IV. WATER RESOURCE AVAILABILITY

The source of almost all water in the Deer Creek Watershed is, ultimately, precipitation
within the watershed boundaries. Only very small amounts of water are imported to the
watershed for public supply in York County. Consequently, this analysis starts with an
evaluation of precipitation, followed by an assessment of runoff and recharge to the aquifers
underlying the watershed.

A. Precipitation

There are data available from four National Climatic Data Center (NCDC) stations in or
near the Deer Creek Watershed: New Park in Pennsylvania, and Conowingo Dam, Maryland
Line, and the Conowingo Dam Police Barracks in Maryland. The period of record and locations
of each of these stations is shown on Figure 8. The longest periods of precipitation records are
for the first two stations. The precipitation values for these stations vary little, with the average
and median values for monthly precipitation varying by 2 percent to 4 percent for the period of
record.
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Figure 8.  Precipitation Stations and Periods of Record
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A record of annual precipitation for the Deer Creek Watershed was developed by
averaging all available stations for each year in the period 1917 to 2004. In addition to
considering the entire record, it is also useful to observe the most recent 30-year period of the
record (1975-2004), which is defined as the climate normal. Analysis of the record shows that
precipitation in most years (each year shown with an “x” on Figure 9) falls between 30 and
60 inches, with a few outliers. For the purpose of observing trends in precipitation, 5-year
running averages were calculated over the record and are also displayed. The 5-year averages
for the early record are shown with blue symbols, and those for the climate normal period are
shown in pink.
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Figure 9.  Long-Term Precipitation Record

Although the 1960s and 1970s stand out as relatively dry and wet periods, respectively,
there does not appear to be a significant long-term increasing or decreasing trend in the annual
precipitation data. However, the average precipitation for the climate normal period, at
45.78 inches, is about an inch greater than the long-term average over the entire record. This
increase may result in greater water availability in the watershed.
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The precipitation record can be used to develop an estimated record of total available
water supply in the watershed. Assuming the annual precipitation values fall over the entire
watershed area of 109,521 acres, an estimate for the quantity of water received by the watershed
is developed. Based on this method, Table 4 shows statistics for precipitation and the available
water supply (in cubic feet per second [cfs]) for the watershed, based upon both the 1917 to 2004
record, and the 30-year climate normal period. The average precipitation during the climate
normal period contributes just over 577 cfs to the watershed on an annual average basis, while
the long-term average precipitation contributes just under 566 cfs.

Table 4.  Precipitation Statistics

Period of Record (1917-2004) Climate Normal (1975-2004)

(inches) (cfs)* (inches) (cfs)*
Average 44.88 565.8 45.78 577.1
Median 44.76 564.3 44.93 566.4
25th Percentile 38.82 489.4 38.60 486.6
10th Percentile 35.67 449.7 35.07 442.2
S5th Percentile 33.13 417.7 32.66 411.7
1st Percentile 30.18 380.5 29.53 372.3

* cfs based upon watershed area of 109,521 acres.

An analysis of return frequency of precipitation is useful for water resource planning.
Figure 10 shows the recurrence interval plot for annual precipitation in the Deer Creek
Watershed. As noted above, the average annual precipitation (recurrence interval of 2 years) is
about 45 inches. The driest year on record (2002) had a total precipitation of about 28 inches,
with an expected recurrence interval of approximately 80 years. Note, the recurrence interval
chart on Figure 10, as with all such charts in this report, have been configured to illustrate the
recurrence of low flow events, not floods. As a result, they are opposite in orientation to
recurrence interval charts constructed for evaluating flood events.
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Figure 10. Recurrence Intervals for Annual Precipitation

B. Streamflow

The flow in Deer Creek has been monitored by three U.S. Geological Survey (USGS)
gages over the past 100 years (Figure 1, Table 5). The longest record (79 years) is from the
station on Deer Creek near Rocks, Maryland. Figure 11 is the flow duration curve for the period
of record at Rocks based upon average daily flows. The flow duration curve is approximately
log normal in form, with a relatively flat shape. The median flow value (50 percent exceedence)
is 94 cfs, which is nearly coincident with the average value for the log-normal distribution
(97 cfs). Approximately 67 percent (£1 standard deviation) of the daily flow values fall within
the range of 50 cfs to 188 cfs. These statistics indicate that the watershed is groundwater-
dominated, and that discharge from groundwater (base flow) is a large component of the total
flow.
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Table 5. U.S. Geological Survey Gaging Stations

Station Name USGS Upstream Area Period
ID Number (square miles) of Record
Deer Creek near Rocks, Md. 1580000 94.4 1927 to present
Deer Creek near Kalmia, Md. 1580200 125 1967 to 1977
Deer Creek near Darlington, Md. 1580520 168 2000 to present
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Figure 11.  Flow Duration Curve for Rocks Gage

To verify the role groundwater plays in the surface hydrology of Deer Creek, base flow
separations were performed for all three gages for their entire periods of record. Base flow
separation is a technique used to determine the components of total flow in a stream that result
from groundwater discharge (base flow) and from direct surface runoff. Figure 12 shows an
example of the base flow separation for the Rocks gage for the 2002 calendar year, which is the
driest year on record for this gage.

The U.S. Bureau of Reclamation’s (USBR’s) base flow index (BFI) program was used
for the Deer Creek Watershed base flow analysis, as it has been proven to be useful for
estimating long-term base flow trends on unregulated streams. The process computes an annual
BFI, which gives the ratio of base flow to total flow volume at one or more gage sites. The use
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of a 7-day averaging period was found to be most suitable for application of the BFI program to
Deer Creek. The results of the base flow separations are presented in Table 6.
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Figure 12.  Base Flow Separation for 2002 at Rocks Gage
Table 6.  Calculated Flow Parameters for U.S. Geological Survey Stations
Average Average Average Percentage of | Average Percentage of
Station Name Flow* Base Base Flow to Total Base Flow to Total Flow
(cfs) Flow* (cfs) Flow* (cfs) (30-year normal)
Deer Creek near o o
Rocks, Md. 125.7 83.4 66.9% 67.8%
Deer Creek near o
Kalmia, Md, 198.1 130.7 66.6% -
Deer Creek near o
Darlington, Md. 225.2 150.1 67.8% -

* Results for Kalmia and Darlington locations from limited data (10 years or less).

Averaged over the period of record, base flow represents 67 percent of the total flow at
Rocks. The year with the highest proportion of base flow to total flow was 2002 (90 percent)
when record low flows and precipitation deficits occurred. The ratios for Kalmia and Darlington
are similar at 66 percent and 67 percent, respectively. Because of the similarity in BFIs at the
different locations on Deer Creek, it can reasonably be concluded that the proportion of
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precipitation contributing to groundwater recharge is fairly uniform throughout the watershed
when averaged at this scale.

In addition to comparing base flow at locations throughout the watershed, it is also useful
to consider long-term trends at a given location, particularly a site with a relatively long period
of record. An analysis of the Rocks gage shows that, on average, the BFI has been increasing
over the period of record (Figure 13). This trend may reflect the impact of increased infiltration
and decreased runoff due to factors such as increasing forestation in the twentieth century.
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Figure 13.  Ratio of Annual Base Flow to Total Flow

In terms of variations in basin hydrology from the headwaters to the outlet, a key measure
is the ratio of flow at a location to its upstream drainage area. The area upstream of the USGS
gage near Kalmia was 125 square miles, or 1.32 times the area of the drainage upstream of the
Rocks gage (94.4 square miles). As depicted on Figure 14, the ratio of total flows and base
flows between the two gaging stations is, within error, identical to the drainage area ratio of 1.32.

Comparing the Darlington and Rocks gages, the ratio of drainage areas is 1.78, whereas
the ratio of base flows is 1.69, £0.06. Because the Darlington gage is located much farther
downstream than Rocks and receives base flow from a larger and potentially more varied
drainage area than either the Rocks or Kalmia gage, the difference between the ratios may be
attributable to variations in recharge in the lower Deer Creek Watershed (see section on local
variations in streamflow below). The downstream location of the Darlington gage may also
explain differences in the ratio of total flow to the Rocks gage. Because the creek at Darlington
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drains nearly twice the area drained at Rocks, it is more likely to capture isolated thundershowers
that fall elsewhere in the watershed. That phenomenon may have been particularly important in
2002, the year of lowest recorded rainfall. Any isolated rain falling in the drainage between
Rocks and Darlington would have had a much more pronounced effect on total flow for the year.
However, in general, these ratios demonstrate that contribution of base flow per unit of drainage
area is fairly uniform along the main stem of Deer Creek.
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Figure 14. Ratio of Total Flow to Base Flow at Rocks Gage

Because a primary concern of this study is the availability of water during periods of low
flow, the low flow periods were also examined from gaging records. Using the 79-year record at
the Rocks gage, an assessment was made of the 5 percent and 10 percent lowest daily flow
values. The average monthly flows were then considered for the same period and compared to
the low flow values. As can be seen from Figure 15, the months that most frequently averaged
less than the 5 percent and 10 percent lowest daily flows are July through November. Of those
months, September most frequently averaged below the thresholds, for a total of 11 and 22 years
out of the 79 on record. In contrast, flows in March never, over the 79 years, averaged less than
the 5 percent and 10 percent lowest total flows. This seasonal variation in flow is attributed
primarily to the influence of evapotranspiration and temperature, which is strongest during the
summer and early fall months. As noted above, the seasonality of precipitation is insignificant
for the Deer Creek Watershed.
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Figure 15.  Frequency in Years that Average Monthly Flow Occurs Within 5th or 10th Percentile of
Flow at Rocks Gage

Existing gage data has shown that recharge and discharge are fairly uniform across the
watershed on the main stem of Deer Creek on a large-scale average basis. However, the same is
likely not true on a smaller scale, and local variations may be responsible for the difference in the
ratios between base flow and drainage at Darlington and Rocks, as noted above. To evaluate
local variations in recharge/discharge across the watershed, a field program was initiated in the
spring of 2006. The Deer Creek Watershed was subdivided into subwatersheds, and these were
evaluated in terms of the geology and hydrogeologic units (Table 7, Figure 16).

Table 7.  Subwatershed Areas

Name Areza Ar.eza

(m’) (mi’)

1 | Cool Branch Run 6,408,565 2.47
2 | Stout Bottle Branch - Cabbage Run 18,773,175 7.25
3 | Thomas Run 21,060,427 8.13
4 | Mill Brook 12,102,327 4.67
5 | Hollands Branch 8,742,998 3.38
6 | UNT at Thomas Bridge Rd 11,297,080 4.36
7 | Saint Omer Branch 29,140,343 11.25
8 | Deer Creek - Mid 13,709,287 5.29
9 | South Stirrup - North Stirrup Run 16,964,124 6.55
10 | Rock Hollow - Kellogg - Gladden Branches 32,376,604 12.50
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Table 7.  Subwatershed Areas (continued)

Name Arga Areza
(m”) (mi”)
11 | UNT south of Falling Branch 1,622,061 0.63
12 | UNT west of Falling Branch 982,215 0.38
13 | Little Deer Creek 37,185,714 14.36
14 | Falling Branch 16,750,609 6.47
15 | Big Branch 20,703,352 7.99
16 | Island - Jackson - Plumtree Branches 75,124,140 29.01
17 | Ebaugh’s Creek 17,889,318 6.91
18 | Deer Creek Headwaters 44,894,766 17.33
19 | Graveyard Creek 4,183,434 1.62
20 | Hopkins Branch 5,912,009 2.28
21 | Tobacco Run 20,695,099 7.99
22 | Buck Branch - Elbow Branch 26,562,599 10.26
23 | UNT east of Hollands Branch 140,029 0.05
N
Legend |
Ebaugh's Creek @ Stream-Gaging Locations (May to November, 2006)
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Twenty-three locations in the main stem of Deer Creek and its tributaries were selected
for stream gaging (Table 8, Figure 16). These locations were selected so as to sample upstream
basin areas underlain by a variety of geological and hydrogeologic units. Between May and
November 2006, each subwatershed was gaged at least three times in one or more locations. The
goal of this gaging exercise was to measure base flow. The field days were selected accordingly
following several days without precipitation so as to minimize the amount of surface runoff
present in the streams.

A combination of a Swoffer 2100 velocity meter with a digital readout and manual
counting with Pygmy meters was used during the gaging. Gaging protocols were similar,
however, and based upon USGS standard protocols (Buchanan and Somers, 1969). When
implemented correctly, this procedure yields flow measurements accurate to within 5 percent.

Within the Deer Creek Watershed, there are several wastewater treatment plants that
discharge directly to Deer Creek tributaries. These include a Stewartstown facility which
discharges into Ebaugh’s Creek. With a discharge limit of 0.4 million gallons per day (mgd), the
outflow from this plant can potentially increase the flow in Ebaugh’s Creek up to about 0.6 cfs.
During the field studies, Ebaugh’s Creek was gaged three times, with values ranging from 6.9 to
8.2 cfs.

As can be seen in Table 9, the gaging data were collected over a period of 6 months,
under varying base flow conditions. All measurements were collected at least 3 or 4 days after
the last rainfall event. Corresponding flows at the Rocks gage, for the same dates the gaging
data were collected, varied between 79 cfs and 130 cfs. To remove the impact of varying base
flow conditions during the different dates flow measurements were taken, all flow measurements
were normalized to an arbitrary value — the median flow at the Rocks gaging station, or 94 cfs.
The normalized stream gaging results and the corresponding drainage area upstream of the
gaging location are presented on Figure 17. The normalized flows for each gaging location were
averaged for each subwatershed and then divided by the drainage area of the subwatershed to
yield the subwatershed average normalized flow per recharge area. The results are plotted for
each of the gaged subwatersheds on Figure 18. The results indicate that recharge to the
groundwater varies throughout the watershed between 0.67 cfs/mi® and 1.05 cfs/mi”. In general,
there is a geographic variation with lower values being associated with watersheds developed on
the Baltimore Gabbro and Port Deposit Gneiss (lower Deer Creek Watershed) and higher values
associated with the other bedrock units. On average, the recharge per unit area in the upper
portion of the watershed is 1.02 cfs/mi”>. The average recharge in the lower portion of the basin
is 0.76 cfs/mi’.
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Figure 17.  Subwatershed Stream Gaging Results
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Figure 18.  Mapped Subwatershed Flows per Recharge Area (cfs/mi’)
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C. Extrapolating Results of Field Data to Entire Watershed

The only long-term record for the Deer Creek Watershed is that from the gage at Rocks.
To extrapolate this data to the entire watershed requires either: (1) the assumption of
homogeneity; or (2) data on actual geographic variations in hydraulic behavior. The field data
collected in 2006 provide a basis for extrapolation based upon actual observations.

As noted earlier, the ratio of base flows between the Rocks gage, and the limited record
from the Darlington gage (1.69, +£0.6) is somewhat lower than the actual ratio of watershed areas
between these gages (1.78). This cannot be explained assuming a homogeneous basin. Using
the field data, normalized to median base flow conditions, however, a weighted average of
recharge per surface area upstream of Darlington can be calculated:

Area of Upper Watershed 126.7 mi
Area of Lower Watershed (above Darlington Gage) 41.4 mi’
Area of Watershed above Rocks Gage 94.4 mi*
Average Recharge in Upper Watershed 1.02 cfs/mi’
Average Recharge in Lower Watershed 0.76 cfs/mi’

Total Recharge above Darlington Gage:

(126.65%1.02)+(41.35%0.77) =161.02 cfs

Ratio of Recharge at Darlington to Median Recharge at Rocks, Maryland:

161.02 167
94.4*1.02

This ratio is consistent with the recent stream gaging data, as well as the limited data
from the Darlington gage. It can provide a basis for extrapolating probability values for base
flow at Rocks to Darlington. Figures 19 and 20 show recurrence intervals for the total flow at
Rocks and a similar chart extrapolated for the Darlington gage location, based upon the ratio of
upstream watershed areas.
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Figure 19. Total Flow at Rocks Gage
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Figure 20. Total Flow at Darlington Gage
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A commonly used measure of low flow — the 7Q10, is depicted in Table 10 and on
Figure 21. The 7Q10 value is defined as the 7-day, consecutive low flow with a 10-year return
frequency, or the lowest streamflow for 7 consecutive days that would be expected to occur once
in 10 years. The 7Q10 curves for Rocks and Darlington are both based upon the Rocks data, but
extrapolated as explained above. The value calculated here (26.9 cfs) for the 7Q10 at Rocks is
similar to that calculated by the Maryland Department of the Environment (MDE) for permitting
purposes (25.7 cfs). The 7Q10 data was calculated using both water years and calendar years.
The results differ by about 8 percent. For the sake of being conservative, as well as being
consistent with other calculations discussed above, it was decided to use the higher value, or that
calculated based upon the calendar year.

Table 10. 7Q10 Values for Rocks and Darlington Gages

. 7Q10 (cfs) 7Q10 (cfs)
Location (from Water Year) | (from Calendar Year)
USGS Gage at Rocks, Md. 24.8 26.9
USGS Gage at Darlington, Md.* 41.5 44.9

* Values generated by extrapolating from Rocks gage data based on drainage area.
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Figure 21.  7Q10 Flow at Rocks and Darlington Gages
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D. Summary of Deer Creek Hydrologic Setting

Precipitation values are fairly consistent across the watershed, with average and median
values for monthly precipitation varying by 2 percent to 4 percent for the period of record.
Likewise, examination of the record shows that there is little change in the long-term trend of
precipitation amount. The climate normal average precipitation of 45.78 inches is about an inch
greater than the long-term average, and contributes just over 577 cfs to the watershed on an
annual average basis.

The median streamflow value (50 percent exceedence) derived from the flow duration
curve at Rocks is 94 cfs, and statistics indicate that the watershed is groundwater-dominated,
with base flow being a large component of total flow. Averaged over the period of record, base
flow represents 67 percent of the total flow at Rocks and 66 percent and 67 percent at Kalmia
and Darlington, respectively. It can reasonably be concluded that the amount of precipitation
contributing to groundwater recharge is fairly uniform throughout the watershed. In general, a
comparison of the ratio of drainage areas to the ratio of base flows demonstrates that contribution
of base flow per unit of drainage area is fairly uniform along the main stem of Deer Creek.

Existing gage data shows that recharge and discharge are fairly uniform across the
watershed on the main stem of Deer Creek on a large-scale average basis while, on a smaller
scale, local variations are likely responsible for the difference in the ratios between base flow and
drainage at Darlington and Rocks. In general, there is a geographic variation between lower
values associated with watersheds developed on the Baltimore Gabbro and Port Deposit Gneiss
(lower Deer Creek Watershed) and higher values on the other bedrock units. These local
variations are likely to be important in the analysis of water availability to meet projected
demands.
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