0150 | 0.0004   | -37.41  | -25.92  | -12.32  | BMDL      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0247 | < 0.0001 | -48.85  | -38.98  | -27.21  | Down      |
| DKN              | 623    | FAC         | -0.0200 | < 0.0001 | -40.64  | -32.97  | -24.31  | Down      |
| TKN              | 625    | FAC         | -0.0298 | < 0.0001 | -50.82  | -44.90  | -38.27  | Down      |
| TNOx             | 630    | FAC         | -0.0205 | < 0.0001 | -37.91  | -33.63  | -29.06  | Down      |
| DNOx             | 631    | FAC         | -0.0203 | < 0.0001 | -37.91  | -33.37  | -28.50  | Down      |
| TP               | 665    | FAC         | -0.0004 | 0.9123   | -13.85  | -0.80   | 14.24   | NS        |
| DP               | 666    | FAC         | -0.0021 | 0.5671   | -17.38  | -4.11   | 11.29   | NS        |
| DOP              | 671    | FAC         | 0.1002  | < 0.0001 | 486.38  | 641.87  | 838.58  | Up        |
| TOC              | 680    | FAC         | -0.0034 | 0.0205   | -11.91  | -6.57   | -0.92   | Down      |
| SS               | 80154  | FAC         | -0.0191 | 0.0009   | -43.95  | -30.43  | -13.66  | Down      |

Table 33. Trend Statistics for the Susquehanna River at Towanda, Pa., October 1988 Through September 2008

Down = downward/improving trend

Up = Upward/degrading trend BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

#### Table 34. Trend Statistics for the Susquehanna River at Danville, Pa., October 1984 Through September 2008

| Parameter        | STORET | Time        | Slope   | P-Value  | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|----------|---------|---------|---------|-----------|
| Falametei        | Code   | Series/Test | Slope   | F-Value  | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | 104.32  | 0.0597   | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0257 | < 0.0001 | -49.23  | -46.03  | -42.63  | Down      |
| DN               | 602    | FAC         | -0.0209 | < 0.0001 | -43.04  | -39.44  | -35.63  | Down      |
| TON              | 605    | FAC         | -0.0338 | < 0.0001 | -60.68  | -55.57  | -49.79  | Down      |
| DON              | 607    | FAC         | -0.0266 | < 0.0001 | -53.49  | -47.19  | -40.03  | Down      |
| DNH <sub>3</sub> | 608    | FAC         | -0.0243 | < 0.0001 | -53.32  | -44.19  | -33.27  | BMDL      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0297 | < 0.0001 | -58.61  | -50.97  | -41.93  | Down      |
| DKN              | 623    | FAC         | -0.0253 | < 0.0001 | -51.79  | -45.51  | -38.42  | Down      |
| TKN              | 625    | FAC         | -0.0343 | < 0.0001 | -60.78  | -56.10  | -50.85  | Down      |
| TNOx             | 630    | FAC         | -0.0190 | < 0.0001 | -40.66  | -36.62  | -32.30  | Down      |
| DNOx             | 631    | FAC         | -0.0190 | < 0.0001 | -40.94  | -36.62  | -31.98  | Down      |
| TP               | 665    | FAC         | -0.0136 | < 0.0001 | -37.64  | -27.85  | -16.52  | Down      |
| DP               | 666    | FAC         | -0.0043 | 0.1977   | -23.14  | -9.81   | 5.84    | NS        |
| DOP              | 671    | FAC         | 0.0866  | < 0.0001 | 516.99  | 699.17  | 935.14  | BMDL      |
| TOC              | 680    | FAC         | -0.0088 | < 0.0001 | -23.48  | -19.04  | -14.34  | Down      |
| SS               | 80154  | FAC         | -0.0333 | < 0.0001 | -62.57  | -55.03  | -45.98  | Down      |

Down = downward/improving trend

Up = Upward/degrading trend

BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

| Parameter        | STORET | Time        | Slope   | P-Value        | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|----------------|---------|---------|---------|-----------|
| Farameter        | Code   | Series/Test | Slope   | <b>F-value</b> | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | -16.91  | 0.6862         | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0164 | < 0.0001       | -37.13  | -32.54  | -27.61  | Down      |
| DN               | 602    | FAC         | -0.0133 | < 0.0001       | -31.96  | -27.33  | -22.38  | Down      |
| TON              | 605    | FAC         | -0.0387 | < 0.0001       | -66.65  | -60.50  | -53.21  | Down      |
| DON              | 607    | FAC         | -0.0309 | < 0.0001       | -59.02  | -52.36  | -44.63  | Down      |
| DNH <sub>3</sub> | 608    | FAC         | -0.0113 | 0.0026         | -36.23  | -23.75  | -8.83   | BMDL      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0167 | < 0.0001       | -44.25  | -33.02  | -19.53  | Down      |
| DKN              | 623    | FAC         | -0.0247 | < 0.0001       | -52.45  | -44.72  | -35.74  | Down      |
| TKN              | 625    | FAC         | -0.0323 | < 0.0001       | -60.56  | -53.94  | -46.20  | Down      |
| TNOx             | 630    | FAC         | -0.0055 | < 0.0001       | -17.95  | -12.37  | -6.40   | Down      |
| DNOx             | 631    | FAC         | -0.0056 | < 0.0001       | -18.15  | -12.58  | -6.62   | Down      |
| TP               | 665    | FAC         | -0.0153 | < 0.0001       | -42.07  | -30.73  | -17.18  | Down      |
| DP               | 666    | FAC         | -0.0258 | < 0.0001       | -55.61  | -46.16  | -34.71  | BMDL      |
| DOP              | 671    | FAC         | 0.0737  | < 0.0001       | 335.99  | 486.38  | 688.65  | BMDL      |
| TOC              | 680    | FAC         | 0.0026  | 0.1135         | -1.74   | 6.44    | 15.30   | NS        |
| SS               | 80154  | FAC         | -0.0166 | 0.0066         | -47.18  | -32.86  | -14.66  | Down      |

Table 35.Trend Statistics for the West Branch Susquehanna River at Lewisburg, Pa., October 1984<br/>Through September 2008

Down = downward/improving trend

Up = Upward/degrading trend

BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

## Table 36.Trend Statistics for the Juniata River at Newport, Pa., October 1984 Through September2008

| Parameter        | STORET | Time        | Slope   | P-Value  | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|----------|---------|---------|---------|-----------|
| Falametei        | Code   | Series/Test | Slope   | F-Value  | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | 5.45    | 0.6639   | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0055 | 0.0000   | -16.79  | -12.37  | -7.71   | Down      |
| DN               | 602    | FAC         | -0.0029 | 0.0048   | -11.01  | -6.72   | -2.23   | Down      |
| TON              | 605    | FAC         | -0.0307 | < 0.0001 | -59.40  | -52.14  | -43.57  | Down      |
| DON              | 607    | FAC         | -0.0248 | < 0.0001 | -51.89  | -44.85  | -36.79  | Down      |
| DNH <sub>3</sub> | 608    | FAC         | -0.0162 | < 0.0001 | -43.57  | -32.21  | -18.56  | BMDL      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0173 | < 0.0001 | -44.79  | -33.98  | -21.06  | BMDL      |
| DKN              | 623    | FAC         | -0.0248 | < 0.0001 | -52.56  | -44.85  | -35.90  | Down      |
| TKN              | 625    | FAC         | -0.0270 | < 0.0001 | -55.00  | -47.69  | -39.19  | Down      |
| TNOx             | 630    | FAC         | 0.0012  | 0.2752   | -2.27   | 2.92    | 8.39    | NS        |
| DNOx             | 631    | FAC         | 0.0024  | 0.0346   | 0.12    | 5.93    | 12.08   | NS        |
| TP               | 665    | FAC         | -0.0189 | < 0.0001 | -45.60  | -36.47  | -25.80  | Down      |
| DP               | 666    | FAC         | -0.0170 | < 0.0001 | -42.79  | -33.50  | -22.70  | Down      |
| DOP              | 671    | FAC         | 0.0498  | < 0.0001 | 152.71  | 230.42  | 332.03  | Up        |
| TOC              | 680    | FAC         | -0.0077 | < 0.0001 | -23.62  | -16.87  | -9.53   | Down      |
| SS               | 80154  | FAC         | -0.0206 | 0.0001   | -52.02  | -39.01  | -22.47  | Down      |

Down = downward/improving trend

Up = Upward/degrading trend

BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

| Parameter        | STORET | Time        | Slope   | P-Value  | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|----------|---------|---------|---------|-----------|
| Farameter        | Code   | Series/Test | Slope   | F-Value  | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | 6.89    | 0.9513   | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0148 | < 0.0001 | -32.02  | -27.79  | -23.30  | Down      |
| DN               | 602    | FAC         | -0.0214 | < 0.0001 | -41.46  | -37.55  | -33.38  | Down      |
| TON              | 605    | FAC         | -0.0306 | < 0.0001 | -55.95  | -48.99  | -40.94  | Down      |
| DON              | 607    | FAC         | -0.0244 | < 0.0001 | -49.73  | -41.54  | -32.01  | Down      |
| DNH <sub>3</sub> | 608    | FAC         | -0.0111 | 0.0040   | -33.79  | -21.67  | -7.32   | Down      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0140 | 0.0003   | -37.88  | -26.51  | -13.05  | Down      |
| DKN              | 623    | FAC         | -0.0228 | < 0.0001 | -47.70  | -39.44  | -29.88  | Down      |
| TKN              | 625    | FAC         | -0.0286 | < 0.0001 | -53.17  | -46.70  | -39.34  | Down      |
| TNOx             | 630    | FAC         | -0.0064 | 0.0001   | -18.92  | -13.13  | -6.93   | Down      |
| DNOx             | 631    | FAC         | -0.0064 | 0.0001   | -18.92  | -13.13  | -6.93   | Down      |
| TP               | 665    | FAC         | -0.0123 | 0.0001   | -33.25  | -23.71  | -12.80  | Down      |
| DP               | 666    | FAC         | -0.0158 | < 0.0001 | -38.73  | -29.36  | -18.56  | Down      |
| DOP              | 671    | FAC         | 0.0999  | < 0.0001 | 598.24  | 800.52  | 1061.40 | BMDL      |
| TOC              | 680    | FAC         | -0.0070 | < 0.0001 | -19.64  | -14.27  | -8.54   | Down      |
| SS               | 80154  | FAC         | -0.0239 | < 0.0001 | -51.74  | -40.89  | -27.61  | Down      |

Table 37.Trend Statistics for the Susquehanna River at Marietta, Pa., October 1986 Through<br/>September 2008

Down = downward/improving trend

Up = Upward/degrading trend

BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

## Table 38.Trend Statistics for the Conestoga River at Conestoga, Pa., October 1984 Through<br/>September 2008

| Parameter        | STORET | Time        | Slope   | P-Value         | Slope   | Magnitu | de (%)  | Trend     |
|------------------|--------|-------------|---------|-----------------|---------|---------|---------|-----------|
| Farameter        | Code   | Series/Test | Slope   | <b>F</b> -value | Minimum | Trend   | Maximum | Direction |
| FLOW             | 60     | SK          | 2.79    | 0.2756          | -       | -       | -       | NS        |
| TN               | 600    | FAC         | -0.0093 | < 0.0001        | -23.68  | -20.00  | -16.15  | Down      |
| DN               | 602    | FAC         | -0.0010 | 0.3378          | -6.86   | -2.37   | 2.33    | NS        |
| TON              | 605    | FAC         | -0.0306 | < 0.0001        | -58.14  | -52.02  | -45.01  | Down      |
| DON              | 607    | FAC         | -0.0014 | 0.5903          | -14.84  | -3.30   | 9.79    | NS        |
| DNH <sub>3</sub> | 608    | FAC         | -0.0597 | < 0.0001        | -79.76  | -76.14  | -71.87  | Down      |
| TNH <sub>3</sub> | 610    | FAC         | -0.0614 | < 0.0001        | -80.57  | -77.09  | -72.99  | Down      |
| DKN              | 623    | FAC         | -0.0128 | < 0.0001        | -34.61  | -26.45  | -17.27  | Down      |
| TKN              | 625    | FAC         | -0.0359 | < 0.0001        | -62.62  | -57.75  | -52.26  | Down      |
| TNOx             | 630    | FAC         | 0.0005  | 0.6824          | -4.80   | 1.21    | 7.59    | NS        |
| DNOx             | 631    | FAC         | 0.0011  | 0.3969          | -3.42   | 2.68    | 9.15    | NS        |
| TP               | 665    | FAC         | -0.0299 | < 0.0001        | -57.23  | -51.21  | -44.34  | Down      |
| DP               | 666    | FAC         | -0.0246 | < 0.0001        | -49.33  | -44.59  | -39.41  | Down      |
| DOP              | 671    | FAC         | -0.0096 | 0.0013          | -31.03  | -20.58  | -8.54   | Down      |
| TOC              | 680    | FAC         | -0.0269 | < 0.0001        | -51.82  | -47.57  | -42.93  | Down      |
| SS               | 80154  | FAC         | -0.0514 | < 0.0001        | -76.43  | -70.88  | -64.01  | Down      |

Down = downward/improving trend

Up = Upward/degrading trend

BMDL = Greater than 20% of values were Below Method Detection Limit

NS = No significant trend

### DISCUSSION

2008 flow at Towanda was 96 percent of the LTM, with significant rainfall during the winter months and December and shortfalls during all other months. Years with similar annual flow include 1992, 1998, and 2007. While there were no large variations between loads for years 2007 and 2008, there were variations between both years and loads for 1992 and 1998. Loads for TN, DN, TON, DON, TNOx, and DNOx were all lower for 2007 and 2008 as compared to 1992 and 1998, while TP, DP, and DOP were all higher. Seasonal loads for all parameters were highest during winter, including 80 percent of the annual SS load delivered during the period, while only 56 percent of the annual flow was delivered during the season. The majority of this load was during March, which had 27 percent of the annual flow and 47 percent of the annual SS load. TN and TP loads also were higher during March than any other month in 2008, with 29 percent and 35 percent of the annual yield, respectively. Seasonal baseline comparisons showed that TP and SS were higher than predicted for both winter and fall while only TP was higher for summer. Annual yields were above the baseline prediction for all comparisons for TP, while yields for all other parameters were below the baseline predictions. Trends for the time period showed 11 downward trends, one upward trend for DOP, and four nonsignificant trends for TP, DP, DNH<sub>3</sub>, and flow.

2008 flow at Danville was 106 percent of the LTM due to significant rainfall during the winter months and December. Years with similar annual flow include 1986 and 1998. Comparisons with these years show that 2008 had below expected load values for all parameters except TP, DP, and DOP. TP loads were as predicted, while DP and DOP were above predicted values as compared to the previous similar water years. Seasonal loads were similar to Towanda's, with all parameters being highest during winter, including 80 percent of the annual SS load delivered during the winter months, while only 56 percent of the annual flow was delivered during the same time

period. The majority of this load was during March, which had 26 percent of the annual flow and 50 percent of the annual SS load. TN and TP loads also were higher during March than any other month in 2008 with 28 percent and 36 percent of the annual yield, respectively. Both annual and seasonal baseline comparisons for all parameters showed 2008 yields below the predicted values, except for TP for the comparison with the second half of the dataset. Although the predicted value was lower that the actual 2008 value, the magnitude was not enough to imply degradations. Trends for the time period included 12 downward trends and four nonsignificant trends for DP, DNH<sub>3</sub>, DOP, and flow.

2008 flow at Lewisburg was 93 percent of the LTM, with above LTM flow during February, March, May, and December. Years with similar annual flow include 1985, 1992, 1998, 2002, and 2005. Comparisons with these years show that 2008 had below expected load values for all nitrogen parameters except TNOx and DNOx, which were near the previous year's values. TP, TOC, and SS loads also were similar to previous similar water years, while DP and DOP both were greater in 2008 than expected based on previous water years. Seasonal loads were similar to Towanda and Danville, with all parameters being highest during winter, including 78 percent of the annual SS load delivered during the winter months, while only 55 percent of the annual flow was delivered. The majority of this load was during March, which had 28 percent of the annual flow and 50 percent of the annual SS load. TN and TP loads also were higher during March than any other month in 2008 with 28 percent and 35 percent of the annual yield, respectively. 2008 yields were below the baseline annual predictions for all comparisons for TN, TP, and SS. Seasonal baseline comparisons showed that TP yields were higher than predicted values for winter and summer, while SS yields were higher than predicted for winter. Trends for the time period included 11 downward trends and five nonsignificant trends for DP, DNH<sub>3</sub>, DOP, TOC, and flow.

2008 flow at Newport was 110 percent of the LTM, with above LTM flows during February, March, December, and highest above LTM values during May. Years with similar annual flow include 1989, 1990, 1994, and 1997. Comparisons with these years show that 2008 had below expected load values for TN and DN and above expected values for DOP. All other parameters showed no variation from previous Seasonal flows and loads were more years. evenly distributed among the seasons at Newport for 2008. Winter still had the highest percentage of flow, with 45 percent of annual flow, which led to highest load values for all parameters during the season, with SS having the highest percentage at 56 percent. The majority of this load was during March, which had 23 percent of the annual flow and 45 percent of the annual SS load. TN and TP loads also were higher during March, with 23 percent and 29 percent of the annual yield, respectively. May was the second highest month for flow, with 18 percent of the annual flow and 18, 23, and 22 percent of annual loads for TN, TP, and SS, respectively. Both annual and seasonal baseline comparisons for all parameters showed 2008 yields below the predicted values at Newport. Trends for the time period included 10 downward trends, five nonsignificant trends for TNH<sub>3</sub>, DNH<sub>3</sub>, TNOx, DNOx, and flow, and one upward trend for DOP.

2008 flow at Marietta was 105 percent of the LTM, with above LTM flows during February, March, May, and December. Years with similar annual flow include 1998 and 2005. Comparisons with these years show that 2008 had no variation for TON, DON, TKN, and DOP. All other parameters showed lower than expected loads when compared to the previous years with similar flows. Winter was the highest flow season for 2008, with flow being 53 percent of annual flow, which led to highest load values for all parameters during the season with SS having the highest percentage at 79 percent. The majority of this load was during March, which had 26 percent of the annual flow. TN, TP, and SS loads also were highest during March in 2008 with 26, 29, and 57 percent of the annual yield, respectively. 2008 yield values for 2008 were below the annual baseline predictions for all parameters, while the high flow season, winter, had 2008 yields for TP and SS that were above what was predicted by baseline values. 2008 trends at Marietta were downward for all parameters except DOP and flow, which had no significant trends.

2008 flow at Conestoga was 94 percent of the LTM, with above LTM flows during February, March, and December. Years with similar annual flow include 1987, 1988, 1990, 1998, 2000, and 2007. Comparisons with these similar flow years showed no variation for TNH<sub>3</sub> and DNH<sub>3</sub>. 2008 values for all other parameters were lower than expected loads when compared to these years. Flow and seasonal loads for all parameters were highest during the winter Large variations between the months. percentage of flow for the season and the percentage of each parameter for the season were not found at Conestoga as it had been at all other sites due to lower flows during March. Comparisons for February specifically did show this variation with 18 percent of the annual flow occurring during February, while 30 percent of the annual SS load was transported during that month. December had similar loads with 14 percent of the annual flow and 13, 22, and 29 percent of the TN, TP, and SS loads, respectively. All baseline comparisons showed that 2008 yields were below the predicted values and thus suggest possible improvements in conditions. Trends for the time period showed 11 downward trends and five nonsignificant trends for DN, DON, TNOx, DNOx, and flow.

2008 loads and trends indicated that reductions were attained for nearly all nitrogen species at all sites. Phosphorus species showed the opposite in the three northernmost sites at Danville, Towanda. Lewisburg. and Specifically, DOP loads were higher than predicted by analyses at all sites except at Conestoga. 2008 loads at Conestoga showed reductions in both nitrogen and phosphorus species and suspended sediment as compared to previous years, although it still maintains the highest yield values of all sites for all parameters. Marietta, the southernmost site on the Susquehanna River, had downward trends for all analyzed parameters during 2008 except

DOP, which had no trend due to greater than 20 percent of the measured values being below the laboratory method's detection limit. Considering the trapping effect of the Conowingo Dam below Marietta, loads transported to the Bay were likely lower than shown at Marietta for both phosphorus and suspended sediment during 2008.

#### REFERENCES

- Cohn, T.A., L.L DeLong, E.J. Gilroy, R.M. Hirsch, and D.E Wells. 1989. Estimating Constituent Loads. *Water Resources Research*, 25(5), pp. 937-942.
- Guy, H.P. and V.W. Norman. 1969. Field Methods for Measurement of Fluvial Sediment. U.S. Geological Survey Techniques of Water Resources Investigation, Book 3, Chapter C2 and Book 5, Chapter C1.
- Langland, M.J. 2000. "Delivery of Sediment and Nutrients in the Susquehanna, History, and Patterns." The Impact of Susquehanna Sediments on the Chesapeake Bay, Chesapeake Bay Program Scientific and Technical Advisory Committee Workshop Report.
- Langland, M.J., J.D. Bloomquist, L.A. Sprague, and R.E. Edwards. 1999. Trends and Status of Flow, Nutrients, Sediments for Nontidal Sites in the Chesapeake Bay Watershed, 1985-98. U.S. Geological Survey (Open-File Report), 64 pp. (draft).
- Ott, A.N., L.A. Reed, C.S. Takita, R.E. Edwards, and S.W. Bollinger. 1991. Loads and Yields of Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1985-89. Susquehanna River Basin Commission (Publication No. 136), 254 pp.
- Schertz, T.L., R.B. Alexander, and D.J. Ohe. 1991. The computer program EStimate TREND (ESTREND), a system for the detection of trends in water-quality data: U.S. Geological Survey Water-Resources Investigations Report 91-4040, 63 pp.
- Susquehanna River Basin Study Coordination Committee. 1970. Susquehanna River Basin Study, 156 pp.
- Takita, C.S. 1998. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1994-96, and Loading Trends, Calendar Years 1985-96. Susquehanna River Basin Commission (Publication No. 194), 72 pp.
- ——. 1996. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1992-93. Susquehanna River Basin Commission (Publication No. 174), 51 pp.
- Takita, C.S. and R.E. Edwards. 1993. Nutrient and Suspended Sediment Transported in the Susquehanna River Basin, 1990-91. Susquehanna River Basin Commission (Publication No. 150), 57 pp.
- U.S. Environmental Protection Agency (USEPA). 1982. Chesapeake Bay Program Technical Studies: A Synthesis, 634 pp.